
A Notation Glossary

Notation Definition

[n] {1, . . . , n}
‖·‖2 Euclidean vector norm

‖·‖F Frobenius matrix norm

〈·, ·〉 Euclidean inner product OR Frobenius inner product

σi(A) ith largest singular value of A

λi(A) ith largest eigenvalue of A

λmax(A) Largest eigenvalue of A

λmin(A) Smallest eigenvalue of A

A1/2 Principal square root of PSD A

ColA Column span of A

PA Projection onto ColA

P⊥A Projection onto (ColA)⊥

` Loss function

L∞(g, g∗) Population risk of g when the true predictor is g∗

L(g, g∗) Empirical risk of g when the true predictor is g∗ (samples suppressed)

Lex
∞(g, g∗) Excess population risk of g when the true predictor is g∗.

AC(θ) Predictors whose parameters lie in θ + C
F⊗T {(x1, . . . , xT ) 7→ (f1(x1), . . . , fT (xT )) | f1, . . . , fT ∈ F}
Rn(H) Rademacher complexity of function classH on n samples

B Proof of Theorem 3.1

In this section, we will prove the performance guarantee in the linear representation setting presented
in Theorem 3.1. We first compute a bound on the difference in the spans of the true underlying
representation B∗ and the representation B0 obtained from training on the source tasks. Having
done so, we then analyze the performance of the best predictor found by projected gradient descent.

For clarity of presentation, we will write θ∗t = B∗tw
∗
t + δ∗t and θ̂t = (B + ∆t)wt throughout this

section. Furthermore, let δ̂t = ∆twt. Finally, we will be making use of the following covariance
concentration results throughout this section, allowing us to connect empirical averages to popula-
tion averages and vice versa:
Lemma B.1 (Source covariance concentration, Du et al. (2020), Claim A.1). If nS � ρ4[d +
log(T/δ)], then with probability at least 1− δ/9 over the random draw of nST source inputs,

0.9Σ � 1

nS
X>t Xt � 1.1Σ

for any t ∈ [T ].

Lemma B.2 (Target covariance concentration). If nT � ρ4[d+ log(T/δ)], then with probability at
least 1− δ/9 over the random draw of nT target inputs,

0.9Σ � 1

nT
X>X � 1.1Σ

for any t ∈ [T ].

Proof. The proof is similar to that of Lemma B.1, and is omitted for brevity.
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B.1 Source Guarantees for the Linear Setting

We proceed to analyze the representation B0 obtained from the source training procedure outlined
in (4). Key to the analysis is a bound on the average population loss over the source tasks that the
global minimizer of (4) can achieve as a function of nS:
Lemma B.3 (Source training bound). Let B0 be a minimizer of (4), and {(∆t, wt)}t∈[T ] be mini-
mizers for the inner optimization problem given B0. If the regularizer coefficients are chosen such
that

λ � 1

Tδ0

[
σ ‖Σ‖1/22√

nST

√
kT + kd log κnS + log

1

δ
+

σ
√
nS

√
tr Σ

(
1 + log

T

δ

)]
,

and γ = δ2
0λ, then with probability at least 1− δ/3,

1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2

.
σ2

nST

(
kT + kd log κnS + log

1

δ

)
+
σδ0 ‖Σ‖1/22√

nST

√
kT + kd log κnS + log

1

δ

+
σδ0√
nS

√
tr Σ

(
1 + log

T

δ

)
.

Proof. Throughout this proof, we instantiate the high-probability event in Lemma B.1, which occurs
with probability at least 1− δ/9.

Note that we can express δ∗t as [δ∗t (w∗t )>/ ‖w∗t ‖
2
2]w∗t = ∆∗tw

∗
t . Thus, via the optimality of B0 and

{(∆t, wt)}t∈[T ], we can form the basic inequality∑
t∈[T ]

1

2nST

∥∥∥yt −Xtθ̂t

∥∥∥2

2
+
λ

2
‖∆t‖2F +

γ

2
‖wt‖22

≤
∑
t∈[T ]

1

2nST
‖zt‖22 +

λ

2
‖∆∗t ‖

2
F +

γ

2
‖w∗t ‖

2
2

≤
∑
t∈[T ]

1

2nST
‖zt‖22 +

λ

2

∑
t∈[T ]

‖δ∗t ‖
2
2

‖w∗t ‖
2
2

+
γ

2

∑
t∈[T ]

‖w∗t ‖
2
2

≤
∑
t∈[T ]

1

2nST
‖zt‖22 +

(
λδ2

0 + γ

2

)
T

≤
σδ0 ‖Σ‖1/22√

nT

√
kT + kd log κnS + log

1

δ
+
σδ0√
n

√
tr Σ

(
1 + log

T

δ

)
︸ ︷︷ ︸

=:CnS,T

+
∑
t∈[T ]

1

2nST
‖zt‖22 .

Note that the simplification of the regularizer on the optimum holds since ‖w∗t ‖2 = Θ(1) by As-
sumption 3.2. Equivalently, by rearranging,∑

t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2
+
λ

2
‖∆t‖2F +

γ

2
‖wt‖22

≤
∑
t∈[T ]

1

2nST

〈
zt, Xt(θ

∗
t − θ̂t)

〉
+ CnS,T .

Finally, by Proposition I.4, the regularizer on ∆t and wt can be rewritten as a regularizer on δ̂t, i.e.∑
t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2
+
√
λγ
∥∥∥δ̂t∥∥∥

2
≤
∑
t∈[T ]

1

2nST

〈
zt, Xt(θ

∗
t − θ̂t)

〉
+ CnS,T . (8)
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To proceed, define the set S as{
[αt + βt]t∈[T ]

∣∣∣ rank [αt] ≤ 2k, ‖βt‖2 ≤ δ0 +
∥∥∥δ̂t∥∥∥

2
, ‖Xt(αt + βt)‖2 ≤

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥
2

}
,

and observe that [θ∗t − θ̂t]t∈[T ] ∈ S, by letting αt = B∗w∗t − B0wt and βt = δ∗t − δ̂t. We bound
the right-hand side of (8) via bounding the supremum of the inner product over S, i.e.∑

t∈[T ]

〈
zt, Xt(θ

∗
t − θ̂t)

〉
≤ sup

[αt+βt]∈S

∑
t∈[T ]

〈zt, Xt(αt + βt)〉 .

Now, we decompose the Gaussian width as

sup
[αt+βt]∈S

∑
t∈[T ]

〈zt, Xt(αt + βt)〉 ≤ sup
[αt]∈S

∑
t∈[T ]

〈zt, Xtαt〉︸ ︷︷ ︸
(I)

+ sup
[βt]∈S2

∑
t∈[T ]

〈zt, Xtβt〉︸ ︷︷ ︸
(II)

,

where S2 =
{

[βt]t∈[T ]

∣∣∣ ‖βt‖2 ≤ δ0 +
∥∥∥δ̂t∥∥∥

2

}
. Note the abuse of notation in (I), where we say

[αt]t∈[T ] ∈ S if there exists [βt]t∈[T ] so that [αt + βt]t∈[T ] ∈ S. This decomposes the Gaussian
width into the sum of the Gaussian widths of a low-rank set (I) and a small norm set (II). We proceed
to bound both terms accordingly to these two properties.

Bounding the Gaussian width of the low-rank set (I).

To bound the Gaussian width, we first enlarge S to remove βt from the definition of the feasible set.
Fix any (αt, βt) pair satisfying the conditions in S, and note that

‖Xtβt‖2 .
√
nS ‖Σ‖1/22

(
δ0 +

∥∥∥δ̂t∥∥∥
2

)
.

Therefore, by the reverse triangle inequality,

|‖Xtαt‖2 − ‖Xtβt‖2| ≤ ‖Xt(αt + βt)‖2
=⇒ ‖Xtαt‖2 ≤

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥
2

+
√
nS ‖Σ‖1/22

(
δ0 +

∥∥∥δ̂t∥∥∥
2

)
︸ ︷︷ ︸

=:ρt

.

Consequently, we can enlarge the feasible set to

S1 := {[αt] | rank [αt] ≤ 2k, ‖Xtαt‖2 ≤ ρt} .

Having relaxed the constraints, we now proceed to the main argument.

Since rank [αt] ≤ 2k, there exists an orthogonal matrix V ∈ Rd×2k (dependent on αt) and vectors
rt ∈ R2k such that αt = V rt. Therefore, the inner product in the Gaussian width would be
unchanged if we project zt onto XtV , i.e.

sup
[αt]∈S1

∑
t∈[T ]

〈zt, Xtαt〉 = sup
[αt]∈S1

∑
t∈[T ]

〈PXtV zt, XtV rt〉 .

The key idea we will leverage is that if V were chosen independently of zt, then PXtV zt is Gaussian
in a 2k-dimensional space, and thus norm bounded by Õ(

√
2k) with high probability. However, due

to the supremum over αt, this independence assumption is not satisfied. Nevertheless, we can obtain
a fixed finite covering of the set of all rank-2k matrices, and ensure that the aforementioned norm
bound on PXtV zt holds for every V in the covering via a union-bound. By choosing the discretiza-
tion level of the covering appropriately, we can control the error resulting from approximating the
supremum by some element of the covering.

Formally, let Od×2k be the set of orthogonal matrices in Rd×2k. By Proposition I.1, there exists
an ε-covering of Od×2k in the Frobenius norm with at most (6

√
2k/ε)2kd elements. Let V̄ be an
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element of the covering such that
∥∥V − V̄ ∥∥

F
≤ ε. Then,

〈zt, Xtαt〉 =
〈
zt, XtV̄ rt

〉
+
〈
zt, Xt(V − V̄ )rt

〉
≤
∥∥PXtV̄ zt∥∥2

∥∥XtV̄ rt
∥∥

2
+ ‖zt‖2

∥∥Xt(V − V̄ )rt
∥∥

2

≤
∥∥PXtV̄ zt∥∥2

‖XtV rt‖2 + (
∥∥PXtV̄ zt∥∥2

+ ‖zt‖2)
∥∥Xt(V − V̄ )rt

∥∥
2

≤
∥∥PXtV̄ zt∥∥2

‖XtV rt‖2 + (
∥∥PXtV̄ zt∥∥2

+ ‖zt‖2)
∥∥Xt(V − V̄ )rt

∥∥
2

.
∥∥PXtV̄ zt∥∥2

‖Xtαt‖2 + ‖zt‖2
∥∥Xt(V − V̄ )rt

∥∥
2
,

and thus

∑
t∈[T ]

〈zt, XtV rt〉 ≤

√√√√√
∑
t∈[T ]

∥∥PXtV̄ zt∥∥2

2


︸ ︷︷ ︸

(A)

∑
t∈[T ]

‖Xtαt‖22



+

√√√√√
∑
t∈[T ]

‖zt‖22


︸ ︷︷ ︸

(B)

∑
t∈[T ]

∥∥Xt(V − V̄ )rt
∥∥

2


︸ ︷︷ ︸

(C)

.

We will bound (A), (B), and (C) individually.

(A) For a fixed V̄ , (A) is a chi-squared random variable with kT degrees of freedom scaled by
σ2. However, since V̄ depends on V , we need to have a high probability bound for any
element of the covering. By using known concentration bounds for chi-squared random
variables together with the union-bound, we find that uniformly over the covering,

(A) ≤ σ2

(
kT + log

1

δ′

)
w.p. ≥ 1− δ′

(
6
√

2k

ε

)2kd

.

(B) Note that (B) is a chi-squared random variable with nST degrees of freedom scaled by σ2,
and thus

(B) . σ2

(
nST + log

1

δ

)
w.p. ≥ 1− δ

18
.

(C) Since (1/nS)X>X is concentrated about Σ via Lemma B.1,∥∥Xt(V − V̄ )rt
∥∥2

2
. nS ‖Σ‖2 ε

2 ‖rt‖22 = nS ‖Σ‖2 ε
2 ‖V rt‖22 . κε2 ‖XtV rt‖22 .

Putting these bounds together, and setting ε =
√
k/κnS and δ′ = δ/[18(6

√
2k/ε)2kd], we obtain

∑
t∈[T ]

〈zt, Xtαt〉 .

(
σ

√
kT + log

1

δ′
+ εσ

√
κnST + log

1

δ

)√√√√√
∑
t∈[T ]

‖XtV rt‖22



.

(
σ

√
kT + log

1

δ′

)√√√√√
∑
t∈[T ]

‖XtV rt‖22

 (k < nS, δ
′ < δ)

. σ

√
kT + kd log κnS + log

1

δ

√√√√√
∑
t∈[T ]

‖Xtαt‖22

.
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Taking the supremum over S1, we thus obtain the following bound on the Gaussian width:

sup
[αt]∈S1

∑
t∈[T ]

〈zt, Xtαt〉

. σ

√
kT + kd log κnS + log

1

δ

√√√√∑
t∈[T ]

∥∥∥Xt(θ∗t − θ̂t)
∥∥∥2

2
+
√
‖Σ‖2 nST

(
δ0 +

∥∥∥δ̂t∥∥∥
2

) .
Note that the events for this sub-argument occur with probability at least 1− δ/9.

Bounding the Gaussian width of the low-norm set (II).

Recall that we want to bound

sup
[βt]∈S2

∑
t∈[T ]

〈zt, Xtβt〉 , S2 :=
{

[βt]
∣∣∣ ‖βt‖2 ≤ δ0 +

∥∥∥δ̂t∥∥∥
2

}
.

For any t ∈ [T ],
〈zt, Xtβt〉 =

〈
X>t zt, βt

〉
≤
(
δ0 +

∥∥∥δ̂t∥∥∥
2

)∥∥X>t zt∥∥2
.

Furthermore, by the Hanson-Wright inequality, we have that with probability at least 1− δ/9T ,∥∥X>t zt∥∥2
. σ

√
nS tr Σ

(
1 + log

T

δ

)
.

Putting everything together, we thus find that with probability at least 1− δ/9,

sup
[βt]∈S2

∑
t∈[T ]

〈zt, Xtβt〉 ≤ σ

Tδ0 +
∑
t∈[T ]

∥∥∥δ̂t∥∥∥
2

√nS tr Σ

(
1 + log

T

δ

)
.

Combining the bounds and concluding.

Having bounded both Gaussian widths, we can thus bound the right-hand side of (8) as∑
t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2
+

(√
λγ − 1

δ0T
CnS,T

)∥∥∥δ̂t∥∥∥
2

.
σ√
nT

√
kT + kd log κnS + log

1

δ

∑
t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2

1/2

+ CnS,T .

Therefore, as long as
√
λγ ≥ (1/δ0T )CnS,T ,∑

t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2

.
σ√
nST

√
kT + kd log κnS + log

1

δ

∑
t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2

1/2

+ CnS,T .

Finally, by solving the quadratic inequality using Proposition I.2, we find that∑
t∈[T ]

1

2nST

∥∥∥Xt(θ
∗
t − θ̂t)

∥∥∥2

2

.
σ2

nST

(
kT + kd log κnS + log

1

δ

)
+
σδ0 ‖Σ‖1/22√

nST

√
kT + kd log κnS + log

1

δ

+
σδ0√
nS

√
tr Σ

(
1 + log

T

δ

)
,
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from which the desired performance bound follows due to the concentration of the empirical covari-
ance from Lemma B.1. Since the concentration of the source covariance matrices and each of the
sub-arguments all hold with probability at least 1 − δ/9, it follows that the main claim holds with
probability at least 1− δ/3.

The prior bound is central to the analysis, as the performance of the learner can be tied to how
well B0 spans the correct space. To see why this is the case, note that for large nS, the effect of
the noise on the optimization in (4) is negligible. In this regime, no matter which representation
B0 the learner has chosen, the optimal predictor would satisfy PXtB0

Xtθ̂t ≈ PXtB0
Xtθ

∗
t and

P⊥XtB0
Xtθ̂t ≈ P⊥XtB0

Xtθ
∗
t . Consequently, the performance of the predictors chosen by the learner

can be tied to the chosen representation B0. We formalize this intuition in the following result:
Lemma B.4 (Transfer Lemma). Under Assumption 3.2, we have that∥∥∥PΣ1/2B0

Σ1/2B∗
∥∥∥2

F
. k

 1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2

 .
Proof. Throughout this proof, we will write P := PΣ1/2B0

and P⊥ := P⊥
Σ1/2B0

for readabil-
ity. To proceed, note that we intuitively expect that for a learner that has learned the correct
spaces, PΣ1/2θ̂t ≈ Σ1/2B∗w∗t as it is the low-rank component of the estimator, and consequently,
P⊥Σ1/2θ̂t ≈ Σ1/2δ∗t . Then, decomposing into the corresponding errors, we have that for any
t ∈ [T ], ∥∥∥Σ1/2(θ∗t − θ̂t)

∥∥∥2

2
&
∥∥∥Σ1/2B∗w∗t − PΣ1/2θ̂t

∥∥∥2

2
+
∥∥∥Σ1/2δ∗t − P⊥Σ1/2θ̂t

∥∥∥2

2

+ 2
〈

Σ1/2B∗w∗t − PΣ1/2θ̂t,Σ
1/2δ∗t − P⊥Σ1/2θ̂t

〉
≥
∥∥∥P⊥Σ1/2B∗w∗t

∥∥∥2

2
+
∥∥∥Σ1/2δ∗t − P⊥Σ1/2θ̂t

∥∥∥2

2

− 2
∣∣∣〈Σ1/2B∗w∗t − PΣ1/2θ̂t,Σ

1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣ .
We proceed to bound the inner product above. We do so by observing that if we were to replace θ̂t
by θ∗t , then 〈

Σ1/2B∗w∗t − PΣ1/2θ∗t ,Σ
1/2δ∗t − P⊥Σ1/2δ∗t

〉
=
〈
P⊥Σ1/2B∗w∗t − PΣ1/2δ∗t , P

⊥Σ1/2δ∗t − PΣ1/2B∗w∗t

〉
= (w∗t )>(B∗)>Σδ∗t
= 0.

