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A Architectures and training details

In this section, we explain in detail how we performed our experiments for our SE(2)- and SE(3)-
equivariant models, including the datasets, preprocessing steps, architectural designs as the training
and evaluation protocols we used.

A.1 SE(2)-Equivariant Networks for 2D Point Clouds

A.1.1 Data and preprocessing

For simplicity, our 2D implementation operates directly on point clouds (this is not a fundamental
limitation; as the point cloud code is more general, we can use it to handle pixel grids, too). As the
MNIST-rot dataset consists of images, we first convert them to point clouds by placing the values on a
regular grid with a spacing of 1, i.e. we generate a coordinate tensor containing the point coordinates
and a data tensor containing the pixel values for each pixel in the image. The data tensor of the input
is real-valued with rotation order 0, but in general, its values in the equivariant part of the network
are complex Fourier coefficients of various rotation order, representing the network activations as
band-limited angular functions.

A.1.2 Architecture

Architecture-wise, we stay as close as possible to the best performing rotation-equivariant MNIST-rot
architecture by Weiler and Cesa [5], i.e. we use the same number, type and width of layers, as well as
identical filter parameters for the equivariant convolutional layers. A detailed view of our architecture
is shown in Table 1.

Our network consists of 6 rotation-equivariant convolutional layers, after which an invariant map
is applied, followed by 3 rotation-invariant linear (fully-connected) layers. After each layer, we
perform Batch Normalization [3], followed by a nonlinearity, with exception of the final linear layer.
When working on complex Fourier coefficients, we apply a custom Batch Normalization layer which
operates directly on the coefficients (as discussed in the main paper), otherwise, we use the standard
implementation from PyTorch. Furthermore, following the design of Weiler and Cesa [5], we also
apply Dropout [4] with p = 0.3 to the inputs of each linear layer.

Contrary to Weiler and Cesa [5], who use spatial max-pooling in their best performing architectures,
we opt for 2∗2 spatial average pooling instead, which has the advantage that it can be applied directly
on the Fourier coefficients without requiring any transformation. After each pooling step, we divide
the coordinate tensor by 2, so the spacing between grid points is kept at 1 at all times.

A.1.3 Training and evaluation protocol

We train out networks on the training set of MNIST-rot, containing 12,000 rotated images from the
original MNIST dataset, and evaluate them on the corresponding test set, containing 50,000 images,
using the same data loading pipeline and hyperparameters as Weiler and Cesa [5]. Network weights
are initialized randomly using He initialization [2], and then trained using the Adam optimizer
with PyTorch default parameters (betas = (0.9, 0.999), eps = 10−8) and a mini-batch size of 64
to optimize the log-softmax cross entropy of the network output. Training is done for a total of 40
epochs, using a fixed learning rate of 0.015 in the first 16 epochs, and then decayed exponentially by
applying a factor of 0.8 before each following epoch. To get meaningful results, we calculate the
mean test error and its standard deviation from 10 independent training runs.

Between training and testing, we perform an additional pass on the training set without changing
trainable weights to calculate the exact statistics on the full training set in the Batch Normalization
layers. This gives more representative values than using an expontial average for determining the
mean and variance values during the optimization process (which can lag behind when the parameters
of the network change).

A.1.4 Experiments

We train different variations of our model on MNIST-rot (Table 2) and measure accuracy and training
time per epoch with varying precision of the angular representation by using a different number of
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Table 1: Detailed architecture for experiments on the MNIST-rot dataset

no. layer spatial output size filters followed bytype reduction x ∗ y ∗ channels ∗ coeffs (r, σ, frequencies)

0 Input - 28 ∗ 28 ∗ 1 ∗ 1 - –

1 Conv2D crop(4) 20 ∗ 20 ∗ 24 ∗ cmax

(0, 0.005, 0)

BN + nonlinearity
(1, 0.600,−2...2)
(2, 0.600,−3...3)
(3, 0.600,−6...6)
(4, 0.400,−2...2)

2 Conv2D pool(2) 10 ∗ 10 ∗ 32 ∗ cmax

(0, 0.005, 0)

BN + nonlinearity(1, 0.600,−2...2)
(2, 0.600,−3...3)
(3, 0.400,−2...2)

3 Conv2D – 10 ∗ 10 ∗ 36 ∗ cmax

(0, 0.005, 0)

BN + nonlinearity(1, 0.600,−2...2)
(2, 0.600,−3...3)
(3, 0.400,−2...2)