To translate this result into a bound on the original inner product, we note that as nS →∞, and the
impact of the noise and the regularizer on the optimization is diminished, we expect θ̂t to learn the
projections ofXtθ

∗
t ontoXtB0 and its complement. With these two insights in mind, we decompose

the inner product as∣∣∣〈Σ1/2B∗w∗t − PΣ1/2θ̂t,Σ
1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣
≤
∣∣∣〈Σ1/2B∗w∗t − PΣ1/2θ∗t , P

⊥Σ1/2(θ∗t − θ̂t)
〉∣∣∣

+
∣∣∣〈PΣ1/2(θ∗t − θ̂t),Σ1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣
+
∣∣∣〈Σ1/2B∗w∗t − PΣ1/2θ∗t ,Σ

1/2δ∗t − P⊥Σ1/2θ∗t

〉∣∣∣︸ ︷︷ ︸
=0

=
∣∣∣〈P⊥Σ1/2B∗w∗t , P

⊥Σ1/2(θ∗t − θ̂t)
〉∣∣∣+

∣∣∣〈PΣ1/2(θ∗t − θ̂t),Σ1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣ .
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Putting everything together, we find that

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2B∗w∗t

∥∥∥2

2
+

1

T

∑
t∈[T ]

∥∥∥Σ1/2δ∗t − P⊥Σ1/2θ̂t

∥∥∥2

2

.
1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2
+

1

T

∑
t∈[T ]

∣∣∣〈Σ1/2B∗w∗t − PΣ1/2θ̂t,Σ
1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣
≤ 1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2
+

1

T

∑
t∈[T ]

∣∣∣〈P⊥Σ1/2B∗w∗t , P
⊥Σ1/2(θ∗t − θ̂t)

〉∣∣∣
+

1

T

∑
t∈[T ]

∣∣∣〈PΣ1/2(θ∗t − θ̂t),Σ1/2δ∗t − P⊥Σ1/2θ̂t

〉∣∣∣
≤ 1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2
+

√√√√ 1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2

√√√√ 1

T

∑
t∈[T ]

∥∥P⊥Σ1/2B∗w∗t
∥∥2

2

+

√√√√ 1

T

∑
t∈[T ]

∥∥∥PΣ1/2(θ∗t − θ̂t)
∥∥∥2

2

√√√√ 1

T

∑
t∈[T ]

∥∥∥Σ1/2δ∗t − P⊥Σ1/2θ̂t

∥∥∥2

2
.

This is a quadratic inequality in the two terms on the left-hand side, and so by applying Proposition
I.2,

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2B∗w∗t

∥∥∥2

2
.

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2
+

1

T

∑
t∈[T ]

∥∥∥PΣ1/2(θ∗t − θ̂t)
∥∥∥2

2

+
1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2

.
1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2
,

where the last line follows by orthogonality. Finally, by Proposition I.3,

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2B∗w∗t

∥∥∥2

2
=

1

T

∥∥∥P⊥Σ1/2B∗W ∗
∥∥∥2

F
≥ σk(W ∗)2

T

∥∥∥P⊥Σ1/2B0
Σ1/2B∗

∥∥∥2

F
,

which together with the diversity assumption in Assumption 3.2 yields the final bound∥∥∥P⊥Σ1/2B0
Σ1/2B∗

∥∥∥2

F
. k

 1

T

∑
t∈[T ]

∥∥∥Σ1/2(θ∗t − θ̂t)
∥∥∥2

2

 .
B.2 Target Guarantees for the Linear Setting

Having established a connection between the performance on the source tasks and the difference in
the spans of B∗ and B0, we can now analyze the performance of the target training procedure. First,
we bound the performance of nearly optimal points in Cβ for several possible choices of c1, c2.
Lemma B.5 (Statistical Rates for Lβ). Assume that (∆, w) is ζ-suboptimal for Lβ with the con-
straint set Cβ = {(∆, w) | ‖∆‖F ≤ c1/β, ‖w‖2 ≤ c2/β}, i.e.

Lβ(∆, w) ≤ min
(∆′,w′)∈Cβ

Lβ(∆′, w′) + ζ.

We write θ̂ for the predictor corresponding to (∆, w), i.e. θ̂ = β(AB0
+ ∆)(w0 + w). Now, let

w̄ = (B0X
>XB0)†B>0 X

>Xθ∗

δ̄ = θ∗ −B0w̄

w̃ = (B>0 X
>XB0)†B>0 X

>XB∗w∗.
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Note that XB0w̄ = PXB0Xθ
∗, Xδ̄ = P⊥XB0

Xθ∗, and XBw̃ = PXB0XB
∗w∗. Then, assuming

β > max(‖w̄‖2 , ‖w̃‖2),

1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
. ζ +



∥∥∥P⊥Σ1/2B0
Σ1/2B∗w∗

∥∥∥2

2

+
σ2

nT

(
k + log

1

δ

)
+

σδ0√
nT

√
tr Σ

(
1 + log

1

δ

) c1 = δ0, c2 = ‖w̃‖2

σ2

nT

(
k + log

1

δ

)
+
σ
∥∥δ̄∥∥

2√
nT

√
tr Σ

(
1 + log

1

δ

) c1 =
∥∥δ̄∥∥

2
, c2 = ‖w̄‖2

σ2

nT

(
d+ log

1

δ

)
c1 = ‖θ∗‖2 , c2 = 0

with probability at least 1− δ/3.

Proof. We proceed by proving the three cases separately. Throughout the proof, we instantiate the
high-probability event in Lemma B.2, which guarantees that

0.9Σ � 1

nT
X>X � 1.1Σ.

Recall that this event occurs with probability at least 1− δ/9.

c1 = δ0, c2 = ‖w̃‖2

Due to the choice of c1 and c2, there exists a parameter in Cβ corresponding to the prediction vector
PXB0Xθ

∗ +Xδ∗. Writing the corresponding basic inequality, we thus have that
1

2nT

∥∥∥y −Xθ̂∥∥∥2

2
− ζ ≤ 1

2nT

∥∥P⊥XB0
XB∗w∗

∥∥2

2
+

1

nT

〈
z, P⊥XB0

XB∗w∗
〉

+
1

2nT
‖z‖22

=⇒ 1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

1

2nT

∥∥P⊥XB0
XB∗w∗

∥∥2

2
+

1

nT

〈
z, P⊥XB0

XB∗w∗
〉

− 1

nT

〈
z,X(θ∗ − θ̂)

〉
.

Simplifying further,
1

nT

〈
z, P⊥XB0

XB∗w∗
〉
− 1

nT

〈
z,X(θ∗ − θ̂)

〉
=

1

nT

〈
z, PXB0X(θ̂ − θ∗)

〉
− 1

nT

〈
z, P⊥XB0

X(δ∗ − β∆(w0 + w))
〉
.

Now, by the Hanson-Wright inequality, we can bound the last term as

− 1

nT

〈
X>P⊥XB0

z, δ∗ − β∆(w0 + w)
〉
≤ 1

nT

∥∥X>P⊥XB0
z
∥∥

2
‖δ∗ + β∆(w0 + w)‖2

.
σδ0√
nT

√
tr Σ

(
1 + log

1

δ

)
with probability at least 1− δ/9. Therefore, we can rewrite the prior basic inequality as

1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
.

1

2nT

∥∥P⊥XB0
XB∗w∗

∥∥2

2
+

σδ0√
nT

√
tr Σ

(
1 + log

1

δ

)
+ ζ︸ ︷︷ ︸

=:C

+
1

nT

〈
z, PXB0X(θ∗ − θ̂)

〉
.
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Now, note that we can form the quadratic inequality
1

nT

∥∥∥PXB0
X(θ∗ − θ̂)

∥∥∥2

2
≤ 1

nT
‖PXB0

z‖2
∥∥∥PXB0

X(θ∗ − θ̂)
∥∥∥

2
+ C,

and thus by applying Proposition I.2 to solve the inequality and noting that PXB0
z/σ is distributed

as a chi-squared random variable with k degrees of freedom,
1

nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
. ζ +

∥∥∥P⊥Σ1/2B0
Σ1/2B∗w∗

∥∥∥2

2

+
σ2

nT

(
k + log

1

δ

)
+

σδ0√
nT

√
tr Σ

(
1 + log

1

δ

)
with probability at least 1− δ/9, which is the bound that we wanted to show.

c1 =
∥∥δ̄∥∥

2
, c2 = ‖w̄‖2

Due to the choice of c1 and c2, there exists a parameter in Cβ corresponding to a predictor that agrees
with θ∗ on the target samples. Therefore,

1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

1

2nT
‖z‖22

=⇒ 1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

1

nT

〈
z, PXB0

X(θ∗ − θ̂)
〉

+
1

nT

〈
z, P⊥XB0

X(θ∗ − θ̂)
〉
.

(9)

We proceed with an argument similar to that used in the source guarantee, albeit simpler since the
representation B0 is fixed (and thus no covering argument is required). Along these lines, we bound
the first term using the low-rank of B0. Via projections,

1

nT

∥∥∥PXB0
X(θ∗ − θ̂)

∥∥∥2

2

. ζ +
1

nT
‖PXB0z‖2

∥∥∥PXB0X(θ∗ − θ̂)
∥∥∥

2
+

1

nT

〈
z, P⊥XB0

X(θ∗ − θ̂)
〉
.

Therefore, by applying Proposition I.2 to solve the quadratic inequality, we have that with probabil-
ity at least 1− δ/9,

1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

σ2

nT

(
k + log

1

δ

)
+

1

nT

〈
z, P⊥XB0

X(θ∗ − θ̂)
〉
.

To bound the second term, we simply make use of the norm constraints defining the feasible set Cβ ,
which we note is analogous to the low-norm sub-argument of the source guarantee. Formally, the
Hanson-Wright inequality implies that with probability at least 1− δ/9,

1

nT

〈
z, P⊥XB0

X(θ∗ − θ̂)
〉

=
1
√
nT

∥∥∥∥ 1
√
nT

X>P⊥XB0
z

∥∥∥∥
2

∥∥δ̄ + β∆w0 + β∆w
∥∥

2

.
σ
∥∥δ̄∥∥

2√
nT

√
tr Σ

(
1 + log

1

δ

)
.

Putting everything together, we thus have that

1

2nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
. ζ +

σ2

nT

(
k + log

1

δ

)
+
σ
∥∥δ̄∥∥

2√
nT

√
tr Σ

(
1 + log

1

δ

)
.

c1 = ‖θ∗‖2 , c2 = 0

Due to the choice of c1 and c2, there exists a parameter in Cβ corresponding to a predictor that agrees
with θ∗ on the target samples. Therefore, we can write the basic inequality

1

nT

∥∥∥y −Xθ̂∥∥∥2

2
≤ ζ +

1

nT
‖z‖22 =⇒ 1

nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

1

nT
〈z,X(θ∗ − θ)〉 .
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Now, noting that PXz/σ is a chi-squared random variable with d degrees of freedom, we have that
with probability at least 1− 2δ/9,

1

nT

〈
z,X(θ∗ − θ̂)

〉
≤ 1

nT
‖PXz‖2

∥∥∥X(θ∗ − θ̂)
∥∥∥

2
≤ 1

nT

√
d+ log

1

δ

∥∥∥X(θ∗ − θ̂)
∥∥∥

2
.

Therefore, by solving the resulting quadratic inequality via Proposition I.2, we obtain the bound

1

nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2
≤ ζ +

σ2

nT

(
d+ log

1

δ

)
.

Observe that all relevant high-probability events for each case occur simultaneously with probability
at least 1− δ/3, as desired.

B.3 Optimization Landscape during Target Time Training

Having derived statistical rates on nearly-optimal points for several choices of Cβ in the prior section,
all that remains to be shown is that projected gradient descent can indeed find such points. In
particular, we will demonstrate that for large enough β, the optimization landscape induced by Lβ
is approximately convex. We do so by demonstrating that the objective satisfies the assumptions
outlined in Section H, and thus the accompanying guarantees for projected gradient descent hold.
Lemma B.6 (Approximate linearity of function class). Let gθ(x) = βx>(AB0

+ ∆)(w0 + w) for
θ = (∆, w) ∈ Cβ , where Cβ is considered as a subset of Rdk+k. Then, assuming the high-probability
event in Lemma B.2 holds, then

sup
θ∈Cβ

1

nT

∑
i∈[nT]

∥∥∇2
θgθ(xi)

∥∥2

2
. β2 tr Σ and

1

nT

∑
i∈[nT]

‖∇θg0(xi)‖22 . β2 tr Σ.

Proof. To bound the average squared Hessian operator norm, note that∇2
θgθ(xi)[∆, w] = βx>i ∆w,

which is independent of θ. Then, by the variational characterization of the operator norm,∥∥∇2
θgθ(xi)

∥∥
2

= sup
‖∆‖2F+‖w‖22≤1

∣∣∇2
θgθ(xi)[∆, w]

∣∣ = sup
‖∆‖2F+‖w‖22≤1

β
∣∣x>i ∆w

∣∣
≤ sup
‖∆‖2F+‖w‖22≤1

β ‖xi‖2 ‖∆‖F ‖w‖2

≤ β ‖xi‖2 .

and thus
∥∥∇2

θgθ(xi)
∥∥2

2
. β2 ‖xi‖22. Consequently,

sup
θ∈Cβ

1

nT

∑
i∈[nT]

∥∥∇2
θgθ(xi)

∥∥2

2
≤ β2

nT
trXX> . β2 tr Σ.

We now proceed to bound the squared norm of the gradient. Observe that the gradient is given by
∇θg0(xi) = β[A>B0

xi, vec(xiw
>
0 )], and therefore,

1

nT

∑
i∈[nT]

‖∇θg0(xi)‖22 =
β2

nT

∑
i∈[nT]

∥∥A>B0
xi
∥∥2

2
+
∥∥xiw>0 ∥∥2

F
.
β2

nT

∑
i∈[nT]

‖xi‖22 =
β2

nT
trXX>

. β2 tr Σ,

where the first inequality uses the fact that
∥∥A>B0

xi
∥∥2

2
= 2

∥∥B>0 xi∥∥2

2
= 2 ‖PB0xi‖

2
2 . ‖xi‖22, by

the definition of AB0
and assumed orthogonality of B0.

Lemma B.7 (Lβ is Lipschitz). Let gθ(x) = βx>(AB0
+ ∆)(w0 + w) for θ = (∆, w) ∈ Cβ ,

where Cβ is considered as a subset of Rdk+k. Furthermore, assume that the high-probability event
in Lemma B.2 holds. Then, with probability at least 1 − δ/3 over the draw of nT labels, we have
that for any c1, c2 > 0 and β2 > c21 + c22,

sup
θ∈Cβ

‖∇gLβ(gθ(X))‖22 .
1

nT

[
‖Σ‖2

(
‖θ∗‖22 + c21 + c22

)
+ σ2

(
1 + log

1

δ

)]
.
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Proof. We assume that ‖z‖22 /nT . σ2[1+log(1/δ)], which occurs with probability at least 1−δ/3
via standard tail bounds on chi-squared random variables. Then, the gradient of the loss with respect
to the predictions is given by

∇gLβ(gθ(X)) =
1

nT
(y − gθ(X)) =

1

nT
[X(θ∗ − βAB0w − β∆w0 − β∆w) + z].

Therefore,

sup
θ∈Cβ

‖∇gLβ(gθ(X))‖22 . sup
θ∈Cβ

1

n2
T

‖X(θ∗ − βAB0w0 − β∆w0 − β∆w)‖22 +
1

n2
T

‖z‖22

.
1

nT

[
‖Σ‖2

(
‖θ∗‖22 + c21 + c22

)
+ σ2

(
1 + log

1

δ

)]
.

Lemma B.8. Let w̃, w̄, and δ̄ be defined as in Lemma B.5. Then, assuming that the high-probability
event in Lemma B.2 holds, the three quantities above are norm-bounded by κ1/2(‖B∗w∗‖2 + δ0),
up to constant factors. Furthermore, we can also bound

∥∥δ̄∥∥
2

as

∥∥δ̄∥∥
2
≤ δ0 +

(
‖w∗‖2 + δ0κ

1/2

λ
1/2
min

)∥∥∥P⊥Σ1/2B0
Σ1/2B∗

∥∥∥
F
.

Proof. Throughout the proof, we will write λmax and λmin as shorthand for λmax(Σ) and λmin(Σ),
respectively. By definition, since B0 is assumed to be orthonormal, the concentration of the sample
covariance in Lemma B.2 implies that

‖w̄‖22 .
1

nTλmin
‖XB0w̄‖22 =

1

nTλmin
‖PXB0

Xθ∗‖22 .
1

λmin

∥∥∥Σ1/2θ∗
∥∥∥2

2
≤ κ ‖θ∗‖22

≤ κ(‖B∗w∗‖2 + δ0)2.

Following similar arguments for w̃ and δ̄, we obtain the same bounds. Thus, we have demonstated
that all three quantities are indeed norm-bounded by κ1/2(‖B∗w∗‖2 + δ0), up to constant factors.

Finally, we proceed to derive the final bound on δ̄. Note that Xδ̄ = Xδ∗ − PXB0
Xδ∗ +

P⊥XB0
XB∗w∗. Therefore,∥∥δ̄∥∥

2
. δ0 +

1√
nTλmin

[
‖PXB0Xδ

∗‖2 +
∥∥P⊥XB0

XB∗w∗
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]
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λ
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[∥∥∥PΣ1/2B0
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∥∥∥
2
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Σ1/2B∗w∗
∥∥∥

2

]
. δ0 +

1

λ
1/2
min

[∥∥∥Σ1/2δ∗
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2
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∥∥
F
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F

]
Now, by applying the properties of the trace operator and Proposition I.3,∥∥PΣ1/2B0

P⊥Σ1/2B∗

∥∥2

F
= trPΣ1/2B0
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= tr (I − PΣ1/2B∗)PΣ1/2B0
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⊥
Σ1/2B0

PΣ1/2B∗ =
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F
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F
,

and thus ∥∥δ̄∥∥
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1

λ
1/2
min
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1/2
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∥∥∥Σ1/2δ∗
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F
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B.4 Deducing Theorem 3.1

Having proven all the previous results, we can now assemble the main claim in Theorem 3.1. Recall
that we have defined the rates

rS(nS, T ) :=
σ2

nST

(
kT + kd log κnS + log

1

δ

)
+
σδ0 ‖Σ‖1/22√

nST

√
kT + kd log κnS + log

1

δ

+
σδ0√
nS

√
tr Σ

(
1 + log

T

δ

)

r
(1)
T (nT) := krS(nS, T ) +

σ2

nT

(
k + log

1

δ

)
+

σδ0√
nT

√
tr Σ

(
1 + log

1

δ

)
r

(2)
T (nT) :=

σ2

nT

(
k + log

1

δ

)
+

σ
√
nT

[
δ0 +

(
‖w∗‖2 + δ0κ

1/2

λ
1/2
min(Σ)

)√
krS(nS, T )

]√
tr Σ

(
1 + log

1

δ

)
r

(3)
T (nT) :=

σ2

nT

(
d+ log

1

δ

)
.

Theorem 3.1 (Performance guarantee, linear representations). Assume that Assumptions 3.1 and 3.2
hold, nS � ρ4(d+log(T/δ)), and nT � ρ4(d+log(1/δ)). Then there are (λ, γ, β, TPGD, η, c1, c2)
such that the training procedure in Section 3.2, with high probability, finds θ achieving excess risk
bounded as

E
[
(x>θ∗ − x>θ)2

]
. min(r

(1)
T (nT), r

(2)
T (nT), r

(3)
T (nT)).

Proof. Assume that during source training, the regularization parameters (λ, γ) are chosen ac-
cording to Lemma B.3. We instantiate the high-probability events in Lemmas B.3, B.5 and B.7.
These events occur altogether with probability at least 1 − δ. Throughout the proof, we define
r(n) = min(r

(1)
T (n), r

(2)
T (n), r

(3)
T (n)).

Given all the events above, we know that the optimization landscape induced by Lβ is well-behaved.
That is, the function class is approximately linear in the parameters by Lemma B.6 and the loss is
Lipschitz by Lemma B.7. Furthermore, for any of the proposed feasible sets in Lemma B.5, the
bounds on relevant quantities provided by Lemma B.8 imply that

c21 + c22 . κ(‖B∗w∗‖22 + δ2
0)︸ ︷︷ ︸

=:R2

=⇒ sup
θ∈Cβ

‖∇gLβ(gθ(X))‖22 .
1

nT

[
‖Σ‖2R

2 + σ2

(
1 + log

1

δ

)]
︸ ︷︷ ︸

=:α2

.

Therefore, we have demonstrated that Lβ satisfies the assumptions in Section H for any β > R2.
Consequently, by running projected gradient descent with parameters

β = max

(
R2,

αR2
√

tr Σ

r(nT)

)
and TPGD =

α2R2 tr Σ

r(nT)2
,

and setting η as in Theorem H.1, we can guarantee that projected gradient descent finds an r(nT)–
suboptimal point. Therefore, by choosing (c1, c2) in order to achieve the minimal rate r(nT) in
Lemma B.5, we can guarantee that

min
t

1

nT
‖X(θt − θ∗)‖22 . r(nT).

Finally, due to target covariance concentration as guaranteed by the event in Lemma B.2, we thus
have that the excess risk of the best predictor found by the algorithm on the target task is bounded
as

min
t

E
[
(x>θt − x>θ∗t )2

]
= min

t

∥∥∥Σ1/2(θt − θ∗)
∥∥∥2

2
. min(r

(1)
T (n), r

(2)
T (n), r

(3)
T (n)).
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C Linear Hard Case: Construction, Proofs, and Experiments

C.1 Hard Case Construction

In the following section, we will provide the construction of a task distribution family that is used in
proving Theorem 3.2 in the main text.

C.1.1 Formal Construction

We now proceed with a formal construction that satisfies the conditions of Section 3.1. We provide
the intermediate results used to prove Theorem 3.2, but leave their proofs for Section C.2 to simplify
the presentation in this section.

Fix an ε ∈ (0, 1), and let p be a Gaussian distribution on Rd with block-diagonal covariance Σ

Σ :=

[
εId−k 0

0 Ik

]
.

We define E∗, Ek ⊂ Rd to be the two eigenspaces of Σ determined by the two blocks, i.e.

E∗ = Col

[
εId−k

0

]
and Ek = Col

[
0
Ik

]
.

Then, for an orthogonal matrix B ∈ Rd×k with ColB∗ ⊆ E∗, define a corresponding task distribu-
tion given by

θ =
1√
2ε
Bw + δ, (10)

where w and δ are uniformly sampled from the unit spheres in Rk and Ek, respectively.

Recall that in the linear representation setting, FROZENREP optimizes the following objective to
obtain a representation B̂:

B̂ = argmin
B

min
wt

1

2nST

∑
t∈[T ]

‖yt −XtBwt‖22 .

First, we characterize the span of B̂ in the limit of infinite source tasks and data. Intuitively,
span {B∗w∗t } and span {∆∗tw∗t } correspond to the green and red “vectors” in Figure 2, respec-
tively, and thus we expect FROZENREP to learn Ek.

Lemma C.1 (FROZENREP learns incorrect space). Fix an orthogonal matrix B∗ ∈ Rd×k with
ColB∗ ⊆ E∗, and assume that we sample task weights from the distribution in (10). Then, with
infinitely many tasks and per-task samples (nS, T →∞), Col B̂ = Ek.

Although “incorrect”, it is unclear a priori that learning ColEk is undesirable performance-wise.
The next result formalizes the resulting degradation in performance due to learning ColEk.

Theorem C.1 (FROZENREP minimax bound). For an orthogonal matrixB∗ ∈ Rd×k whose column
space lies in E∗, let SB∗ be the set

SB∗ :=

{
1√
2ε
B∗w + δ

∣∣∣∣ ‖w‖2 ≤ 1, ‖δ‖2 ≤ 1, δ ∈ Ek
}
.

We consider the following procedure:

1. We draw nT samples for target time training, which are collected into a matrix X .

2. Player chooses a target-time estimator θ̂ = B̄ŵ + δ̂, where B̄, ŵ, and δ̂ are measurable
function of (X, y), and Col B̄ = Col B̂.

3. Player chooses target-time estimator θ̂ = B̂ŵ+ δ̂, where ŵ and δ̂ are measurable functions
of (B̂,X, y).
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4. Adversary chooses an orthogonal matrixB∗ ∈ Rd×k satisfying ColB∗ ⊂ Ek, and a target
time predictor θ∗ ∈ SB∗ .

5. FROZENREP returns a representation B̂ under the setting of Lemma C.1 with the task
distribution determined by B∗.

6. Target time samples are generated using y ∼ N
(
Xθ∗, σ2In

)
, and the player estimator is

evaluated.

Then, with probability at least 1− δ over the draw of X , we have that

min
ŵ,δ̂

max
B∗

θ∗∈SB∗

E
[

1

nT

∥∥∥X(θ∗ − B̂ŵ − δ̂)
∥∥∥2

2

]
&
σ2d

nT
,

where the expectation is over the randomness in the labels y ∼ N
(
Xθ∗, σ2InT

)
. Note that the

minimization over ŵ and δ̂ is performed over the set of measurable functions from (X, y) to Rk and
Rd, respectively.

The result above comprises the minimax bound in Theorem 3.2. In contrast, by specializing the
ADAPTREP performance bound in Theorem 3.1, we obtain the following corollary:

Corollary C.1. Set k = Θ(1), d � k, and ε = k/d. Furthermore, assume that nST & d2, and
nS ≥ nT � d. Then, for a fixed target task in SB∗ as defined in Theorem C.1, with probability at
least 1− δ over the draw of samples, the procedure in Section 3.2 achieves excess risk bounded as

E
[
(x>θ∗ − x>θ̂)2

]
. min

(
σ/
√
nT, σ

2d/nT

)
.

Thus, we have constructed the desired task distribution family, proving Theorem 3.2.

C.2 Proofs for Section 3.4

Lemma C.1 (FROZENREP learns incorrect space). Fix an orthogonal matrix B∗ ∈ Rd×k with
ColB∗ ⊆ E∗, and assume that we sample task weights from the distribution in (10). Then, with
infinitely many tasks and per-task samples (nS, T →∞), Col B̂ = Ek.

Proof. Fix a B. For any t ∈ [T ], as nS →∞, we have that

min
wt

1

nS
‖yt −XtBwt‖22 = min

wt

1

nS
‖Xt(θ

∗
t −Bwt) + zt‖2

= min
wt

∥∥∥Σ1/2(θ∗t −Bwt)
∥∥∥2

2
+ σ2

=
∥∥∥P⊥Σ1/2BΣ1/2θ∗t

∥∥∥2

2
+ σ2.

Therefore, we can rewrite the objective defining B̂ as

B̂ = argmin
B

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2BΣ1/2θ∗t

∥∥∥2

2

= argmin
B

trP⊥Σ1/2BΣ1/2

 1

T

∑
t∈[T ]

θ∗t (θ∗t )>

Σ1/2

= argmin
B

trP⊥Σ1/2B

[
1

2
PB∗ + PEk

]
= argmin

B

1

2

∥∥P⊥Σ1/2BPB∗
∥∥2

F
+
∥∥P⊥Σ1/2BPEk

∥∥2

F
,

28



where the third equality uses the definition of the task distribution in (10). Now, let S be the space
defined as Ek + Col B∗. Observe that∥∥P⊥Σ1/2BPS

∥∥2

F
= trP⊥Σ1/2BPS

= trP⊥Σ1/2BP
∗
B + trP⊥Σ1/2BPEk

=
∥∥P⊥Σ1/2BPB∗

∥∥2

F
+
∥∥P⊥Σ1/2BPEk

∥∥2

F
.

By putting everything together, we thus see that

B̂ = argmin
B

∥∥P⊥Σ1/2BPS
∥∥2

F
+
∥∥P⊥Σ1/2BPEk

∥∥2

F
.

This objective is minimized if and only if the span of Σ1/2B is exactly Ek. By inverting, this is only
possible if Col B̂ = Ek.

Theorem C.1 (FROZENREP minimax bound). For an orthogonal matrixB∗ ∈ Rd×k whose column
space lies in E∗, let SB∗ be the set

SB∗ :=

{
1√
2ε
B∗w + δ

∣∣∣∣ ‖w‖2 ≤ 1, ‖δ‖2 ≤ 1, δ ∈ Ek
}
.

We consider the following procedure:

1. We draw nT samples for target time training, which are collected into a matrix X .

2. Player chooses a target-time estimator θ̂ = B̄ŵ + δ̂, where B̄, ŵ, and δ̂ are measurable
function of (X, y), and Col B̄ = Col B̂.

3. Player chooses target-time estimator θ̂ = B̂ŵ+ δ̂, where ŵ and δ̂ are measurable functions
of (B̂,X, y).

4. Adversary chooses an orthogonal matrixB∗ ∈ Rd×k satisfying ColB∗ ⊂ Ek, and a target
time predictor θ∗ ∈ SB∗ .

5. FROZENREP returns a representation B̂ under the setting of Lemma C.1 with the task
distribution determined by B∗.

6. Target time samples are generated using y ∼ N
(
Xθ∗, σ2In

)
, and the player estimator is

evaluated.

Then, with probability at least 1− δ over the draw of X , we have that

min
ŵ,δ̂

max
B∗

θ∗∈SB∗

E
[

1

nT

∥∥∥X(θ∗ − B̂ŵ − δ̂)
∥∥∥2

2

]
&
σ2d

nT
,

where the expectation is over the randomness in the labels y ∼ N
(
Xθ∗, σ2InT

)
. Note that the

minimization over ŵ and δ̂ is performed over the set of measurable functions from (X, y) to Rk and
Rd, respectively.

Proof. We instantiate the event guaranteed by Lemma B.2 over the draw of target samples, which
guarantees that

0.9Σ .
1

nT
X>X . 1.1Σ,

with probability at least 1− δ.

Recall that by Lemma C.1, FROZENREP will always find an orthogonal matrix whose column space
is Ek, no matter how B∗ is chosen. Therefore, we can rewrite the minimax expression as

min
ŵ,δ̂

max
B∗,θ∗

θ∗∈SB∗

E
[

1

nT

∥∥∥X(θ∗ − B̂ŵ − δ̂)
∥∥∥2

2

]
= min

θ̂
max
B∗,θ∗

θ∗∈SB∗

E
[

1

nT

∥∥∥X(θ∗ − θ̂)
∥∥∥2

2

]

& min
θ̂

max
B∗,θ∗

θ∗∈SB∗

E
[∥∥∥θ∗ − θ̂∥∥∥2

Σ

]
,
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where θ̂ is simply a measurable function of (X, y) to Rd. To further simplify the problem, observe
that if we define the set

T =

{
θ ∈ Rd

∣∣∣∣ ‖PE∗θ‖22 ≤ 1

2ε
, ‖PEkθ‖

2
2 ≤ 1

}
⊆ SB∗

then since the estimator only depends on B∗ through θ∗,

min
ŵ,δ̂

max
B∗,θ∗

θ∗∈SB∗

E
[

1

nT

∥∥∥X(θ∗ − B̂ŵ − δ̂)
∥∥∥2

2

]
& min

θ̂
max
θ∗∈T

E
[∥∥∥(θ∗ − θ̂)

∥∥∥2

Σ

]
. (11)

To lower bound the right-hand side of (11), we use local coverings in the Σ-norm and apply the Fano
bound for minimax risk. Let B :=

{
θ ∈ Rd

∣∣∣ ε ‖PE∗θ‖22 + ‖PEkθ‖
2
2 ≤ 1

}
be the unit ball in the

Σ-norm, so that 1√
2
B ⊆ T . Using a known volumetric argument, there exists a (1/2)-packing of B

in the Σ-norm with at least 2d elements. Equivalently, there exists a 2δ-packing of 4δB with at least
2d elements – let this packing be S. Then, for any θ, θ′ ∈ S,

KL
(
N
(
Xθ, σ2InT

)∥∥N (Xθ′, σ2InT
))

=
1

2σ2
‖X(θ − θ′)‖22 .

nT
2σ2
‖θ − θ′‖2Σ

≤ 32nT
σ2

δ2.

Therefore, by Fano’s inequality, for any δ2 ≤ 1/32 (which ensures that S ⊆ 4δB ⊆ 1√
2
B ⊆ T ),

min
θ̂

max
θ∗∈T

E
[

1

n

∥∥∥(θ∗ − θ̂)
∥∥∥2

Σ

]
≥ δ2

(
1− 32n

σ2d log 2
δ2 − 1

d

)
≥ δ2

(
3

4
− 32n

σ2d log 2
δ2

)
. (d ≥ 4)

As long as nT ≥ log 2
2 σ2d, we can set δ2 =

(
log 2
64

)
σ2d
nT

, and thus putting everything together, we
have that

min
ŵ,δ̂

max
B∗,θ∗

θ∗∈SB∗

E
[

1

n

∥∥∥X(θ∗ − B̂ŵ − δ̂)
∥∥∥2

2

]
&
σ2d

nT
.

C.3 Simulations

In this section, we experimentally verify the linear hard case presented in Section 3.4. Since the
empirical success of MAML and its variants has already been demonstrated extensively in practice
and in existing work, it is not the focus of this section.
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Figure 6: Sine distances of the representations learned by each method
from the correct space B∗.
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Figure 7: The worst-case average excess risk for several settings of nT,
plotted on a logarithmic y-axis.

We consider the high-dimensional setting where d � nT, and k = Θ(1). We fix k = 2 throughout
the experiment. The matrix B∗ spans the first k coordinates, while the residuals δ∗t lie in the span of
the last k coordinates. Finally, we set the Gaussian noise variance to σ2 = 1.

During source training, both FROZENREP and ADAPTREP are provided with 1000 tasks and 10d
samples per task from the task distribution in Section 3.4 (both are provided with the same samples).
During target time, we evaluate the methods on the worst-case regression task from the same family.

Nonconvexity in Source Procedure. Rather than optimizing (4) or (6) during source training,
we use an additional Frobenius-norm regularizer on B>B − WW> to balance B and W . For
FROZENREP, the regularized objective was shown to have a favorable optimization landscape in
Tripuraneni et al. (2020a). We used L-BFGS to optimize these regularized objectives. To further
mitigate optimization issues, we evaluated both methods with 10 random restarts, and report the best
of the 10 restarts (as measured by the worst-case performance on the target task) for both methods.

(Subspace Alignment). We plotted the alignment of the learned representation (using the best of
the 10 restarts) with B∗. We measure this via the sine of the largest principal angle between the two
spaces, i.e.

sin Θ1(B̂, B∗) =

√
1− σ2

1

(
B̂>B∗

)
.

We plot the results in Figure 6. As predicted by Lemma C.1, FROZENREP does not learn B∗, in
contrast to ADAPTREP.

(Target Task Performance). We evaluated how the methods fare on their corresponding worst-case
target tasks. We do so by training with the representation over 1000 i.i.d. draws of the target dataset,
and averaging the excess risk over all obtained representations. We provide the results in Figure 7,
and include a comparison with standard linear regression. As predicted, ADAPTREP performs much
better than FROZENREP, with a gap that grows with nT.
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D Proof of Theorem 4.1

In this section, we will prove the guarantee provided in Theorem 4.1, along with all related inter-
mediate results. Along these lines, we proceed as we did for Section B. More explicitly, the overall
outline of the proof follows the four major steps below. We have placed in parenthesis the corre-
sponding intermediate steps in the linear representation case (Section B) as an additional illustration
of the procedure:

(1) Provide a statistical rate for source training (Lemma B.3).
(2) Bound the difference in performance between the solution found by the optimization algo-

rithm and the ERM solution (Lemma B.6+Theorem H.1).
(3) Prove uniform concentration over ACT(θ0) as a function of target sample size (Lemma

B.5).
(4) Connect the best-case performance in ACT(θ0) to the performance of the learner on the

source tasks (Lemmas B.4, B.5 and B.8).

Note that step (4) is provided by the (ν, ε)-diversity condition. We will now proceed to demonstrate
the remaining steps.

D.1 Bounding Average Source Task Performance (1)

The (ν, ε)-diversity condition implies that we can bound the best-case performance during target
time training via control over the average source task performance. We proceed to provide such
a bound using a standard uniform convergence argument. Recall that for a set of vector-valued
functions H mapping from Rm → Rn, the Rademacher complexity of H on nS samples, denoted
RnS

(H), is given by

RnS(H) := E

sup
h∈H

1

nS

∑
i∈[nS]

∑
j∈[n]

εijh(xi)j

 ,
where the expectation is over the samples (xi) and i.i.d. Rademacher random variables εij .
Lemma D.1 (Source Training Bound). Let θ ∈ Θ0 be a minimizer of the training objective in (7).
Then, with probability at least 1− δ over the random draw of inputs and labels,

1

T

∑
t∈[T ]

inf
gt∈ACS (θ)

Lex
∞(gt, g

∗
t ) .

1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

.

Proof. For any t ∈ [T ], we define the empirical risk minimizer ḡt := argming∈ACS (θ) L(g, g∗t ).
Then, since θ minimizes the training objective in (7),∑

t∈[T ]

L(ḡt, g
∗
t )− L(g∗t , g

∗
t ) ≤ 0.