4 Conv2D pool(2) 5 ∗ 5 ∗ 36 ∗ cmax

(0, 0.005, 0)

BN + nonlinearity(1, 0.600,−2...2)
(2, 0.600,−3...3)
(3, 0.400,−2...2)

5 Conv2D – 5 ∗ 5 ∗ 64 ∗ cmax

(0, 0.005, 0)

BN + nonlinearity(1, 0.600,−2...2)
(2, 0.600,−3...3)
(3, 0.400,−2...2)

6 Conv2D crop(2) 1 ∗ 1 ∗ 96 ∗ cfinal

(0, 0.005, 0)
BN + nonlinearity(1, 0.600,−2...2)

(2, 0.400,−2...2)

7 Linear – 96 – BN + nonlinearity
8 Linear – 96 – BN + nonlinearity
9 Linear – 40 – CrossEntropyLoss

Table 2: Variations of our MNIST-rot model using ReLU and its polynomial approximations

model group repre- num. FFT activation invariant model sec / test error (%)
sentation coeff. pad function map param. epoch mean std

Ours SO(2) Fourier 3 127 ReLU norm 365,338 21 0.985 0.035

Ours SO(2) Fourier 5 127 ReLU norm 708,634 25 0.768 0.021

Ours SO(2) Fourier 9 0 ReLU norm 1,394,986 30 0.710 0.025
Ours SO(2) Fourier 9 7 ReLU norm 1,394,986 30 0.689 0.019
Ours SO(2) Fourier 9 8 Poly(2)–ReLU norm 1,394,986 32 0.690 0.015
Ours SO(2) Fourier 9 24 Poly(4)–ReLU norm 1,394,986 36 0.690 0.024
Ours SO(2) Fourier 9 127 ReLU norm 1,394,986 36 0.685 0.026
Ours SO(2) Fourier 9 127 ReLU conv2triv 891,178 36 0.719 0.018

Ours SO(2) Fourier 17 8 Poly(2)–ReLU norm 2,729,098 61 0.691 0.022
Ours SO(2) Fourier 17 24 Poly(4)–ReLU norm 2,729,098 64 0.694 0.025
Ours SO(2) Fourier 17 127 ReLU norm 2,729,098 64 0.699 0.033

Table 3: Comparison of nonlinearities on MNIST-rot

model group repre- num. FFT activation invariant model sec / test error (%)
sentation coeff. pad function map param. epoch mean std

Ours SO(2) Fourier 9 – C–ReLU norm 1,396,138 30 0.980 0.031
Ours SO(2) Fourier 9 – C–sigmoid norm 1,396,138 30 1.500 0.034

Ours SO(2) Fourier 9 127 ReLU norm 1,394,986 36 0.685 0.026
Ours SO(2) Fourier 9 127 LeakyReLU norm 1,394,986 36 0.690 0.028
Ours SO(2) Fourier 9 127 SiLU norm 1,394,986 36 0.705 0.026
Ours SO(2) Fourier 9 127 ELU norm 1,394,986 36 0.729 0.029
Ours SO(2) Fourier 9 127 tanh norm 1,394,986 36 0.768 0.024
Ours SO(2) Fourier 9 127 sigmoid norm 1,394,986 36 0.809 0.022
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Figure 1: Relative error of ReLU activations for our 2D architecture measured on MNIST-rot for
randomly rotated vs. unrotated inputs (architecture as in Table 1, 9 Fourier coefficients, norm-map).
solid: mean absolute error, dashed: maximum error, relative to the layer-wise L1-norm measured for
batches of 32 images, with 36 random rotations applied to each image

Fourier coefficients (3, 5, 9, or 17), as well as precision of the nonlinearity application by using
different padding sizes for the FFT algorithm.

Invariant map: Here, we consider two possible choices. One method to produce invariant activations,
conv2triv, is to output only the rotation invariant coefficient z0 in the last convolutional layer (i.e. to
set cfinal = 1 in Table 2). This coefficient is the average value of the angular function, therefore this
method is equivalent to average pooling over different rotations of the output. However, as strong
activations may appear only for some specific rotation of the input, this method may not be optimal,
as can be also seen from the results. As an alternative, we set the last convolutional layer to full sized
output (cfinal = cmax) and take the norm of each complex coefficient after the nonlinearity has been
applied.

Nonlinearities: Having found a well-performing architecture, we use it to investigate different
nonlinearities (Table 3). We evaluate the ReLU, LeakyReLU, SiLU, ELU, tanh and sigmoid
nonlinearities with the FFT algorithm using a padding of 127 to guarantee a good precision, with
ReLU and LeakyReLU resulting in the best accuracy. We also include the polynomial approximations
of ReLU [1], where we set the FFT padding depending on the degree of the polynomial. These
approximations were designed for an input range of [−5; 5]. As polynomial approximations diverge
quickly outside of the intended range of the approximation, we clamp the `1-norm of each channel’s
Fourier coefficients (which is an upper limit to the maximum absolute value of the angular function)
to a maximum value of 5 before applying the nonlinearity, to make sure we avoid problems with
exploding activations or gradients.

An alternative approach is to use norm-only nonlinearities, which do not require a Fourier transform
as they act exclusively on the norm of the complex coefficients [7; 5]. This is only suitable for
functions with strictly positive output (like ReLU and sigmoid). In accordance with Weiler and
Cesa [5], we find that norm-based nonlinearities lead to a worse accuracy than classic ReLU on
MNIST-rot.
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Figure 2: Relative error for various nonlinearities for our 2D architecture measured on MNIST-rot for
randomly rotated vs. unrotated inputs. Errors are measured as in Figure 1 after the fifth (penultimate)
equivariant layer. Polynomials show the expected sharp decline with increasing FFT padding. C–
ReLU included as reference (no FFT used).
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Figure 3: Same plot as Figure 2, but extended to very large FTT paddings. ReLU and LeakyReLU
converge slowest and still show improvements up to very large padding values of 2000.
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Table 4: Detailed architecture for experiments on the ModelNet-40 dataset

no. layer type layer output layer filters followed by
channels coeffs sampling level radius levels σ

0 Input 1 1 1 – – – –
1 SurfelConv 16 9 2 0.1 (−0.1, 0.1, 0.1) 0.0424 BN + nonlinearity
2 SurfelConv 32 9 3 0.2 (−0.2, 0.2, 0.2) 0.0849 BN + nonlinearity
3 SurfelConv 48 9 3 0.4 (−0.4, 0.4, 0.4) 0.1699 BN + nonlinearity
4 SurfelConv 64 9 3 0.4 (−0.4, 0.4, 0.4) 0.1699 BN + nonlinearity
5 SurfelConv 96 9 3 0.8 (−0.8, 0.8, 0.8) 0.3397 BN + nonlinearity
6 SurfelConv 40 1 3 0.8 (−0.8, 0.8, 0.8) 0.3397 BN + nonlinearity
7 PointAvgPool 40 1 (1 value) – – – CrossEntropyLoss

A.2 SE(3)-Equivariant Surfel Networks

A.2.1 Local reference frames and feature interaction

Our SE(3) based surfel network is inspired by the work of Wiersma et al. [6] and transfers the concept
of angular-dependent activations, which previously lived on a flat surface of an image, to the curved
surface of a 3D object. This poses some difficulties, as the implicit assumption that all features are
aligned in an identical way (which we made for the 2D case of flat images) does not hold for generally
curved 3D surfaces, where the normal vectors can have varying directions. Therefore, this approach
requires to assign a local reference coordinate frame (x, y, n) to each point feature, consisting of
the normal vector n, an arbitrarily chosen tangential vector x ⊥ n, and a second tangential vector
y = n× x (calculated by taking a cross product, to obtain a right-handed coordinate system). The
angular features x(α) can then be mapped to directions v in the tangential x,y-plane:

v = x cosα− y sinα (1)

For two features to interact in an equivariant fashion, we need to take their local alignment into
account. Wiersma et al. [6] solve this problem by using parallel transport along the surface of the
object to align the two local coordinate systems in a reliable manner.

We chose to take a different approach. We first find a common tangent vector t which lies in the
tangential x,y-plane of both (input and output) local coordinate systems and rotate all input Fourier
features to this common coordinate system. We then multiply the imaginary part of all coefficients by
the dot product of the normal vectors 〈n1,n2〉. Finally, we rotate the coefficients to the coordinate
system of the output. For coefficients of rotation order 1 (z1), where activations can be represented as
tangential vectors fixed to the object that point in the direction of maximal activation according to
Eq. 1, this approach is identical to projecting these vectors to the tangential plane of the output point,
as depicted in Figure 3 in the main paper.