Following the canonical risk decomposition, we have that∑
t∈[T ]

Lex
∞(ḡt, g

∗
t ) ≤

∑
t∈[T ]

L∞(ḡt, g
∗
t )− L(ḡt, g

∗
t ) +

∑
t∈[T ]

L(ḡt, g
∗
t )− L(g∗t , g

∗
t )

+
∑
t∈[T ]

L(g∗t , g
∗
t )− L∞(g∗t , g

∗
t )

≤ 2 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣
∑
t∈[T ]

L∞(gt, g
∗
t )− L(gt, g

∗
t )

∣∣∣∣∣∣ .
We give a high-probability bound on the right-hand side by first bounding its expectation, and then
applying Markov’s inequality to obtain the desired result. To bound the expectation, note that via
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symmetrization,

E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣
∑
t∈[T ]

L∞(gt, g
∗
t )− L(gt, g

∗
t )

∣∣∣∣∣∣


≤ 2E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣ 1

nS

∑
t∈[T ]

∑
i∈[nS]

εij`(gt(xi,t), yi,t)

∣∣∣∣∣∣


Recentering about `(0, yi,t) and using the constant-shift property of the Rademacher complexity,

E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣ 1

nS

∑
t∈[T ]

∑
i∈[nS]

εij`(gt(xi,t), yi,t)

∣∣∣∣∣∣


≤ E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣ 1

nS

∑
t∈[T ]

∑
i∈[nS]

εij [`(gt(xi,t), yi,t)− `(0, yi,t)]

∣∣∣∣∣∣
+B

√
T

nS

Finally, since the loss is 1-Lipschitz, we can apply the Rademacher contraction principle, from
which we find that

E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣ 1

nS

∑
t∈[T ]

∑
i∈[nS]

εij [`(gt(xi,t), yi,t)− `(0, yi,t)]

∣∣∣∣∣∣


. E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣ 1

nS

∑
t∈[T ]

∑
i∈[nS]

εijgt(xi,t)

∣∣∣∣∣∣
 = RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
.

Putting everything together, we can thus bound the expectation of the maximum deviation as

E

 sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣
∑
t∈[T ]

L∞(gt, g
∗
t )− L(gt, g

∗
t )

∣∣∣∣∣∣
 . RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+B

√
T

nS
.

Therefore, by applying Markov’s inequality, we have that with probability at least 1− δ,

1

T

∑
t∈[T ]

Lex
∞(ḡt, g

∗
t ) .

1

T
sup
θ∈Θ0

gt∈ACS (θ)

∣∣∣∣∣∣
∑
t∈[T ]

L∞(gt, g
∗
t )− L(gt, g

∗
t )

∣∣∣∣∣∣
.

1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

.

D.2 Bounding Optimization Performance (2)

Having provided a bound on source task performance, we now proceed to analyze the objective be-
ing optimized during target time training. We first note that the approximate linearity assumption in
Assumption 4.4 and the norm-boundedness of CT via Assumption 4.5 ensure that the results from
Section H apply, as long as we can show that the empirical loss satisfies an (α/

√
nT)-Lipschitz con-

dition. We proceed to show that this is indeed a simple consequence of the 1-Lipschitz assumption
on the loss given by Assumption 4.2.
Lemma D.2. Define the function L : RnT → R as

L(ŷ) :=
1

nT

∑
i∈[nT]

`(ŷi, yi).

for fixed y1, . . . , ynT
∈ Y . Then, for any ŷ, ‖∇ŷL(ŷ)‖22 ≤ 1/nT.
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Proof. By direct computation,

‖∇ŷL(ŷ)‖22 =
1

n2
T

∑
i∈nT

|∇ŷi`(ŷi, y)|2 ≤ 1

nT
,

where we have used the fact that `(·, y) is 1-Lipschitz for any y ∈ Y by Assumption 4.2.

Having verified that the assumptions in Section H hold, it follows that we have the following perfor-
mance bound on projected gradient descent during target time training:
Lemma D.3. Assume that we run projected gradient descent during target training time for TPGD

iterations with step size η given by

η =
1√
TPGD

(
R√

L2 + β2R2

)
.

Let g0, . . . , gTPGD
denote the sequence of predictors obtained, where g0 = gθ0 . Then, for any

g ∈ ACT(θ0),

min
t
L(gt, g

∗
t )− L(g, g∗t ) ≤ βR2 +R

√
L2 + β2R2

TPGD
.

D.3 Bounding the Performance of ERM during Target Training (3)

We now proceed to bound the performance of the ERM solution during target time training. Via
following the canonical risk decomposition as in Lemma D.1, we can prove such a bound simply by
bounding the maximum deviation between empirical and population losses over ACT(θ0).
Lemma D.4. Let S be the support of ρ. With probability at least 1 − δ over the random draw of
inputs and noise,

sup
g∗∈S

g∈ACT (θ0)

|L(g, g∗)− L∞(g, g∗)| ≤ 1

δ
sup
θ∈Θ0

RnT
[ACT(θ)] +

B

δ
√
nT

.

Proof. The proof proceeds similarly to that of Lemma D.1. Note that the supremum over g∗ does
not affect the bound, since g∗ only enters into the expression through the labels yi, and no matter
what choice of g∗ is made, |`(0, yi)| ≤ B for all i. The final result follows from taking a supremum
over all possible initialization choices.

D.4 Concluding: Proving Theorem 4.1

Having completed all the steps for the outline, we now proceed to compile the main result. Intu-
itively, since the diversity condition allows us to bound the performance of the best predictor, and
projected gradient descent can perform as well as any predictor in ACT(θ0) (and thus, as well as the
best predictor), we can obtain performance bounds on the iterates found while training on the target
task.
Theorem 4.1 (General Performance Bound). Assume that all assumptions in Section 4.2 hold. Let
(θt) be the set of iterates generated by PGD following the procedure in Section 4.1. Then, with
probability at least 1− δ over the random draw of samples,

Eg∗∼ρ
[
min
t
Lex
∞(gθt , g

∗)
]
. βR2 +R

√
L2 + β2R2

TPGD︸ ︷︷ ︸
εOPT

+
1

δ
sup
θ∈Θ0

RnT
[ACT(θ)] +

B

δ
√
nT︸ ︷︷ ︸

εEST

+
1

ν

{
1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

}
+ ε︸ ︷︷ ︸

εREPR

.

Note that the RnT
complexity term samples from p. Meanwhile, the RnS

complexity term samples
from p⊗T , which concatenates T i.i.d. samples from p (one for each task) for every draw.
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Proof. We instantiate the high-probability events in Lemmas D.1 and D.4 both with failure probabil-
ity δ/2, which simultaneously occur with probability at least 1−δ via a union-bound. Consequently,
we have the bounds

1

T

∑
t∈[T ]

inf
gt∈ACS (θ)

Lex
∞(gt, g

∗
t ) .

1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

sup
g∗∈S

g∈ACT (θ0)

|L(g, g∗)− L∞(g, g∗)| . 1

δ
sup
θ∈Θ0

RnT
[ACT(θ)] +

B

δ
√
nT

Given g∗, let ḡ be the population risk minimizer inACT(θ0). Througout this proof, we omit g∗ when
writing L and L∞ whenever it is understood. Then, by Lemma D.3, projected gradient descent
always generates iterates satisfying

min
t
L(gt)− L(ḡ) . βR2 +R

√
L2 + β2R2

TPGD
, (12)

independent of g∗. Let g̃ be the predictor achieving the minimum. We thus proceed to decompose
the risk as

min
t
L∞(gt)− L∞(g∗) . L∞(g̃)− L(g̃)︸ ︷︷ ︸

=:T1

+L(g̃)− L(ḡ)︸ ︷︷ ︸
=:T2

+ L(ḡ)− L∞(ḡ)︸ ︷︷ ︸
=:T3

+L∞(ḡ)− L∞(g∗)︸ ︷︷ ︸
=:T4

.

We now bound the terms T1, . . . , T4 individually. As a result of uniform convergence as guaranteed
by Lemma D.4,

T1, T3 ≤ sup
g∗∈S

g∈ACT (θ0)

|L(g)− L∞(g)| . 1

δ
RnT

[ACT(θ0)] +
B

δ
√
nT

,

where S is the support of the target task distribution ρ. Furthermore, we have demonstrated a bound
on T2 in (12). Finally, by applying the (ν, ε)-diversity condition as guaranteed by Assumption 4.3,

Eg∗∼ρ [T4] = Eg∗∼ρ
[

inf
g∈ACT (θ0)

Lex
∞(g)

]

≤ 1

ν

 1

T

∑
t∈[T ]

inf
gt∈ACS (θ)

Lex
∞(gt)

+ ε

≤ 1

ν

{
1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

}
+ ε.

Taking the expectation with respect to g∗ ∼ ρ and putting all of these bounds together, we thus have
that

Eg∗∼ρ [Lex
∞(g, g∗)] . βR2 +R

√
L2 + β2R2

TPGD
+

1

δ
sup
θ∈Θ0

RnT
[ACT(θ)] +

B

δ
√
nT

+
1

ν

{
1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

}
+ ε.
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E Case Study: Two-Layer Neural Networks (Proofs)

E.1 Additional Assumptions on Initialization and Diversity

Before we proceed with the proofs for Section 5, we first formalize the additional assumptions that
were referenced in the main text.

Assumption E.1 (Initialization Assumptions). The initialization (B∗, w∗0) satisfies the following
assumptions:

(a) B∗ = [A∗, A∗] for A∗ ∈ Rd×k. Furthermore, w∗0 ∈ {−1, 1}2k, with (w∗0)i = −(w∗0)i+k
for i ∈ [k].

(b) The columns of B∗ are norm-bounded by 1.

(c) c1I � E
[
ρθ∗0 (x)ρθ∗0 (x)>

]
� c2I for c1 > 0. We define κ = c2/c1.

We refer to initializations satisfying (a) as antisymmetric initializations. Note that under any anti-
symmetric initialization θ0, fβθ0(x) ≡ 0. Additionally, the assumption on the representation covari-
ance in (c) ensures that that representation is well-conditioned, with condition number κ.

Finally, we need to impose diversity conditions on the source tasks. Recall that for every t ∈ [T ],
there exists unit-norm w∗t ∈ R2k and δ∗t ∈ Rk such that the corresponding source predictor is
parameterized by

θ∗t =

B∗ +
1

β

∑
i∈[k]

(δ∗t )i∆
∗
i , w

∗
0 +

1

β
w∗t

 .

We note that the fine-tuning step for t ∈ [T ] can be parametrized by ω∗t = [w∗t , δ
∗
t ] ∈ R3k via

a (natural) linear transformation. We assume that this parametrization has a matrix representation
Γ/β, so that θ∗t = θ∗0 + Γω∗t /β. Then, we impose the following condition on (ω∗t )t:

Assumption E.2. Let Ω ∈ R2k×T be the matrix [ω∗1 , . . . , ω
∗
T ]. Then, σ2k(Ω) & T/k.

The assumption above is analogous to the diversity conditions assumed in the previous sections.

E.2 Formalizing Approximate Linearity

In this section, we demonstrate that under Assumption E.1, fβθ∗t behaves approximately like its lin-
earization for large enough β.

Recall that the linearization of fβθ involves two feature vectors, φB0
(x) and ψB0,w0

(x). We now
provide the following formal definitions for these vectors:

Definition E.1 (Feature vectors φ, ψ, ρ). Let θ0 = (B0, w0) be an antisymmetric parameter, i.e.
satisfying Assumption E.1(c). Then, for every x, there exists feature vectors φB0(x) and ψB0,w0(x)
such that

fβθ0+(∆,w)(x) = βw>φB0
(x) + β∆>ψB0,w0

(x) + βζ∆,w
B0,w0

(x).

We interpret the features φB0
(x) and ψB0,w0

(x) to be the gradients of (B,w) 7→ fβ(B,w)(x) evalu-
ated at θ0, which have closed forms

φB0
(x) = σ(B>0 x) and ψB0,w0

(x) = wdiag
0 σ′(B>0 x)x>.

Additionally, ζ∆,w
B0,w0

(x) is the Taylor error. By Taylor’s theorem, there exists B̄ = B0 + α1∆ and
w̄ = w0 + α2w for some α1, α2 ∈ [0, 1] such that ζ∆,w

(B0,w0)(x) can be written as

ζ∆,w
(B0,w0)(x) =

2k∑
i=1

w̄iσ
′′(B̄>i x)(∆>i x)2 + 2wiσ

′(B̄>i x)(∆>i x).

Finally, we define ρB0,w0
(x) to be the concatenation of φB0

(x) and ψB0,w0
(x). �
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For θ0 = (B0, w0) and δ = (∆, w), we will frequently abuse notation and let ρθ0(x)δ denote the
linearization of fθ0+δ , i.e.

ρθ0(x)δ = w>φB0(x) + 〈ψθ0(x),∆〉 .

We will show that if ‖∆‖F and ‖w‖F are both O(1/β), then the remainder term ζ∆,w
B0,w0

(x) is
O(1/β), and thus the function class is approximately linear in (∆, w) with feature functions φB0(·)
and ψB0,w0(·). We first bound the Hessian term, in order to control the remainder term ζ∆,w

(B0,w0)(x),
which depends on the Hessian.
Lemma E.1 (Hessian Bound). Fix a matrix B̄ ∈ R2k×d and a vector w̄ ∈ R2k. Assume that all rows
of B̄ are 2-norm-bounded, and that ‖w̄‖2 ≤ 2. Then, for x ∼ p almost surely,

∥∥∥∇2
θf
β
(B̄,w̄)

(x)
∥∥∥

2
.

β(µ+ L).

Proof. Throughout the proof, we will use the fact that ‖x‖2 ≤ 1 for x ∼ p almost surely. By
definition,∥∥∥∇2

θf
β
(B̄,w̄)

(x)
∥∥∥

2
= sup
‖∆‖2F+‖w‖22≤1

β

∣∣∣∣∣∣
∑
i∈[2k]

w̄iσ
′′(B̄>i x) 〈∆i, x〉2 + 2

∑
i∈[2k]

wiσ
′(B̄>i x) 〈∆i, x〉

∣∣∣∣∣∣
To bound the first term, observe that by applying Hölder’s inequality,∑

i∈[2k]

w̄iσ
′′(B̄>i x) 〈∆i, x〉2 ≤

(
sup
i∈[2k]

∣∣∣wiσ′′(B̄i>x)
∣∣∣) ∑

i∈[2k]

〈∆i, x〉2

=

(
sup
i∈[2k]

∣∣∣w̄iσ′′(B̄i>x)
∣∣∣) ‖∆x‖22 ≤ 2µ.

To bound the second term, we apply Cauchy-Schwarz, from which we see that

2
∑
i∈[2k]

wiσ
′(B̄>i x) 〈∆i, x〉 ≤ 2

(∑
i∈2k

[
wiσ

′(B̄i
>
x)
]2)1/2

‖∆x‖2

≤ 2L ‖w‖2 ‖∆x‖2 ≤ 2L.

Altogether, we thus have that almost surely for x ∼ p,∥∥∥∇2
θf
β

(B̄,w̄)
(x)
∥∥∥

2
. β(µ+ L).

As an immediate corollary, since ζδθ0(x) evaluates the Hessian at a point satisfying the preconditions
of Lemma E.1 during both source and target trainng time, we have the following result:
Corollary E.1. For any θ0 ∈ Θ0 and any (∆, w) with ‖∆‖F ≤ c1/β, ‖w‖2 ≤ c2/β, we have that∣∣∣βζ(∆,w)

θ0
(x)
∣∣∣ ≤ c1c2(µ+ L)/β for x ∼ p almost surely.

Therefore, we see that for large enough β, the remainder term is close to 0, and thus the family
is indeed approximately linear. Finally, we provide a norm bound on the combined representation
vector ρθ0(x).

Lemma E.2 (Representation Norm Bound). For x ∼ p, ‖ρθ0(x)‖2 ≤ 2L
√
k almost surely for any

θ0 = (B0, w0) ∈ Θ0.

Proof. Recall from definitions that ‖ρθ0(x)‖22 = ‖φB0(x)‖22 + ‖ψθ0(x)‖2F . To bound the activation
features, since σ(0) = 0 and |σ′(x)| ≤ L for x ∈ [−1, 1],

‖φB0(x)‖22 = 2k max
i∈[2k]

∣∣σ(B>0,ix)
∣∣2 ≤ 2k max

i∈[2k]

∣∣∣∣∣
∫ B>0,ix

0

σ′(z) dz

∣∣∣∣∣
2

≤ 2kL2.

To bound the gradient features, we once again use the boundedness of σ′ to obtain

‖ψθ0(x)‖2F =
∥∥∥wdiag

0 σ′(B>0 x)x>
∥∥∥2

F
=
∥∥∥wdiag

0 σ′(B>0 x)
∥∥∥2

2
‖x‖22 =

∥∥σ′(B>0 x)
∥∥2

2
‖x‖22 ≤ 2kL2.

Putting the bounds together, we obtain the desired overall bound.
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E.3 Verifying Assumptions of Section 4.2

Having shown that the function class is approximately linear as well as the norm bounds above,
we now can proceed to verify the required assumptions. First, we verify the assumptions on the
loss function; clearly, the squared error loss is convex, so we simply need to verify that the loss
is Lipschitz over the prediction, and that `(0, y) is bounded. Note that we have to prove separate
bounds for source and target training, due to the change in the function class.
Lemma E.3 (Validating Loss Assumptions). Assume that γ2 ≥ 2κ. Define the quantities

α1 := L
√
k +

µ+ L

β
and α2 := κ1/2L

√
k +

κ

γ
(µ+ L) .

Then, during both source and target training time, |`(0, y)| ≤ α2
1 for any y, and `(·, y) is α1-

Lipschitz during source training time and α2-Lipschitz during target training time for any y, all up
to universal constants.

Proof. For the squared error loss, `(0, y) = y2 and ∇ŷ`(ŷ, y) = 2(ŷ − y) for any y. Therefore,
since the additive noise is O(1) bounded, the claims hold as long as we can prove a bound on the
predictions of any feasible predictor.

We first consider bounding the Lipschitz constant during source-time training. That is, we need to
provide a uniform bound on x 7→ βρθ0(x)>δ + βζδθ0(x) for θ0 ∈ Θ0, δ ∈ CS, and x in the support
of p. To this end, we apply the bounds in Corollary E.1 and Lemma E.2, from which we obtain∣∣βρθ0(x)>δ + βζδθ0(x)

∣∣ . L
√
k +

µ+ L

β
=: α1.

By applying a similar argument for target-time training, we find that∣∣γρθ0(x)>δ + γζδθ0(x)
∣∣ . κ1/2L

√
k +

κ

γ
(µ+ L) =: α2.

We thus can conclude that during both source and target training time, |`(0, y)| ≤ α2
1 for any y, and

that `(·, y) is α1-Lipschitz during source training time and α2-Lipschitz during target training time
for any feasible y.

Lemma E.4 (Neural network diversity). Assume that γ > max(κβ,
√

2κ). Then, the source tasks
satisfy a (1, (L+ µ)2/β2)-diversity condition with respect to the target task distribution ρ.

Proof. Observe that we can write the excess risk of a predictor fγ(B0,w0) as

E
[
[(γρB0,w0

(x)δ − βρB∗,w∗0 (x)δ∗) + (γζδB0,w0
(x)− βζδ

∗

B∗,w∗0
(x))]2

]
.

We proceed to upper bound the averaged best-case target performance, and lower bound the best-
case performance averaged over source tasks.

Upper bounding the expected best-case target performance.