A.2.2 Data and preprocessing

For the 3D surfel case, we use ModelNet-40 [8] as benchmark. We rescale all models to fit in a
bounding cube (coordinate range [−1, 1]) while keeping the aspect ratio and convert the polygonal
data to point clouds by z-Buffer rasterization with high resolution from 50 random view points. This
method keeps only points on the surface of the model which are visible from the outside, which we
found to slightly improve performance, as some models in ModelNet-40 contain a lot of internal
elements. Normals are estimated from a PCA-fit to 20 nearest neighbors at a sample spacing of
0.005, with some small random dithering value added to avoid numerical instabilities in case when
two normals have the exact same direction, and always oriented to point away from origin of the
coordinate system.

The final input to our network is obtained by a by Poisson disc sampling with a sample spacing
of 0.05 for sampling level 1. Subsequent sampling levels are created by iteratively, choosing a
quarter of the points of the previous sampling level in each step. For this process, we use the sample
elimination algorithm described by Yuksel [9]. Note that the final Poisson disc sampling process is
done individually for each training epoch, generates different samplings for each epoch, which is
important to avoid overfitting to a specific sampling in the training process. We use external tools for
the preprocessing of the dataset, therefore, these processing steps are not included in our published
code.
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Figure 4: Relative error of ReLU activations for our 3D surfel architecture measured on ModelNet-40
for randomly rotated vs. unrotated inputs (architecture as in Table 4). Note the different scale on the
axes compared to the MNIST-rot plots. solid: mean absolute error, dashed: maximum error, relative
to the layer-wise L1-norm measured for batches of 32 images where a random SO(3) rotation is
applied individually for each image

As our preprocessing only gives us a set of input points and corresponding normals, but not any
initial feature vectors associated with these points, we use a single-channels input tensor with the
rotation-invariant Fourier coefficient set to 1 for each point as input.

A.2.3 Architecture

Our detailed architecture is shown in Table 4. Experiments have shown that convolutional layers
with a filter stack of 3 equidistant levels (Figure 2 in the main paper), where each level consists of a
single filter ring with a radius equal to the spacing between adjacent levels, work well in practice.
The FWHM (full width a half maximum) of the Gaussian filter profile is also chosen equal to to the
level spacing, resulting in the σ values given in Table 4 (σ = FWHM/

√
8 ln 2). We use 9 coefficients

to represent our angular dependent functions and we do not impose limits on filter frequencies, i.e.
allow interactions between all coefficients, which results in filter frequencies of a rotation order of up
to 8.

In total, our network consists of 6 equivariant convolutional layers. To generate rotation invariant
output, we output only the invariant coefficients in the final convolutional layer (conv2triv) and apply
average pooling over all remaining points. As in the MNIST-rot scenario, we use Batch Normalization
(directly on Fourier coefficients, if applicable) and a nonlinearity after each convolutional layer except
the last layer.

A.2.4 Training and evaluation protocol

We train out networks on the training set of ModelNet-40, containing 9,843 3D meshes of 40 different
object classes. There is a significant imbalance of the number of objects per class between training
and testing set, however, we chose not to apply any measures to counteract this, to allow a fair
comparison of our results to those of other papers.

We initialize the network weights randomly before training using He initialization [2], and train
using the Adam optimizer with PyTorch default parameters (betas = (0.9, 0.999), eps = 10−8) and
a mini-batch size of 32 to optimize the log-softmax cross entropy of the network output. Training
is done for a total of 30 epochs, using a fixed learning rate of 0.015 in the first 10 epochs, and then
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Figure 5: Relative error for various nonlinearities for our 3D surfel architecture measured on
ModelNet-40 for randomly rotated vs. unrotated inputs. Errors are measured as in Figure 4 after the
fifth (penultimate) convolutional layer. C–ReLU included as reference (no FFT used).

decayed linearly to zero over the next 20 epochs. Batch statistics are calculated over the full training
set, as outlined in Section A.1.3.

We test our architecture on the testing set of ModelNet-40, containing 2,468 3D models. As common
in the literature, we perform runs with different rotational augmentation during training and testing,

• N/SO(3), referring to training on the original (non-augmented) dataset and testing with
random SO(3) rotations,

• z/SO(3), denoting random rotations around the z-axis during training and SO(3) rotations
during testing, and

• SO(3)/SO(3), using random SO(3) augmentation during training and testing.

A.2.5 Experiments

Our experiments and results for ModelNet-40, including runtimes (measured without taking the
preprocessing steps into account), can be found in Table 2 in the main paper. Rotation error
measurements for random rotations can be found in Figure 4 for ReLU and Figure 5 for other
nonlinearities. The error is generally higher than for our 2D architecture, as can be seen from the
layerwise plot in Figure 4. It also increases for deeper layers, probably due to cumulative effects.
However, the network is still mostly invariant in the classification task, as can be seen from Table 2 in
the main paper.

The higher error is most likely not caused by the FFT algorithm for applying nonlinearities, as C–
ReLU (which is equivariant by construction, and thus does not use FFT calculations at all) produces
a similar error level (see Figure 5). Therefore, we assume this is a general drawback of the 3D surfel
architecture used in this test, probably due to the much more complex calculations in comparison to
the 2D case and thus higher amplification of noise. As the relative error is the same (polynomials)
or easily approaches the same level (ReLU) as the fully-equivariant baseline (C–ReLU), this does
not directly weaken the result of our paper (that more general nonlinearities can be handled at error
rates comparable to specialized solutions with provable equivariance without additional measures).
However, it indicates that other sources of numerical error amplification might be a separate issue to
pay attention to if strong invariances need to be maintained.
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B Proofs and derivations

B.1 Equivariance of the joint convolution operation

In the main paper, we derive our equivariant neural network layer, which performes a joint convolution
operation on R2 and SO(2). We now to prove that this layer is equivariant under the transformation Tγ :

Tγ x
(l)(t, α) = x(l)(Θγt, α− γ) (2)

In the following, we will show that the network layer commutes with transformation Tγ. Therefore,
we will perform series of conversions on our convolution operation:

x̂(l) (t, α) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα(t′ − t), α′ − α)x(l−1) (t′, α′) (3)

We start by replacing the integration variables t′ → Θγt
′ and α′ → α′−γ. This can be done without

changing the limits of the integrals, as we integrate over infinite or periodic domains.

x̂(l) (t, α) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα(Θγt
′ − t), (α′ − γ)− α)x(l−1) (Θγt

′, α′ − γ) (4)

Reordering some elements yields:

x̂(l) (t, α) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα+γ(t′ −Θ−γt), α
′ − (α+ γ))x(l−1) (Θγt

′, α′ − γ) (5)

We now perform a similar replacement for the output parameters t→ Θγt and α→ α− γ.

x̂(l) (Θγt, α− γ) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα(t′ − t), α′ − α)x(l−1) (Θγt
′, α′ − γ) (6)

Comparing with our equivariance transformation (Eq. 2), we can substitute with Tγ :

Tγ x̂
(l) (t, α) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα(t′ − t), α′ − α)Tγ x
(l−1) (t′, α′) (7)

We can now see that applying Tγ to the input x(l−1) results in an identical transformation of the
output x̂(l), which satisfies the definition of equivariance under the transformation Tγ .

B.2 Convolution in Fourier basis

To derive our convolution operation in the Fourier representation, we start from the continuous
convolution operation:

x̂(l) (t, α) =

∫
R2

dt′
∫ 2π

0

dα′ w(l) (Θα(t′ − t), α′ − α)x(l−1) (t′, α′) (8)

Plugging in the Fourier representations for x

x(l) (t, α) =

K∑
k=−K

z
(l)
k (t) eikα (9)

9



and w
w(l) (t, α) = ρ(l) (‖t‖)

∑
u,v∈Z

q(l)u,v e
iuα eiv∠(t) (10)

gives us:

x̂(l) (t, α) =

∫
R2

dt′ ρ(l) (‖t′ − t‖)

·
∫ 2π

0

dα′
∑
u,v∈Z

q(l)u,v e
iu(α′−α) eiv(∠(t′−t)+α)

K∑
k′=−K

z
(l−1)
k′ (t′) eik

′α′
(11)

First, we perform some reordering of the equation:

x̂(l) (t, α) =

∫
R2

dt′ ρ(l) (‖t′ − t‖)
K∑

k′=−K

∑
u,v∈Z

q(l)u,v z
(l−1)
k′ (t′) eiv∠(t′−t) ei(v−u)α

·
∫ 2π

0

dα′ ei(u+k
′)α′

(12)

As
∫ 2π

0
dα′ ei(u+k

′)α′ = δu,−k′ , we can drop the sum over u, replacing u→ −k′:

x̂(l) (t, α) =

∫
R2

dt′ ρ(l) (‖t′ − t‖)
K∑

k′=−K

∑
v∈Z

q
(l)
−k′,v z

(l−1)
k′ (t′) ei(v−k

′)∠(t′−t) ei(v+k
′)α (13)