Fix a δ∗. Then, since γ2 > 2κ guarantees that Lemma E.1 holds,

E
[
(fγθ0+δ(x)− fβθ∗0+δ∗(x))2

]
. E

[
(γρθ0(x)δ − ρθ∗0 (x)δ∗)2

]
+ E

[
(γζδθ0(x)− βζδ

∗

θ∗0
(x))2

]
. E

[(
γρθ0(x)δ − βρθ∗0 (x)δ∗

)2]
+

[
κ

γ
(L+ µ)

]2

+
(L+ µ)2

β2

. E
[(
γρθ0(x)δ − βρθ∗0 (x)δ∗

)2]
+

(L+ µ)2

β2
.

Therefore, by taking the infimum over δ ∈ CT and noting that the unconstrained infimum of the
right-hand side is feasible by Proposition I.7 and the conditioning constraint imposed by Θ0,

inf
δ∈CγT

E
[
(fγθ0+δ(x)− fβθ∗0+δ∗(x))2

]
≤ β2

∥∥∥Λ(ρθ0 , ρθ∗0 )1/2δ∗
∥∥∥2

2
+

(
L+ µ

β

)2
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Now, by the choice of target task distribution, we can write δ∗ as Γω∗/β, where we note that
E
[
ω∗(ω∗)>

]
= (1/k)I2k. Thus, by taking expectations, we have that

Eδ∗∼ρ
[

inf
δ∈CγT

E
[
(fγθ0+δ(x)− fβθ∗0+δ∗(x))2

]]
≤ 1

k

∥∥∥Λ(ρθ0 , ρθ∗0 )1/2Γ
∥∥∥2

F
+

(
L+ µ

β

)2

.

Lower bounding the source task-averaged best-case target performance.

Fix a source task t ∈ [T ]. By Corollary I.1, we have the bound

β2E
[
(ρθ0(x)δ − ρθ∗0 (x)δ∗t )2

]
. E

[
(fβθ0+δ(x)− fβθ∗t (x))2

]
+ E

[
(ζδθ0(x)− ζδ

∗

θ∗0
(x))2

]
. E

[
(fβθ0+δ(x)− fβθ∗(x))2

]
+

(
L+ µ

β

)2

.

Therefore, by taking the infimum on both sides and applying Proposition I.7,∥∥∥Λ(ρθ0 , ρθ∗)
1/2Γω∗t

∥∥∥2

2
≤ inf
δ∈CS

E
[
(fβθ0+δ(x)− fβθ∗(x))2

]
+

(
L+ µ

β

)2

.

By averaging over the set of source tasks,

1

T

∥∥∥Λ(ρθ0 , ρθ∗)
1/2ΓΩ

∥∥∥2

F
≤ 1

T

∑
t∈[T ]

inf
δ∈CS

E
[
(fβθ0+δ(x)− fβθ∗(x))2

]
+

(
L+ µ

β

)2

.

Finally, by applying Assumption E.2 to lower bound the left-hand side, we find that

1

k

∥∥∥Λ(ρθ0 , ρθ∗)
1/2Γ

∥∥∥2

F
≤ 1

T

∑
t∈[T ]

inf
δ∈CS

E
[
(fβθ0+δ(x)− fβθ∗(x))2

]
+

(
L+ µ

β

)2

.

Concluding.

Consequently, by putting the two parts together, we have that

Eδ∗∼ρ
[

inf
δ∈CγT

E
[
(fγθ0+δ(x)− fβθ∗0+δ∗(x))2

]]
≤ 1

T

∑
t∈[T ]

inf
δ∈CS

E
[
(fβθ0+δ(x)− fβθ∗(x))2

]
+

(
L+ µ

β

)2

.

Lemma E.5 (Neural network approximate linearity). Assume that γ2 ≥ 2κ. For any θ0 ∈ Θ,

sup
δ∈CT

1

nT

∑
i∈[nT]

∥∥∇2
θf
γ
θ0+δ(xi)

∥∥2

2
. γ2(L+ µ)2 and

1

nT

∑
i∈[nT]

∥∥∇θfγθ0(xi)
∥∥2

2
. γ2kL2.

Proof. The first bound is a trivial consequence of Lemma E.1. Meanwhile, we note that the second
inequality, the quantity inside the norm is exactly βρθ0(x), and thus the bound follows by Lemma
E.2.

E.4 Computations

Lemma E.6 (Source Rademacher Bound). We have the following bound on the Rademacher com-
plexity:

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
.

kL

(nST )2
+

[
(L+ µ)

k√
nST

+ L

√
k

nS

]
log(nST ) +

µ+ L

β
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Proof. We first consider bounding the empirical Rademacher complexity for a fixed set of inputs
(xi,t), after which we obtain the desired result by taking expectations over the sampled inputs.
Expanding the definition, we have that

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]

=
1

nT
E

 sup
(B0,w0)∈Θ0

(∆t,wt)∈CS

∣∣∣∣∣∣∣∣
∑
i∈[nS]
t∈[T ]

εi,t

[
w>t φ(B>xi,t) + 〈∆t, ψB(xi,t)〉+ ζ∆t,wt

B,w0
(xi,t)

]∣∣∣∣∣∣∣∣


≤ 1

T
RnS(F⊗TΦ ◦ Φ) +

1

T
RnS(F⊗TΨ ◦Ψ) +

µ+ L

β
,

where

FΦ := {z 7→ β 〈w, z〉 | ‖w‖2 ≤ 1/β}
FΨ := {Z 7→ β 〈∆, Z〉 | ‖∆‖F ≤ 1/β}

Φ := {φB | (∃w) (B,w) ∈ Θ0}
Ψ := {ψB,w | (B,w) ∈ Θ0} .

We proceed to bound the two complexity terms by noting that for any function class F , RnS
(F) .

GnS
(F), and making use of the Gaussian complexity chain rule from Proposition I.6. First, note that

for a fixed set of latent vectors z1, . . . , znS
,

GZ(FΦ) =
1

nS
E

[
sup
‖w‖2≤1

|〈z, Zw〉|

]
≤ 1

nS

√
trZZ> =

1

nS

√√√√∑
i∈[nS]

‖zi‖22 .

Then, applying the representation norm bound Lemma E.2 to the latents,

E
[
max
Z∈Z
GZ(FΦ)

]
≤ L

√
k

nS
.

Similarly, for a fixed set of latent matrices Z1, . . . , ZnS

GZ(FΨ) ≤ 1

nS

√√√√∑
i∈nS

‖Zi‖2F =⇒ E
[
max
Z∈Z
GZ(FΨ)

]
≤ L

√
k

nS
,

where we once again used the representation bound from Lemma E.2.

Finally, we bound the complexity of the classes Φ and Ψ. Firstly, we have

1

T
GnS

(Φ) =
1

nST
E

 sup
(B0,w0)∈Θ0

∣∣∣∣∣∣
∑
r∈[2k]

∑
i∈[nS]

∑
t∈[T ]

zr,i,tσ(B>r xi,t)

∣∣∣∣∣∣


≤ 2k

nST
E

 sup
‖b‖2≤1

∣∣∣∣∣∣
∑
i∈[nS]

∑
t∈[T ]

zi,tσ(b>xi,t)

∣∣∣∣∣∣


.
kL

nST
E

∥∥∥∥∥∥
∑

i∈[nST ]

zixi

∥∥∥∥∥∥
2

 ≤ kL

nST

√√√√ ∑
i∈[nST ]

‖xi‖22 ≤
kL√
nST

.

where the second inequality makes use of the Gaussian contraction result in Ledoux & Talagrand
(1991, Corollary 3.17). Note that we reindex at the third line, which is made possible by the fact
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that the source tasks have the same input distributions. Secondly,

1

T
GnS

(Ψ) =
1

nST
E

 sup
(B0,w0)∈Θ0

∣∣∣∣∣∣
∑
r∈[2k]

∑
i∈[nS]

∑
t∈[T ]

σ′(B>r xi,t) 〈xi,t, zr,i,t〉

∣∣∣∣∣∣


=
1

nST
E

 sup
(B0,w0)∈Θ0

∣∣∣∣∣∣
∑
r∈[2k]

∑
i∈[nS]

∑
t∈[T ]

[σ′(B>r xi,t)− σ′(0)] 〈xi,t, zr,i,t〉

∣∣∣∣∣∣
+

L√
nST

=
2k

nST
E

 sup
‖b‖2≤1

∣∣∣∣∣∣
∑
i∈[nS]

∑
t∈[T ]

[
σ′(b>xi,t)− σ′(0)

]
〈xi,t, zr,i,t〉

∣∣∣∣∣∣
+

L√
nST

.
kµ

nST
E

∥∥∥∥∥∥
∑

i∈[nST ]

〈xi,t, zi,t〉xi,t

∥∥∥∥∥∥
2

+
L√
nST

≤ kµ

nST

√√√√ ∑
i∈[nST ]

‖xi‖42 +
L√
nST

≤ kµ√
nST

+
L√
nST

,

following the same reasoning as before. Therefore, by applying Proposition I.6, we obtain the bound

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
.

kL

(nST )2
+

[
(L+ µ)

k√
nST

+ L

√
k

nS

]
log(nST ) +

µ+ L

β
.

Lemma E.7 (Target Rademacher bound). We have the following Rademacher complexity bound:

sup
θ∈Θ0

RnT
[ACγT(θ)] . L

√
κ

√
k

nT
+
κ

γ
(L+ µ).

Proof. Following definitions, we have that
sup
θ∈Θ0

RnT [ACγT(θ)]

=
γ

nT
E

[
sup
δ∈CγT

∣∣〈ε, ρ(X)δ + ζδθ0(X)
〉∣∣] ≤ γ

nT
E

[
sup
δ∈CγT

|〈ε, ρ(X)δ〉|

]
+
κ

γ
(L+ µ)

=

√
κ

nT
E
[∥∥ρ(X)>ε

∥∥
2

]
+
κ

γ
(L+ µ) ≤

√
κ

nT

√
E
[
‖ρ(X)>ε‖22

]
+
κ

γ
(L+ µ)

≤ L
√
κ

√
k

nT
+
κ

γ
(L+ µ),

where the final inequality uses the bound on the representation given in Lemma E.2.

E.5 Compiling the Bound

Theorem 5.1 (Neural net performance bound). Assume that Assumptions 5.1, E.1 and E.2 hold.
Then, if nS ≥ nT, there exists a setting of the training parameters (see Section E) such that with
probability at least 1− δ, the iterates (θt) satisfy

Ef∗∼ρ
[
min
t
Lex
∞(fγθt , f

∗)
]
. κL2 k

√
nT

+ L(L+ µ)
k3/2

√
nST

+

(
µ+ L

β

)
L
√
k.

Proof. By incorporating previous bounds and invoking Theorem 4.1, we have that for large enough
γ,

Ef∗∼ρ
[
min
t
Lex
∞(fγθt , f

∗)
]

.

√
kκ(L+ µ)2

TPGD
+ κL2 k

√
nT

+ L(L+ µ)
k3/2

√
nST

+

(
µ+ L

β

)
L
√
k.

Therefore, by running enough projected gradient descent iterations so that the first term matches
kL2k/

√
nT, we obtain the desired bound.
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F Case Study: Logistic Regression

To further illustrate our framework, we analyze the performance of ADAPTREP on logistic regres-
sion, as done by Tripuraneni et al. (2020b). In this setting, we let θ = (B,w) for B ∈ Rd×k and
w ∈ Rk, and define the predictor corresponding to θ to be gθ(x) = x>Bw.

F.1 Statistical Assumptions

As in the linear setting, we consider an input distribution p with covariance Σ. We restrict the set of
labels Y to {0, 1}, and consider the conditional distribution q(y | gθ(x)) = Ber (σ(gθ(x))), where
σ(y) = 1/(1 + e−y) is the sigmoid function.

We define the optimal parameters for tasks t ∈ [T ] to be (B∗+∆∗t , w
∗
t ), whereB∗ is orthogonal and

‖∆∗t ‖F ≤ δ0. As before, we define δ∗t := ∆∗tw
∗
t for any t ∈ [T ] and W ∗ = [w1, . . . , wT ] ∈ Rk×T .

Having defined the prior quantities, we make use of the statistical assumptions presented in Section
3.1, reproduced below for convenience:

Assumption F.1 (Sub-Gaussian input). There exists ρ > 0 such that if x ∼ pt, then Σ−1/2x is
ρ2-sub-Gaussian.

Assumption F.2 (Source task diversity). For any t ∈ [T ], ‖w∗t ‖2 ≤ r, and σ2
k(W ∗) = Ω(r2T/k).

Finally, we define the target task distribution ρ by sampling w∗, δ∗ uniformly from the r– and δ0–
balls of Rk, respectively, and letting θ∗ = B∗w∗ + δ∗.

F.2 Training Procedure

We use the standard logistic loss `(ŷ, y) = −y log[σ(ŷ)] − (1 − y) log[1 − σ(ŷ)]. During source
training, we optimize over initializations Θ0 := {(B, 0) | B is orthogonal}. Let B0 ∈ Rd×k
be the obtained representation. To adapt to the target task, we initialize the learner at θ0 =
([B0, B0], [w0,−w0]) for some unit-norm vector w0, and scale the predictor by a fixed parameter β
to be chosen later. Finally, we set the feasible sets for optimization to be

CS := {(∆, w) | ‖∆‖F ≤ δ0, ‖w‖2 ≤ r} and CβT :=

{
(∆, w)

∣∣∣∣ ‖∆‖F ≤ δ0
β
, ‖w‖2 ≤

rκ1/2

β

}
,

where κ := λmax(Σ)/λmin(Σ). Note the similarity of this procedure to that of the linear setting.

F.3 Performance Guarantee

Having described the statistical assumptions and the training procedure, we now specialize the guar-
antee of Theorem 4.1 to this setting.

Theorem F.1 (Performance Guarantee for Logistic Regression). Assume that Assumption F.1 and
Assumption F.2 both hold. Set the parameters for target time training to be

β = (κr2 + δ2
0) max

(
1,

√
tr Σ

1/δ
√
nT

)
and TPGD =

(κr2 + δ2
0) tr Σ

1/δ2nT
.

Then, for nS, nT & ρ4d, we have that with probability at least 1 − δ over the random draw of
samples, the iterates (θt) satisfy

Eg∗∼ρ
[
min
t
Lex
∞(gθt , g

∗)
]

.
1

δ

{
rκ1/2 ‖Σ‖1/22

√
k

nT
+

δ0√
nT

√
tr Σ

+ exp
[
ρ3(r + δ0) ‖Σ‖1/22

] [r ‖Σ‖1/22√
nST

√
kT + kd log nS +

δ0√
nS

√
tr Σ

]}
.
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F.4 Proofs

In this section, we prove the performance bound provided for logistic regression. First, we verify
that the setting satisfies the assumptions of our general framework. Subsequently, we compute the
quantities required to instantiate our bounds.

F.4.1 Verifying Assumptions of Section 4.2

In this section, we verify that the logistic regression setting, as described in Section F, satisfies the
assumptions required by the general framework in Section 4.2.

It is easily verified that the logistic loss is 1-Lipschitz, convex, and that |`(0, y)| ≤ 1 for y ∈ {0, 1} =
Y . Furthermore, as we have already characterized the approximate linearity of the function class in
Lemma B.6, the approximate linearity assumption in Assumption 4.4 holds with high probability.
Finally, CT is norm-bounded by (κr2 + δ2

0)/β2.

Therefore, all that remains is verifying that a (ν, ε)-diversity condition holds in this setting. In what
follows, we will do so by connecting the logistic loss to squared error loss via leveraging smoothness
and local strong convexity, as was done by Tripuraneni et al. (2020b). Consequently, we can utilize
the same argument as in the linear setting to obtain the desired diversity condition.

Lemma F.1 (Diversity condition, logistic regression). Under the assumptions above, the source
tasks satisfy a (Ω(exp[−ρ3(r + δ0) ‖Σ‖1/22 ]), 0)-diversity condition.

Proof. We remark that under the choice of q and the logistic loss, we have that

Ex,y [`(gθ(x), y)− `(gθ′(x), y)] = Ex [KL (Ber (σ(gθ(x)))‖Ber (σ(gθ′(x))))]

Using the results in Tripuraneni et al. (2020b, Lemmas 2 and 3),

1

8
Ex
[
exp(−max(|gθ(x)| , |gθ′(x)|))(gθ(x)− gθ′(x))2

]
≤ Ex,y [`(gθ(x), y)− `(gθ′(x), y)] (13)

Ex,y [`(gθ(x), y)− `(gθ′(x), y)] ≤ 1

8
Ex
[
(gθ(x)− gθ′(x))2

]
. (14)

In what follows, we will make use of (13) to lower bound the task-averaged best-case performance,
and (14) to upper bound the expected best-case target performance. Note that this results in bounds
in terms of best-case mean squared error – we can then proceed to use arguments similar to that of
the linear case to connect the two inequalities.

Upper bounding the expected best-case target performance.

Assume that the optimal predictor is given by θ∗ = B∗w∗ + δ∗. Then, defining

∆̂ =
1

β
δ∗w>0 and w̄ =

1

β
(B>0 ΣB0)†B>0 ΣB∗w∗,

we note that δ̂ := ([∆̂, 0], [0, w̄>]>) ∈ CβT, following the argument in Lemma B.8, and achieves a
squared-error excess risk of

E
[
(βgθ+δ̂(x)− gθ∗(x))2

]
=
∥∥∥Σ1/2[(B0w̄ + δ∗)− (B∗w∗ − δ∗)]

∥∥∥2

2
=
∥∥∥P⊥Σ1/2B0

Σ1/2B∗w∗
∥∥∥2

2
.

Therefore, by taking the infimum of the excess risk over feasible δ and applying the excess risk
upper bound in (14),

inf
δ∈CβT

Ex,y [`(βgθ0+δ(x), y)− `(gθ∗(x), y)] ≤ Ex,y
[
`(βgθ0+δ̂(x), y)− `(gθ∗(x), y)

]
≤ 1

8
E
[
(βgθ0+δ̂(x)− gθ∗(x))2

]
≤ 1

8

∥∥∥P⊥Σ1/2B0
Σ1/2B∗w∗

∥∥∥2

2
.
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Finally, recall that Eθ∗∼ρ
[
(w∗)(w∗)>

]
= (r2/k)I . Therefore, by taking expectations with respect

to ρ,

Eθ∗∼ρ

[
inf
δ∈CβT

Ex,y [`(βgθ0+δ(x), y)− `(gθ∗(x), y)]

]

. Eθ∗∼ρ
[
trP⊥Σ1/2B0

Σ1/2B∗(w∗)(w∗)>
(
P⊥Σ1/2B0

Σ1/2B∗
)>]

=
r2

k

∥∥∥P⊥Σ1/2B0
Σ1/2B∗

∥∥∥2

F
.

Lower bounding the task-averaged best-case performance.

We proceed to lower bound the task-averaged best-case performance. To proof proceeds similarly
to that of Tripuraneni et al. (2020b), lower bounding the excess risk by a constant multiple of the
squared-error excess risk. Then, the result follows by an application of the transfer lemma in Lemma
B.4.

Fix a task t ∈ [T ]. Define Z1 := x>(B∗w∗t + δ∗t ) and Z2 := x>(B0wt + δt). We see that Z1 is
sub-Gaussian with parameter ρ2

∥∥Σ1/2(B∗w∗t + δ∗t )
∥∥2

2
≤ ρ2(r2 + δ2

0) ‖Σ‖2 =: σ2. Note that Z2 is
also sub-Gaussian with proxy σ2. Then, by applying the lower bound in (15),

Ex,y
[
`(gθ̂t(x), y)− `(gθ∗t (x), y)

]
≥ 1

8
Ex
[
e−max(|Z1|,|Z2|)(gθ̂t(x)− gθ∗t (x))2

]
. (15)

We will now show that the right-hand side is lower bounded by a constant multiple of the squared
error excess risk. Intuitively, since Z1 and Z2 concentrate around 0, e−max(|Z1|,|Z2|) concentrates
around 1.

Formally, consider the event Eα := {max(|Z1| , |Z2|) ≤ ασ} for any α. Since the quantity inside
the expectation of (15) is non-negative,

1

8
Ex
[
e−max(|Z1|,|Z2|)(gθ̂t(x)− gθ∗t (x))2

]
≥ 1

8
E
[
1 [Eα] e−ασ(gθ̂t(x)− gθ∗t (x))2

]
≥ e−ασ

8

{
E
[
(gθ̂t(x)− gθ∗t (x))2

]
− E

[
1
[
ECα
]

(gθ̂t(x)− gθ∗t (x))2
]}

.

Now, we upper bound the last term. By Cauchy-Schwarz,

E
[
1
[
ECα
]

(gθ̂t(x)− gθ∗t (x))2
]
≤
√
P (ECα )

√
E
[
(gθ̂t(x)− gθ∗t (x))4

]
,

where we have used the fact that Var [X] ≤ σ2 for a σ2-sub-Gaussian random variable. We use
properties of sub-Gaussian random variables to bound both factors. First, by Chebyshev’s inequality,

P
(
ECα
)
≤ 2P (|Z1| ≥ ασ) ≤ 2Var [Z1]

α2σ2
≤ 2

α2
.

For the second factor, gθ̂t(x) − gθ∗t (x) is sub-Gaussian with proxy ρ2E
[
(gθ̂t(x)− gθ∗t (x))2

]
, and

so via an equivalent definition of sub-Gaussian random variables,√
E
[
(gθ̂t(x)− gθ∗t (x))4

]
. ρ2E

[
(gθ̂t(x)− gθ∗t (x))2

]
.

Putting these bounds together, we have that

E
[
1
[
ECα
]

(gθ̂t(x)− gθ∗t (x))2
]
.
ρ2

α
E
[
(gθ̂t(x)− gθ∗t (x))2

]
.
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Therefore, by setting α � ρ2, we can ensure that

Ex,y
[
`(gθ̂t(x), y)− `(gθ∗t (x), y)

]
& e−ρ

3(r+δ0)‖Σ‖1/22 E
[
(x>θ̂t − x>θ∗t )2

]
=⇒ 1

T

∑
t∈[T ]

Ex,y
[
`(gθ̂t(x), y)− `(gθ∗t (x), y)

]

&
e−ρ

3(r+δ0)‖Σ‖1/22

T

∑
t∈[T ]

∥∥∥Σ1/2(B0wt + δt −B∗w∗t + δ∗t )
∥∥∥2

2
.

By applying Lemma B.4, we finally obtain the final lower bound

eρ
3(r+δ0)‖Σ‖1/22

T

∑
t∈[T ]

inf
δt∈CS

Ex,y
[
`(gθ0+δt(x), y)− `(gθ∗t (x), y)

]
≥ r2

k

∥∥∥P⊥Σ1/2B0
Σ1/2B∗

∥∥∥2

F
.

Putting everything together, we thus have the desired diversity condition

inf
‖δ‖≤δ0

Ex,y [`(βgθ0+δ(x), y)− `(gθ∗(x), y)]

.
eρ

3(r+δ0)‖Σ‖1/22

T

∑
t∈[T ]

inf
‖δ̂t‖≤δ0

Ex,y
[
`(gθ0+δ̂t

(x), y)− `(gθ∗t (x), y)
]
.

F.4.2 Computations

Having demonstrated that the assumptions in Section 4.2 hold, we proceed to calculate the relevant
quantities required for establishing a performance bound in this setting. First, we compute the
Rademacher complexity for source task training.

Lemma F.2 (Source Rademacher Bound). Assume that nS & ρ4d. Then, we can bound the source
Rademacher complexity as

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
.
r ‖Σ‖1/22√

nST

√
kT + kd log nS +

δ0√
nS

√
tr Σ.

Proof. Observe that if (∆t, wt) ∈ CS, then δt := ∆twt satifies ‖δt‖2 ≤ δ0. Therefore, we have that

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]

= E

 sup
B

(∆t,wt)∈CS

1

nST

∑
t∈[T ]

〈εt, Xt(B + ∆t)wt〉



= E

 sup
B

‖wt‖2≤r

1

nST

∑
t∈[T ]

〈εt, XtBwt〉


︸ ︷︷ ︸

=:(I)

+E

 sup
‖δt‖2≤δ0

1

nST

∑
t∈[T ]

〈εt, Xδt〉


︸ ︷︷ ︸

=:(II)

We proceed to bound these two quantities separately.

Bounding (I) via discretization.

In this section, we bound the complexity by discretizing the setOk×d of (k×d) orthogonal matrices.
We remark that the argument is similar in form to that of Lemma B.3.
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Let S be an ε-covering ofOk×d in the Frobenius norm with at most (6
√
k/ε)dk elements guaranteed

by Proposition I.1. Then,

(I) ≤ E

 sup
B∈S
‖wt‖2≤r

1

nST

∑
t∈[T ]

〈εt, XtBwt〉


︸ ︷︷ ︸

=:(A)

+E

 sup
B,B̄∈S
‖B−B̄‖

F
≤ε

‖wt‖2≤r

1

nST

∑
t∈[T ]

〈
εt, Xt(B − B̄)wt

〉


︸ ︷︷ ︸
=:(B)

To bound (A), we bound the corresponding Gaussian complexity and use the fact thatR(·) . G(·).
Consequently, via multiple applications of Cauchy-Schwarz,

(A) ≤
√
π

2
E

 sup
B∈S
‖wt‖2≤r

1

nST

∑
t∈[T ]

〈PXtBzt, XtBwt〉



.

√√√√√E

sup
B∈S

1

nST

∑
t∈[T ]

‖PXtBzt‖
2
2


√√√√√√E

 sup
B∈S
‖wt‖2≤r

1

nST

∑
t∈[T ]

‖XtBwt‖22

.
Conditioned on Xt,

∑
t∈[T ] ‖PXtBzt‖

2
2 is distributed as a chi-squared random variable with kT

degrees of freedom, with mean kT . Therefore, using known bounds on expectations of finite maxima
of subexponential random variables,

E

sup
B∈S

∑
t∈[T ]

‖PXtBzt‖
2
2 − kT

 .
√
kT log |S|+ log |S|

=⇒ E

sup
B∈S

∑
t∈[T ]

‖PXtBzt‖
2
2

 . kT + log |S| .

(16)

Furthermore, by applying the expectation bound on the empirical spectral norm in Proposition I.5,√√√√√√E

 sup
B∈S
‖wt‖2≤r

1

nST

∑
t∈[T ]

‖XtBwt‖22

 = r

√√√√√E

sup
B∈S

1

T

∑
t∈[T ]

λmax

(
B>X>t XtB

nS

) (17)

≤ r

√
E
[
λmax

(
X>t Xt

nS

)]
. r ‖Σ‖1/22 . (18)

Therefore, by combining the inequalities from (16) and (18),

(A) .
‖Σ‖1/22√
nST

√
kT + log |S|.

We proceed to bound (B), the error arising from discretization. We have that

(B) ≤ E

 sup
B,B̄∈S
‖B−B̄‖

F
≤ε

‖wt‖2≤r

1

nST

∑
t∈[T ]

〈
εt, Xt(B − B̄)wt

〉
 . rε

∥∥∥Σ1/2
∥∥∥

2
.

46



Finally, by setting ε =
√
k/nS, we have an overall bound of

(I) ≤
r ‖Σ‖1/22√

nST

√
kT + kd log nS.

Bounding (II).

By bounding by the Gaussian complexity,

(II) ≤ 1

nST
E

 sup
‖δt‖2≤δ0

∑
t∈[T ]

〈zt, Xtδt〉

 .
δ0√
nS

E
[∥∥∥∥ 1√

n
X>1 z

∥∥∥∥
2

]
≤ δ0√

nS

√
tr Σ.

Putting the bounds on (I) and (II) together, we thus have that

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
.
r ‖Σ‖1/22√

nST

√
kT + kd log nS +

δ0√
nS

√
tr Σ.

Now, we compute the Rademacher complexity term associated with target task training.

Lemma F.3 (Target Rademacher Bound). For β & rκ1/2, the Rademacher complexity of the feasible
set during target time training is bounded by

sup
θ∈Θ0

RnT [ACT(θ0)] . rκ1/2 ‖Σ‖1/22

√
k

nT
+

δ0√
nT

√
tr Σ.

Proof. We can write the Rademacher complexity for a fixed θ0 ∈ Θ0 as

RnT
[ACT(θ0)] = βE

[
sup

(∆,w)∈CβT

1

nT
〈ε,X[B0, B0]w +X∆w0 +X∆w〉

]
.

Firstly, by converting to Gaussian complexity and following standard arguments, we can bound the
first term as

βE

[
sup

‖w‖2≤rκ1/2/β

1

nT
〈z,X[B0, B0]w〉

]
≤ βE

[
sup

‖w‖2≤κ/β

1

nT

〈
[B0, B0]>X>z, w

〉]

≤ rκ1/2

√
nT

E
[∥∥∥∥B>0 X>

√
nT

z

∥∥∥∥
2

]
≤ rκ1/2 ‖Σ‖1/22

√
k

nT
.

For the second term, note that we only need to consider the set of rank-1 matrices of the form
∆ = v[w0,−w0]>, where ‖v‖2 ≤ δ0/β

√
2. As such,

βE

[
sup

‖v‖2≤δ0/β
√

2

1

nT
〈z,Xv〉

]
≤ δ0√

nT

√√√√E

[∥∥∥∥ X
√
nT

z

∥∥∥∥2

2

]
.

δ0√
nT

√
tr Σ.

Finally, to bound the Hessian term, note that ‖∆w‖2 ≤ rκ1/2δ0/β
2. Therefore, by a similar argu-

ment to the previous term,

βE

[
sup

(∆,w)∈CT

1

nT
〈ε,X∆w〉

]
≤ κδ0
β
√
nT

√
tr Σ.

Thus, as long as β ≥ rκ1/2, we can take suprema and obtain the overall bound of

sup
θ∈Θ0

RnT
[ACT(θ)] . rκ1/2 ‖Σ‖1/22

√
k

nT
+

δ0√
nT

√
tr Σ.
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F.4.3 Compiling the Bound

Having performed all required computations, we now prove the provided performance guarantee.
Theorem F.1 (Performance Guarantee for Logistic Regression). Assume that Assumption F.1 and
Assumption F.2 both hold. Set the parameters for target time training to be

β = (κr2 + δ2
0) max

(
1,

√
tr Σ

1/δ
√
nT

)
and TPGD =

(κr2 + δ2
0) tr Σ

1/δ2nT
.

Then, for nS, nT & ρ4d, we have that with probability at least 1 − δ over the random draw of
samples, the iterates (θt) satisfy

Eg∗∼ρ
[
min
t
Lex
∞(gθt , g

∗)
]

.
1

δ

{
rκ1/2 ‖Σ‖1/22

√
k

nT
+

δ0√
nT

√
tr Σ

+ exp
[
ρ3(r + δ0) ‖Σ‖1/22

] [r ‖Σ‖1/22√
nST

√
kT + kd log nS +

δ0√
nS

√
tr Σ

]}
.

Proof. With probability at least 1 − δ/2, the approximate linearity property of the function class
holds via Lemma B.2 and Lemma B.6. Therefore, by combining all prior calculations and in-
stantiating Theorem 4.1 with failure probability δ/2, projected gradient descent finds a predictor g
satisfying the desired bound in the theorem statement.
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G The Nonlinear Hard Case

G.1 Construction

In what follows, we establish the existence of a nonlinear setting where there exists a sample com-
plexity separation between ADAPTREP and FROZENREP, similar to Section 3.4. As before, fix
k, d ∈ N with 2k < d. The construction relies on the observation that linear predictors lying in a
rank-k space are representable as linear functions of 2k appropriately chosen ReLU neurons.

Following the discussion in Section E, note that when we take β → ∞, the resulting function class
can be expressed as

f(B+∆,w) = w>σ(B>x) +
〈
xσ′(x>B),∆

〉
,

where B,∆ ∈ Rd×2k, and w ∈ R2k. We further constrain B so that the first k columns are equal to
the negation of the last k columns. Finally, we choose σ(x) = max(x, 0), which we will also write
as x+ for convenience8. For convenience, we follow the convention in Section E of writing φB , ψB
and ρB for the activation, gradient, and concatenated features corresponding to B, respectively, as
defined in Definition E.1.

We briefly review the construction in Section 3.4. Let the input distribution p be a Gaussian distri-
bution on Rd with covariance

Σ =

[
εId−k 0

0 Ik

]
for a fixed ε ∈ (0, 1). Furthermore, we define E∗, Ek ⊂ Rd to be the two eigenspaces of Σ
determined by the two blocks, i.e.

E∗ = Col

[
εId−k

0

]
and Ek = Col

[
0
Ik

]
.

Then, for any orthogonal matrix A ∈ Rd×k with ColA ⊆ E∗, define a distribution over θ given by

θ =
1√
2ε
Av + δ, (19)

where v and δ are sampled uniformly at random from the unit spheres in Rk and Ek, respectively.

Now, we lift this linear task distribution setting into the ReLU setting. In particular, we sample the
source tasks by fixing orthogonal A ∈ Rd×k, sampling v and δ as before, and letting the optimal
predictor be f(B+∆,w), where

B := [A,−A], w :=
1√
2ε

[v,−v], ∆ :=
1

k
1δ>. (20)

One can easily verify algebraically that

f(B+∆,w)(x) = x>
(

1√
2ε
Av + δ

)
,

as desired. As before, we consider the family of task distributions induced by anyA∗ with ColA∗ ⊆
E∗.

With the above task distribution, we can then prove the following hardness result on FROZENREP:
Theorem G.1 (FROZENREP Minimax Bound, ReLU). For an orthogonal matrix A∗ ∈ Rd×k such
that ColA∗ ⊂ E∗, let B∗ = [A∗,−A∗], and define SA∗ to be the set

SA∗ =

{
1√
2ε
A∗v + δ

∣∣∣∣ ‖v‖2 ≤ 1, ‖δ‖2 ≤ 1, δ ∈ Ek
}
.

Furthermore, let B̂ be the output of FROZENREP with access to infinite per-task samples and tasks,
with the task distribution deterined by B∗. Then, with high probability over the draw of nT � d
samples during target training, we have that

min
B̄,ŵ,∆̂

max
A∗

θ∗∈SA∗

E
[

1

nT

∥∥∥Xθ∗ − f(B̄+∆̂,ŵ)(X)
∥∥∥2

2

]
&
σ2d

nT
,

8Note that σ′(x) = 1 [x > 0].
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where B̄, ŵ, and ∆̂ are all measurable functions of (X, y) to Rd×2k, R2k, and Rd×2k, respec-
tively, and Col B̄ = Col B̂. Furthermore, the expectation is over the randomness in the labels
y ∼ N

(
Xθ∗, σ2InT

)
.

In contrast, we have the following upper bound on the performance of ADAPTREP:
Lemma G.1 (Adaptation target performance, ReLU). Let B0 = [A0,−A0], and fix a θ∗ ∈ SA∗ .
Consider a learner which solves

min
B

min
(wt,∆t)
‖∆t‖F≤1

1

nS

∑
t∈[T ]

‖ρB(X)[w,∆]− y‖22 .

during source training, and

min
w,∆
‖∆‖F≤1

1

nT
‖ρB0(X)[w,∆]− y‖22

during target training, where B0 is the representation obtained from source training. Finally, we
set k = Θ(1) and ε = k/d. Then, with access to infinite per-task samples and tasks during source
training, the learner achieves target loss bounded as

1

nT
‖ρB0

(X)[w,∆]−Xθ∗‖22 .
σ2

nT

(
1 + log

1

δ

)
+

σ
√
nT

√
1 + log

1

δ

with probability at least 1− δ over the draw of target samples.

Proofs of the above results are provided in the following section. As before, we compare the two
methods when nT = Θ(d). Then, from the results above, the lower bound on the loss of FROZEN-
REP is Ω(1), while the upper bound on the loss of ADAPTREP isO(1/

√
nT). Therefore, we also see

a strict separation between the two methods within this setting as well, which grows with nT →∞.

G.2 Proofs

Throughout this section, we write θ∗t = A∗v∗t + δ∗t for the linear predictor parameter for source
task t ∈ [T ]. Furthermore, we assume that this linear predictor corresponds to ReLU predic-
tor f(B∗+∆∗,w∗). First, we prove the following intermediate technical result which will be used
throughout this section.
Lemma G.2 (Optimal ReLU Predictor is Linear). Let θ ∈ Rd, and assume that B = [A,−A].
Then, if we set

w = argmin
w∈R2k

E
[
(w>(B>x)+ − x>θ∗t )2

]
,

then the predictor x 7→ w>(B>x) is in fact a linear function of x, and takes the form of x>Av for
some v ∈ Rk.

Proof. Write w = [w+, w−], and thus the objective defining w can be written as

min
w+,w−∈Rk

E
[
(w>+(A>x)+ + w>−(−A>x)+ − x>θ∗t )2

]
.