Next, we perform a sum shift of our infinite sum over Z, replacing v → v − k′:

x̂(l) (t, α) =

∫
R2

dt′ ρ(l) (‖t′ − t‖)
K∑

k′=−K

∑
v∈Z

q
(l)
−k′,v−k′ z

(l−1)
k′ (t′) eiv∠(t′−t) eivα (14)

This gives eivα on the right hand side, which allows extract the output Fourier coefficients after
band-limiting. We rename v → k for consistency, yielding our convolution operation in the Fourier
basis, as shown in the main paper:

ẑ
(l)
k (t, α) =

∫
R2

dt′ ρ(l) (‖t′ − t‖)
K∑

k′=−K

q
(l)
−k′,k−k′ z

(l−1)
k′ (t′) ei(k−k

′)∠(t′−t) (15)

B.3 Calculations for point clouds

To allow for continuous rotations and translations in the spatial domain, we use point clouds and
consider our activations to be Dirac delta functions δ located at specific points p(l)

1 , ...,p
(l)

N(l) for each
layer l:

x(l) (t, α) =

N(l)∑
n=1

δ
p

(l)
n

(t) x(l)n (α) (16)

10



Using the Fourier representation from Eq. 9 from the previous section, we associate a set of Fourier
coefficients z(l)k,n (instead of angular-dependent functions x(l)n ) with each point p(l)n :

z
(l)
k (t) =

N(l)∑
n=1

δ
p

(l)
n

(t) z
(l)
k,n (17)

Plugging in the point-based Fourier representation in our convolution operation (Eq. 15), the integra-
tion over R2 becomes a sum over all points in the previous layer:

ẑ
(l)
k (t) =

N(l−1)∑
n′=1

ρ(l)
(
‖p(l−1)

n′ − t‖
) K∑
k′=−K

q
(l)
−k′,k−k′ z

(l−1)
k′,n′ e

i(k−k′)∠(p
(l−1)

n′ −t) (18)

To discretize the result, we sample the output at specific points in the next layer. This gives our
convolution operation for point clouds:

ẑ
(l)
k,n =

N(l−1)∑
n′=1

ρ(l)
(
‖p(l−1)

n′ − p(l)
n ‖
) K∑
k′=−K

q
(l)
−k′,k−k′ z

(l−1)
k′,n′ e

i(k−k′)∠(p
(l−1)

n′ −p(l)
n ) (19)

B.4 Learnable filters and multiple feature channels

In general, both parts of our convolutional filter ρ and q can be learned by the neural network. For
the angular function q, the straightforward approach is to directly use the Fourier coefficients qu,v
as trainable parameters of the architecture. The radial profile ρ could be similarly constructed from
basis functions and using trainable coefficients. Alternatively (and this is the approach we use in our
paper), a sum over multiple pre-defined (fixed) radial profiles ρd, d ∈ {1, ..., D(l)} can be used, each
associated with a different angular function, making the coefficients qu,v additionally depend on d:

ẑ
(l)
k,n =

N(l−1)∑
n′=1

D(l)∑
d=1

ρ
(l)
d

(
‖p(l−1)

n′ − p(l)
n ‖
) K∑
k′=−K

q
(l)
−k′,k−k′,d z

(l−1)
k′,n′ e

i(k−k′)∠(p
(l−1)

n′ −p(l)
n ) (20)

In the general case, we can have multiple unstructured feature channels per layer. As customary
in regular CNNs, we can express this by using feature vectors z and a weight matrix Q instead of
single-valued coefficients z and q. In our convolution operation, we then perform a matrix-vector
multiplication:

ẑ
(l)
k,n =

N(l−1)∑
n′=1

D(l)∑
d=1

ρ
(l)
d

(
‖p(l−1)

n′ − p(l)
n ‖
) K∑
k′=−K

Q
(l)
−k′,k−k′,d z

(l−1)
k′,n′ e

i(k−k′)∠(p
(l−1)

n′ −p(l)
n ) (21)

B.5 Practical considerations

Note that if input and output positions are identical (p(l−1)
n′ = p

(l)
n ), the angle ∠(p

(l−1)
n′ − p

(l)
n )

becomes undefined. In this case, we evaluate the sum over k only for k = k′, where we assume
ei(k−k

′)∠(p
(l−1)

n′ −p(l)
n ) = e0 = 1. This only allows interactions between coefficients of the identical

order (which is unproblematic, as in this case, only rotation-invariant spatial filters are used).
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