Now, define the matrices

Ω := E
[
(A>x)+(x>A)+

]
= E

[
(−A>x)+(−x>A)+

]
Γ := E

[
(−A>x)+(x>A)+

]
= E

[
(A>x)+(−x>A)+

]
,

where the equalities follow from the fact that Ax and −Ax are equal in distribution. Additionally„

E
[
(A>x)+x

>] =
1

2
E
[
(A>x)+x

>]− 1

2
E
[
(−A>x)+x

>] =
1

2
A>E

[
xx>

]
=

1

2
A>Σ,

and thus once again since Ax and −Ax are equal in distribution,

E
[
(−A>x)+x

>] = −E
[
(A>x)+x

>] = −1

2
A>Σ.
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Thus, by explicitly solving for the optimum of the convex objective,[
w+

w−

]
=

1

2

[
Ω Γ
Γ Ω

]−1 [
A>Σθ∗t
−A>Σθ∗t

]
=

[
(Ω− ΓΩΓ)−1 0

0 (Ω− ΓΩΓ)−1

] [
I −ΓΩ−1

−ΓΩ−1 I

] [
A>Σθ∗t
−A>Σθ∗t

]
,

where we have applied blockwise matrix inversion to obtain the second inequality. From this, we
see that w+ = w−, and thus the corresponding optimal predictor is linear, and can be shown to be
x 7→ x>Aw+.

G.2.1 Hardness Result for FROZENREP

Lemma G.3 (FROZENREP learns incorrect neurons). Fix an orthogonal matrix A∗ ∈ Rd×k with
ColA∗ ⊆ E∗, and assume that we sample tasks from the distribution in (20). Assume that B̂ =

[Â,−Â] is the representation found by FROZENREP. Then, with infinitely many tasks and per-task
samples (i.e. nS, T →∞), Â = ColEk.

Proof. Intuitively, the result follows from the fact that the optimal predictor is equivalent to a linear
predictor, and thus the result follows by Lemma C.1. More formally, by Lemma G.2,

L(B) =
1

T

∑
t∈[T ]

min
w

E
[
(w>(Bx)+ − x>θ∗t )2

]
=

1

T

∑
t∈[T ]

min
v

E
[
(x>Av − x>θ∗t )2

]
=

1

T

∑
t∈[T ]

min
v

∥∥∥Σ1/2(Av − θ∗t )
∥∥∥2

2
=

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2AΣ1/2θ∗t

∥∥∥2

2
.

At this point, we recognize that the objective is equivalent to the one analyzed in Lemma C.1, and
thus the same characterization of global optima holds. That is, the solution B̂ found by FROZENREP

can be expressed as B̂ = [Â,−Â], where Col Â = Ek.

Theorem G.1 (FROZENREP Minimax Bound, ReLU). For an orthogonal matrix A∗ ∈ Rd×k such
that ColA∗ ⊂ E∗, let SA∗ be the set

SA∗ =

{
1√
2ε
A∗v + δ

∣∣∣∣ ‖v‖2 ≤ 1, ‖δ‖2 ≤ 1, δ ∈ Ek
}
.

We consider the following procedure:

1. We draw nT samples for target time training, which are collected into a matrix X .

2. Player chooses target-time estimator x 7→ ŵ>(B̄>x) + 1
[
x>B̄ ≥ 0

]
∆̂>x, where B̄, ŵ

and ∆̂ are measurable functions of (X, y), and B̄ is an orthogonal matrix with Col B̄ =

Col B̂.

3. Adversary chooses an orthogonal matrix A∗ ∈ Rd×k satisfying ColA∗ ⊂ Ek, and a target
time predictor θ∗ ∈ SA∗ .

4. Compute the representation B̂ returned by FROZENREP under the setting of Lemma G.3
with the task distribution determined by A∗.

5. Target time samples are generated using y ∼ N
(
Xθ∗, σ2In

)
, and the player estimator is

evaluated.

Then, with probability at least 1− δ over the draw of X , we have that

min
B̄,ŵ,∆̂

max
A∗

θ∗∈SA∗

E

[
1

nT

nT∑
i=1

(
x>i θ

∗ − ŵ>(B̄>xi)− 1
[
x>i B̄ > 0

]
∆̂>x

)2
]
&
σ2d

nT
,

where the expectation is over the randomness in the labels y ∼ N
(
Xθ∗, σ2InT

)
.
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Proof. Throughout this proof, we assume the high-probability event in Lemma B.2, which guaran-
tees that with probability at least 1− δ,

0.9Σ � 1

nT
X>X � 1.1Σ.

Let S denote the intersection of the d-dimensional unit sphere withEk. For any infinite-dimensional
vector f indexed by S and a measure µ on S, we define µ>f to denote integration with respect to
µ, i.e.

µ>f =

∫
S

f dµ.

We then define the infinite-dimensional vectors η and ζ(i) for i = 1, . . . , d, both indexed by S, as

η(x) := (v>x)+ and ζ(i)(x) := 1
[
v>x > 0

]
xi.

Recall that by Lemma G.3, Col B̂ = Ek. With the preceding discussion in mind, we can equivalently
think of the player as choosing d + 1 signed measures α, β1, . . . , βd over S, all with a common
support of 2k elements in S, as a function of (X, y). The player then plays the predictor

x 7→ α>η(x) +

d∑
i=1

β>i ζ
(i)(x).

Then, if we let T =
{
θ
∣∣∣ ‖PE∗θ‖22 ≤ 1/2ε, ‖PEkθ‖

2
2 ≤ 1

}
⊆ SA∗ , then we have the inequality

min
ŵ,∆̂

max
A∗

θ∗∈SA∗

E

[
1

nT

nT∑
i=1

(
x>i θ

∗ − ŵ>(B̂>xi)+ − 1
[
x>i B̂ > 0

]
∆̂>x

)2
]

= min
α,β1,...,βd

max
A∗

θ∗∈SA∗

E

 1

nT

nT∑
i=1

x>i θ∗ − α>η(x)−
d∑
j=1

β>j ζ
(j)(x)

2


= min
α,β1,...,βd

max
θ∗∈T

E

 1

nT

nT∑
i=1

x>i θ∗ − α>η(x)−
d∑
j=1

β>j ζ
(j)(x)

2
 ,

where the second equality follows from the fact that the expression has no direct dependence on A∗.

The rest of the argument follows makes use of Fano’s minimax bound, applied similarly as in
the linear setting. First, note that for any θ ∈ T , there exists d + 1 signed measures on S
with common support size 2k, which we denote with αθ and βθ1 , . . . , β

θ
d , such that x>θ =

(αθ)>η(x) +
∑
j(β

θ
j )>ζ(j)(x). Using this construction, we can lift the local packing set from

the linear setting into this setting, where the associated seminorm (defined over vector measures) is
given by

‖(α, β1, . . . , βd)‖2 =
1

nT

nT∑
i=1

α>η(x) +

d∑
j=1

β>j ζ
(j)(x)

2

.

More formally, let B be the unit ball under the Σ-norm, which we observe satisfies (1/
√

2)B ⊆ T .
Recall that there exists a (1/2)-packing of the unit Σ-ball in the Σ-norm with at least 2d elements, via
a standard volumetric argument - let this set be P . Equivalently, there exists a (2δ/

√
0.9)-packing

of (4δ/
√

0.9)B with at least 2d elements, which we denote as P . Note that for any θ, θ′ ∈ P ,∥∥∥(αθ, βθ1 , . . . , β
θ
d)− (αθ

′
, βθ

′

1 , . . . , β
θ′

d )
∥∥∥2

=
1

nT
‖X(θ − θ′)‖22 ≥ 0.9 ‖θ − θ′‖2Σ > 4δ2,

which implies that the vector measures corresponding to the elements of P are 2δ-separated in the
associated seminorm. Furthermore, for any θ, θ′ ∈ P ,

KL
(
N
(
Xθ, σ2InT

)∥∥N (Xθ′, σ2InT

))
=

1

2σ2
‖X(θ − θ′)‖22 .

nT

2σ2
‖θ − θ′‖2Σ ≤

32nT

0.9σ2
δ2.
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Therefore, for any δ2 ≤ 1/32, which ensures that P ⊆ 4δB ⊆ (1/
√

2)B ⊆ T , Fano’s inequality
implies that

min
α,β1,...,βd

max
θ∗∈T

E
[∥∥∥(αθ

∗
, βθ

∗

1 , . . . , βθ
∗

d )− (α, β1, . . . , βd)
∥∥∥2
]
≥ δ2

(
1− 32nT

0.9σ2 log 2
δ2 − 1

d

)
≥ δ2

(
3

4
− 32nT

0.9σ2d log 2
δ2

)
.

Therefore, as long as nT ≥
(

0.9 log 2
2

)
σ2d, we can set δ2 =

(
0.9 log 2

64

)
σ2d
nT

, which implies that

min
ŵ,∆̂

max
A∗

θ∗∈SA∗

E

[
1

nT

nT∑
i=1

(
x>i θ

∗ − ŵ>(B̄>xi)− 1
[
x>i B̄ > 0

]
∆̂>x

)2
]
&
σ2d

nT
.

G.2.2 Adaptation Upper Bound

Having proven the minimax result for FROZENREP, we now proceed to prove a corresponding upper
bound on the performance of ADAPTREP. To do so, we need to prove a result analogous to Lemma
B.4 for the ReLU setting.

Before we proceed to the proof, we need to find proper generalizations for relevant objects in the
proof of Lemma B.4. In particular, we recall the prominent use of the projector PΣB0

, which,
loosely speaking, can be thought of as representing the “average” component of the signal that can
be represented by a parameter in ColB0.

Recall that the inputs (which are element of Rd) are sampled from a distribution p. This input dis-
tribution induces the L2(p)-norm9 on vector-valued functions of Rd and its associated inner product
via

‖ζ‖L2
= E

[
‖ζ(x)‖22

]
and 〈ζ, ξ〉L2

= E
[
ζ(x)>ξ(x)

]
.

Now, let ζ : Rd → Rp and ξ : Rd → Rq be two representation functions on Rd. Then, we can define
the linear projector onto ζ as the linear operator Pζ taking representations Rd → Rq onto itself via

[Pζξ](x) := E
[
ξ(x)ζ(x)>

]
E
[
ζ(x)ζ(x)>

]†
ζ(x).

We denote the corresponding orthogonal projection as P⊥ζ ξ := ξ−Pζξ. We note that these operators
satisfy the orthogonality property

E
[
[Pζξ](x)>[P⊥ζ ξ](x)

]
= 0,

which can be easily verified algebraically.

To understand the operator Pζ , consider the problem of approximating a linear function of ξ via a
linear function of ζ, as measured via the input distribution p. More formally, for v ∈ Rq , we want
to find

w∗ = argmin
w∈Rp

∥∥ξ(·)>v − ζ(·)>w
∥∥2

L2
and f∗ = ζ(·)>w∗.

As the problem is differentiable and convex in w, we can simply use standard optimality conditions
to find that

w∗ = E
[
ζ(x)ζ(x)>

]† E [ζ(x)ξ(x)>
]
v and f∗ = ζ(·)>w∗.

That is, Pζξ is performing exactly the transformation required on ζ such that [Pζξ(·)]>v is the best
approximation to ξ(·)>v via linear functions of ζ in L2-norm. To further connect this construction
to the linear setting, observe that if ζ(x) = B>0 x and ξ(x) = x, then for any θ, v ∈ Rd,〈

ξ(·)>v, [P⊥ζ ξ](·)>θ
〉
L2

= v>Σ1/2P⊥ΣB0
Σ1/2θ,

and thus Pζξ is indeed the desired generalization of the projection operators used in the proof of
Lemma B.4. Having introduced the required mathematical tools, we now prove the corresponding
transfer lemma for this setting.

9we write L2 throughout as a shorthand for L2(p).
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Lemma G.4 (Transfer Lemma, ReLU). Assume that B0 = [A0,−A0]. Then, we have that

1

T

∥∥∥P⊥Σ1/2A0
Σ1/2A∗W ∗

∥∥∥2

F
.

1

T

T∑
i=1

min
w,∆

E
[(
x>θ∗t − ρB0

(x)[w,∆]
)2]

.

Proof. This proof follows the outline of Lemma B.4, with all inner products computed with respect
to 〈·, ·〉L2

. Throughout the proof, we will write P and P⊥ as shorthand for the operators PφB0
and

P⊥φB0
, respectively. First, we decompose the task-averaged population risk as for any choices of

(wt), (∆t) as

1

T

T∑
i=1

∥∥(·)>θ∗t − ρB0
(·)[wt,∆t]

∥∥2

L2

&
1

T

∑
t∈[T ]

∥∥φB∗(·)>w∗t − [PρB0
](·)[wt,∆t]

∥∥2

L2

+
1

T

∑
t∈[T ]

∥∥ψB∗(·)>∆∗t − [P⊥ρB0
](·)[wt,∆t]

∥∥2

L2

− 1

T

∑
t∈[T ]

∣∣∣〈φB∗(·)>w∗t − [PρB0 ](·)[wt,∆t], ψB∗(·)>∆∗t − [P⊥ρB0 ](·)[wt,∆t]
〉
L2

∣∣∣
&

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2A0
Σ1/2A∗v∗t

∥∥∥2

2
+

1

T

∑
t∈[T ]

∥∥ψB∗(·)>∆∗t − [P⊥ρB0
](·)[wt,∆t]

∥∥2

L2

− 1

T

∑
t∈[T ]

∣∣∣〈φB∗(·)>w∗t − [PρB0 ](·)[wt,∆t], ψB∗(·)>∆∗t − [P⊥ρB0 ](·)[wt,∆t]
〉
L2

∣∣∣ .
The second inequality follows from noting that φB∗(x)>w∗t is a linear function of x, and thus by
Lemma G.2, the best linear predictor on φ is a linear function of x. Since the L2-norm on linear
functions of x is equivalent to the Σ-norm on the parameters, we obtain the inequality above10.

Now, we proceed to prove a bound on the inner product above. For any fixed t ∈ [T ],∣∣∣〈φB∗(·)>w∗t − [PρB0
](·)[w,∆], ψB∗(·)>∆∗t − [P⊥ρB0

](·)[w,∆]
〉
L2

∣∣∣
≤
∣∣∣〈φB∗(·)>w∗t − [PρB∗ ](·)[w∗t ,∆∗t ], ψB∗(·)>∆∗t − [P⊥ρB∗ ](·)[w∗t ,∆∗t ]

〉
L2

∣∣∣
+
∣∣∣〈φB∗(·)>w∗t − [PρB∗ ](·)[w∗t ,∆∗t ], [P⊥ρB∗ ](·)[w∗t ,∆∗t ]− [P⊥ρB0

](·)[wt,∆t]
〉
L2

∣∣∣
+
∣∣∣〈[PρB∗ ](·)[w∗t ,∆∗t ]− [PρB0

](·)[wt,∆t], ψB∗(·)>∆∗t − [P⊥ρB0
](·)[wt,∆t]

〉
L2

∣∣∣
≤
∣∣∣〈φB∗(·)>w∗t − [PρB∗ ](·)[w∗t ,∆∗t ], ψB∗(·)>∆∗t − [P⊥ρB∗ ](·)[w∗t ,∆∗t ]

〉
L2

∣∣∣
+
∣∣∣〈[P⊥φB∗ ](·)>w∗t , [P⊥ρB∗ ](·)[w∗t ,∆∗t ]− [P⊥ρB0

](·)[wt,∆t]
〉
L2

∣∣∣
+
∣∣∣〈[PρB∗ ](·)[w∗t ,∆∗t ]− [PρB0

](·)[wt,∆t], ψB∗(·)>∆∗t − [P⊥ρB0
](·)[wt,∆t]

〉
L2

∣∣∣ ,
where adding and subtracting [PρB∗ ](·)[w∗t ,∆∗t ] and [P⊥ρB∗ ](·)[w∗t ,∆∗t ] in the first and second
arguments of the inner product, respectively, results in the first inequality. The second inequality
then uses the orthogonality properties of P and P⊥ in the second term. Furthermore, observe that∣∣∣〈φB∗(x)>w∗t − [PρB∗ ](x)[w∗t ,∆

∗
t ], ψB∗(x)>∆∗t − [P⊥ρB∗ ](x)[w∗t ,∆

∗
t ]
〉
L2

∣∣∣
=
∣∣∣〈[P⊥φB∗ ](x)>w∗t − [PψB∗ ](x)>∆∗t , [P

⊥ψB∗ ](x)>∆∗t − [PφB∗ ](x)[w∗t ,∆
∗
t ]
〉
L2

∣∣∣
=
∣∣∣〈φB∗(x)>w∗t , ψB∗(x)>∆∗t

〉
L2

∣∣∣ = |w∗tA∗Σδ∗t |

= 0,

10This is exactly the argument used in Lemma B.4.
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where we have used the algebraically-verifiable fact that [PρB∗ ](·)[w,∆] = [PφB∗ ](x)> +
[PψB∗ ](x)[∆], and that [P⊥ρB∗ ][w,∆] decomposes in a similar fashion. Finally, since φ∗B(x)>w∗t
is linear, we can apply Lemma G.2, and thus∥∥[P⊥φB∗ ](x)>w∗t

∥∥
L2

=
∥∥∥P⊥Σ1/2A0

Σ1/2A∗v∗t

∥∥∥
2
.

From here, we note that we have an analogous quadratic inequality to that of Lemma B.4 in the
terms

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2A0
Σ1/2A∗v∗t

∥∥∥2

2
and

1

T

∑
t∈[T ]

∥∥ψB∗(·)>∆∗t − [P⊥ρB0 ](·)[wt,∆t]
∥∥2

L2

upon applying Cauchy-Schwarz as before. Furthermore, note that via orthogonality, we have the
Pythagorean identity

‖Pρ‖2L2
+
∥∥P⊥ρ∥∥2

L2
≤ ‖ρ‖2L2

,

and thus by following the exact same algebraic argument as in Lemma B.4 of using Proposition I.2,

1

T

∥∥∥P⊥Σ1/2A0
Σ1/2A∗V ∗

∥∥∥2

F
=

1

T

∑
t∈[T ]

∥∥∥P⊥Σ1/2A0
Σ1/2A∗v∗t

∥∥∥2

2

≤ 1

T

∑
t∈[T ]

E
[
(x>θ∗t − ρB0(x)[wt,∆t])

2
]
.

Since the result holds for any (wt) and (∆t), it holds for the minimizers.

Lemma G.1 (Adaptation target performance, ReLU). Let B0 = [A0,−A0], and fix a θ∗ ∈ SA∗ .
Consider a learner which solves

min
B

min
(wt,∆t)
‖∆t‖F≤1

1

nS

∑
t∈[T ]

‖ρB(X)[w,∆]− y‖22 .

during source training, and

min
w,∆
‖∆‖F≤1

1

nT
‖ρB0

(X)[w,∆]− y‖22

during target training, where B0 is the representation obtained from source training. Then, with
probability at least 1− δ,

1

nT
‖ρB0(X)[w,∆]−Xθ∗‖22 .

∥∥∥P⊥Σ1/2A0
Σ1/2A∗

∥∥∥2

2
+
σ2k

nT

(
1 + log

1

δ

)
+

σ
√
nT

√
k tr Σ

(
1 + log

1

δ

)
.

In particular, with k = Θ(1) and ε = k/d, and assuming access to infinite per-task samples and
tasks during source training, the learner achieves target loss bounded as

1

nT
‖ρB0(X)[w,∆]−Xθ∗‖22 .

σ2

nT

(
1 + log

1

δ

)
+

σ
√
nT

√
1 + log

1

δ

with probability at least 1− δ over the draw of target samples.

Proof. Throughout the proof, we instantiate the high-probability event in Lemma B.2, which guar-
antees that with probability at least 1− δ/9,

0.9Σ � 1

nT
X>X � 1.1Σ.
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By forming the least-squares basic inequality, we have that
1

nT
‖ρB0(X)[w,∆]−X(A∗v∗ + δ∗)‖22

.
1

nT

∥∥P⊥XA0
XA∗v∗

∥∥2

2︸ ︷︷ ︸
=:ζ

+
1

nT
|〈z, ρB0

(X)[w,∆]− PXA0
XA∗v∗ −Xδ∗〉| .

Then, since PXA0XA
∗v∗ is in the span of φB0(X), we can bound the right-hand side of the basic

inequality by

ζ +
1

nT

∣∣∣〈z, PφB0
(X) (ρB0(X)[w,∆]− PXA0XA

∗v∗ −Xδ∗)︸ ︷︷ ︸
=:Tlow-rank

〉∣∣∣
+

1

nT

∣∣∣〈z, P⊥φB0
(X) (ψB0(X)[∆]−Xδ∗)

〉∣∣∣ .
Furthermore, we can lower bound the left-hand side by

1

nT
‖ρB0

(X)[w,∆]−X(A∗v∗ + δ∗)‖22 ≥
1

nT
‖Tlow-rank‖22 +

2

nT

〈
P⊥XA0

XA∗v∗, Tlow-rank
〉
.

Note that φB0
(X) is a matrix with rank ≤ 2k, and therefore, PφB0

(X)z is a chi-squared random
variable, with at most 2k degrees of freedom. Subsequently, by applying known bounds on chi-
squared random variables, we have that with probability at least 1− (4/9)δ,

1

nT
‖Tlow-rank‖22 ≤ ζ +

(√
ζ +

2σk
√
nT

√
1 + log

1

δ

)
1
√
nT
‖Tlow-rank‖2

+
1

nT

∣∣∣〈z, P⊥φB0
(X) (ψB0(X)[∆]−Xδ∗)

〉∣∣∣ ,
which thus implies via Proposition I.2 that

1

nT
‖ρB0

(X)[w,∆]−X(A∗v∗ + δ∗)‖22

. ζ +
σ2k

nT

(
1 + log

1

δ

)
+

1

nT

∣∣∣〈z, P⊥φB0
(X) (ψB0

(X)[∆]−Xδ∗)
〉∣∣∣ .

To bound the final term, note that
1

nT

∣∣∣〈z, P⊥φB0
(X) (ψB0(X)[∆]−Xδ∗)

〉∣∣∣
≤ 1
√
nT

[∥∥∥∥ 1
√
nT

ψB0
(X)>P⊥φB0

(X)z

∥∥∥∥
2

+

∥∥∥∥ 1
√
nT

X>P⊥φB0
(X)z

∥∥∥∥
2

]
,

by applying the norm bounds on ∆ and δ∗, and thus by applying the Hanson-Wright inequality, with
probability at least 1− (4/9)δ,

1

nT

∣∣∣〈z, P⊥φB0
(X) (ψB0(X)[∆]−Xδ∗)

〉∣∣∣
≤ σ
√
nT

[√
1

nT
trψB0(X)>ψB0(X) +

√
1

nT
trX>X

]√
1 + log

1

δ

.
σ
√
nT

√
k tr Σ

(
1 + log

1

δ

)
.

Therefore, since ‖v∗‖2 ≤ 1, we have an overall bound of

1

nT
‖ρB0(X)[w,∆]−Xθ∗‖22 .

∥∥∥P⊥Σ1/2A0
Σ1/2A∗

∥∥∥2

2
+
σ2k

nT

(
1 + log

1

δ

)
+

σ
√
nT

√
k tr Σ

(
1 + log

1

δ

)
.
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To prove the second part of the statement, note that with infinite source tasks and samples, global
optimality with respect to the source loss together with Lemma G.4 implies that

1

T

∥∥∥P⊥Σ1/2A0
Σ1/2A∗V ∗

∥∥∥2

F
= 0 =⇒

∥∥∥P⊥Σ1/2A0
Σ1/2A∗

∥∥∥
2

= 0,

since (k/T )
[
V ∗>V ∗

]
= Ik. Furthermore, with the choice of d and ε, tr Σ = Θ(1). Therefore, we

obtain the second claim.
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H A Performance Bound for Projected Gradient Descent

In this section, we provide a performance bound for projected gradient descent on the objective

L(θ) :=
1

n

∑
i∈[n]

`(gθ(xi), yi)

for θ ∈ Θ, where Θ ⊆ Rq . We assume that Θ is norm-bounded by D, and that Θ is convex and
contains 0. Furthermore, we assume that gθ is twice-differentiable as a function of θ.

Key to the performance bound that we will demonstrate is that gθ is “approximately linear” in
the parameter θ, which we formally define below. Under this assumption, we demonstrate L is
approximately convex over Θ if L is Lipschitz as a function of the vector of predictions and ` is
convex in the first argument. Therefore, with slight modifications to the online analysis of projected
gradient descent, we obtain the desired performance bound.

Following the discussion above, we make the following assumptions:
Assumption H.1 (Approximate linearity). There exists β and L such that

sup
θ∈Θ

1

n

∑
i∈[n]

∥∥∇2
θgθ(xi)

∥∥2

2
≤ β2 and

1

n

∑
i∈[n]

‖∇θg0(x)‖22 ≤ L
2.

Assumption H.2 (Assumptions on `). We assume that ` is convex in the first argument. Further-
more, if L is viewed as a function of the vector of predictions gθ(X), then we have that

‖∇gL(gθ(X))‖22 ≤
α2

n

for any θ ∈ Θ, i.e. L is (α/
√
n)-Lipschitz as a function of the vector of predictions.

Note that we abuse notation in Assumption H.2, using L to reference both the function of the param-
eter, and of the vector of predictions. Given these two assumptions, we now proceed to demonstrate
that the loss landscape of L has several desirable properties.
Lemma H.1 (Approximate convexity in Θ). Let θ1, θ2 ∈ Θ. Then,

〈∇θL(θ1), θ2 − θ1〉 ≤ L(θ2)− L(θ1) + 4αβD2.

Proof. Note that L is a convex function of the vector of predictions gθ(X), as it is a sum of convex
functions by Assumption H.2. Therefore,

L(θ2)− L(θ1) ≥ 〈∇gL(gθ1(X)), gθ2(X)− gθ1(X)〉 .
Furthermore, by the chain rule,

〈∇θL(θ1), θ2 − θ1〉 = 〈∇gL(gθ1(X)), [∇θgθ1(X)](θ2 − θ1)〉 .
Putting the two statements together and applying Cauchy-Schwarz,

L(θ2)− L(θ1)− 〈∇θL(θ1), θ2 − θ1〉
≥ 〈∇gL(gθ1(X)), gθ2(X)− gθ1(X)− [∇θgθ1(X)](θ2 − θ1)〉
≥ −‖∇gL(gθ1(X))‖2 ‖gθ2(X)− gθ1(X)− [∇θgθ1(X)](θ2 − θ1)‖2
≥ − α√

n
‖gθ2(X)− gθ1(X)− [∇θgθ1(X)](θ2 − θ1)‖2

Now, by Taylor’s theorem, there exists θ̄ = λθ1 + (1− λ)θ2 such that

gθ2(X)− gθ1(X)−∇θgθ1(X)(θ2 − θ1) = [(θ2 − θ1)>∇2
θgθ̄(xi)(θ2 − θ1)]i∈[n].

Consequently, by rearranging,

〈∇θL(θ1), θ2 − θ1〉 ≤ L(θ2)− L(θ1) +
α√
n

√√√√∑
i∈[n]

[(θ2 − θ1)>∇2
θgθ̄(xi)(θ2 − θ1)]2

≤ L(θ2)− L(θ1) + 4αβD2.
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Lemma H.2 (Gradient bound in Θ). For any θ ∈ Θ, we have that

‖∇θL(θ)‖22 . α2(L2 + β2D2)

Proof. Using the Lipschitz assumption in Assumption H.2,

‖∇θL(θ)‖22 =
∥∥[∇θgθ(X)]>∇gL(gθ(X))

∥∥2

2
≤ ‖∇θgθ(X)‖2F ‖∇gL(gθ(X))‖22

≤ α2

n

∑
i∈[n]

‖∇θgθ(xi)‖22

Now, by integrating, we have that for any fixed i ∈ [n],

∇θgθ(xi) = ∇θg0(xi) +

[∫ 1

0

∇2
θgαθ(xi) dα

]
θ.

Therefore,

‖∇θL(θ)‖22 .
α2

n

∑
i∈[n]

‖∇θg0(xi)‖22 +
α2

n

∥∥∥∥∫ 1

0

∇2
θgαθ(xi) dα

∥∥∥∥2

2

‖θ‖22

≤ α2

n

∑
i∈[n]

‖∇θgθ0(xi)‖22 +
α2D2

n

∫ 1

0

1

n

∑
i∈[n]

∥∥∇2
θgαθ(xi)

∥∥2

2
dα

≤ α2(L2 + β2D2).

Having proven the results above, we now proceed to the main claim of this section.
Theorem H.1 (Bound on PGD performance). Assume we run projected gradient descent on L with
constraint set Θ for TPGD iterations with step size η given by

η =
1√
TPGD

(
D

α
√
L2 + β2D2

)
.

Let (θt)t∈[TPGD] denote the sequence of PGD iterates obtained, where θ0 = 0. Then, for any θ ∈ Θ,

min
t
L(θt)− L(θ) . αβD2 + αD

√
L2 + β2D2

TPGD
.

Proof. For any t ∈ [TPGD],

r2
t+1 = ‖θt+1 − θ‖22
≤ ‖θt − η∇θL(θt)− θ‖22
= r2

t + 2η 〈∇θL(θt), θ − θt〉+ η2 ‖∇θL(θt)‖22
≤ r2

t + 2η
[
L(θ0 + δ)− L(θ0 + δt) + 4αβD2

]
+ η2α2

[
L2 + β2D2

]
,

where the first inequality follows from the nonexpansive property of projections onto convex sets.
Furthermore, the last inequality makes use of the approximate convexity property from Lemma H.1
and the gradient bound over Θ from Lemma H.2. Therefore, via telescoping,

r2
TPGD

≤ r2
0 + 2η

[
TPGD−1∑
t=0

L(θ)− L(θt)

]
+ 8ηTPGDαβD

2 + η2TPGDα
2[L2 + β2D2],

or by rearranging,

r2
0 − r2

TPGD

2ηTPGD
+ 4αβD2 +

ηα2

2

[
L2 + β2D2

]
≥ 1

TPGD

TPGD−1∑
t=0

L(θ0 + δt)− L(θ0 + δ)

≥ min
t=0,...,TPGD−1

L(θ0 + δt)− L(θ0 + δ).

59



Now, using the choice of step size, observe that

r2
0 − r2

TPGD

2ηTPGD
+
η

2

[
α2L2 + β2D2

]
≤ D2

2ηTPGD
+
ηα2

2
[L2 + β2D2]

= αD

√
L2 + β2D2

TPGD
,

from which the desired claim easily follows.
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I Technical Lemmas

Proposition I.1 (Du et al. (2020), Lemma A.5). LetOd1×d2 be the set of matrices in Rd1×d2 with or-
thonormal columns, d1 ≥ d2. Then, there exists an ε-covering ofOd1×d2 with at most (6

√
d2/ε)

d1d2

elements.

Proposition I.2 (Solving quadratic inequalities). Assume that ax2 ≤ bx + c for a, b, c > 0. Then,
bx+ c . (b2/a) + c.

Proof. Since a > 0, the solution set to the inequality is given by the interval [r1, r2], where r1 and
r2 are the roots of ax2 − bx− c. By the quadratic formula, the larger root r2 is given by

r2 =
b+
√
b2 + 4ac

2a
≤ b

a
+

√
c

a
.

Therefore,

x ≤ r2 ≤
b

a
+

√
c

a
=⇒ bx+ c ≤ b2

a
+

(
b√
a

)√
c+ c .

b2

a
+ c,

where the last inequality makes use of the Cauchy-Schwarz inequality.

Corollary I.1. Let X and Y be random variables.

E
[
X2
]
. E

[
(X + Y )2

]
+ E

[
Y 2
]

Proof. We have that

E
[
(X + Y )2

]
= E

[
X2
]

+ 2E [XY ] + E
[
Y 2
]
≥ E

[
X2
]
− 2E [|XY |] .

Therefore, by applying Cauchy-Schwarz,

E
[
X2
]
≤ E

[
(X + Y )2

]
+ 2E [|XY |] ≤ E

[
(X + Y )2

]
+ 2
√
E [X2]E [Y 2].

Finally, by applying Proposition I.2,

E
[
X2
]
. E

[
(X + Y )2

]
+ E

[
Y 2
]
.

Proposition I.3. Let A,B be matrices with compatible dimensions, and assume that rankA = r >
0. Then,

‖PAB‖F ≤
1

σr(A)

∥∥A>B∥∥
F
.

Proof. Let (U,Σ, V >) be the compact singular value decomposition of A, i.e. we only retain posi-
tive singular values in Σ. By rotational invariance,∥∥A>B∥∥2

F
=
∥∥V ΣU>B

∥∥2

F
=
∥∥ΣU>B

∥∥2

F
.

Furthermore, by definition,∥∥ΣU>B
∥∥2

F
=
∑
i

∥∥ΣU>Bei
∥∥2

2
≥ σ2

r(Σ)
∑
i

∥∥U>Bei∥∥2

2
= σ2

r(A)
∥∥U>B∥∥2

F
.

Finally, by applying rotational invariance once more,∥∥A>B∥∥2

F
≥ σ2

r(A)
∥∥UU>B∥∥2

F
= σ2

r(A) ‖PAB‖2F ,

from which the desired claim follows.

Proposition I.4. Let λ, γ > 0, and fix a vector y. Then,

min
A,x
Ax=y

λ

2
‖A‖2F +

γ

2
‖x‖22 =

√
λγ ‖y‖2 .

61



Proof. We proceed by cases. If y = 0, then the result is trivial.

Otherwise, if y 6= 0, note that x∗ 6= 0. Now, for any fixed x 6= 0, the minimizing choice for A is
zx> for some z. To see this, observe that if A is not rank-1, then we can achieve a lower Frobenius
norm by reducing its rank. Consequently, for a given x, the minimizing choice for A is yx>/ ‖x‖22
necessarily. Therefore,

min
A,x
Ax=y

λ

2
‖A‖2F +

γ

2
‖x‖22 = min

x

λ

2

(
‖y‖22
‖x‖22

)
+
γ

2
‖x‖22 = min

z>0

λ

2

(
‖y‖22
z

)
+
γz

2
.

This final optimization problem is convex in z – using first-order optimality conditions, we can thus
easily see that z∗ =

√
λ/γ ‖y‖2, and therefore

min
A,x
Ax=y

λ

2
‖A‖2F +

γ

2
‖x‖22 =

√
λγ ‖y‖2 .

Proposition I.5 (Expectation bound on empirical spectral norm). Let X ∈ Rn×d be a matrix with
rows drawn i.i.d. from a zero-mean distribution with covariance Σ. Furthermore, assume that the
whitened distribution is ρ2-sub-Gaussian. Then, whenever n & ρ4d,

E
[
λmax

(
X>X

n

)]
. ‖Σ‖2 .

Proof. By Weyl’s inequality,

E
[
λmax

(
X>X

n

)]
≤ ‖Σ‖2 + E

[∣∣∣∣λmax

(
X>X

n

)
− Σ

∣∣∣∣] ≤ ‖Σ‖2 + E
[∥∥∥∥X>Xn − Σ

∥∥∥∥
2

]
.

Thus, by applying the result in Vershynin (2017, Theorem 4.4.1), we have that as long as nS & ρ4d,

E
[
λmax

(
X>X

n

)]
. ‖Σ‖2 .

Proposition I.6 (Gaussian complexity chain rule, Tripuraneni et al. (2020b), Theorem 7). Assume
that F is a class of functions Rk → R such that every f ∈ F is L-Lipschitz in the L2-norm.
Furthermore, assume that Φ is a class of functions Rd → Rk such that for any φ ∈ Φ, φ(x) is
norm-bounded by D for any x in the support of the input distribution. Then, we have the bound

1

T
Gn(F⊗T ◦ Φ) ≤ 8D

(nT )2
+ 128

(
L

T
Gn(Φ) + E

[
sup
Z∈Z
GZ(F)

])
log(nT ),

where Z is the random set {(φ(xi1), . . . , φ(xin)) | i1, . . . , in ∈ [nT ]} and GZ(F) is the empirical
Gaussian complexity on samples Z. Note that the inner expectation is over the nT input samples,
and that we have assumed that all input samples come from a single distribution.
Proposition I.7 (Tripuraneni et al. (2020b), Lemma 6). Let h, h∗ : Rd → Rk be representation
functions, and define

Λ(h, h∗) := E
[
h∗(x)h∗(x)>

]
− E

[
h∗(x)h(x)>

] (
E
[
h(x)h(x)>

])† E [h(x)h∗(x)>
]
.

Then, infv E
[
(h(x)>v − h∗(x)>v∗)2

]
= (v∗)>Λ(h, h∗)v∗. Furthermore, if

σmin(E
[
h(x)h(x)>

]
) ≥ c1 > 0 and σmax(E

[
h∗(x)h∗(x)>

]
) ≤ c2,

then this infimum is achieved within the ball of radius ‖v∗‖2
√
c2/c1.

Proof. The calculation of the infimum is provided in Tripuraneni et al. (2020b), and is thus omitted.
However, we prove the sharper radius bound below.

Define Fh,h′ := E
[
h(x)h′(x)>

]
, so that Λ(h, h∗) = Fh∗,h∗ − Fh∗,hF

†
h,hFh,h∗ . Then, since

Λ(h, h∗) � 0, and recalling that the infimum is achieved at v = F †h,hFh,h∗v
∗,∥∥∥F †h,hFh,h∗v∗∥∥∥2

2
≤ 1

c1

∥∥∥F 1/2
h,h F

†
h,hFh,h∗v

∗
∥∥∥2

2
≤ 1

c1

∥∥∥F 1/2
h∗,h∗v

∥∥∥2

2
≤ c1
c2
‖v∗‖22 ,

as desired.
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