A Appendix

B A Detailed Version of Our Algorithm

Algorithm 2 Thanos

1: Input: n> Oa’7 € (07 1)a k7T7 AT,Q,X, {at}le'

) — 1.

2: Initialize: For any v € V, any ¢ € V,,, set w;) =
3: fort=1,2,...,T do

4: ift mod Ar = 0 then
5: Reinitialize the policy: (Rexp3) for any v € V, for any i € N, set wz(vt) =1.
6: endif
7. forveV,icN,do
8: Set the policy p; with Exp3.M algorithm (See Algorithm 5).
9: end for
10: Read a batch of labeled nodes Vy, at the top layer L.
11: forl=L,L—1,...,1do
12: For any v € V), sample k neighbors with DepRound algorithm: S; = DepRound(k, p;).
13: Vi1 =V 1+ S
14: end for
15: Forward GNN model and estimate ug’)t with the estimator ﬁfji =Lus S zglz
16: forv € V; do
17: For any I; € &, calculate the reward 7, 4.
18: Update the policy with Exp3 algorithm: for any 7 € A,
Tig = le Lics,, wz(?ﬂ = wl(? exp(n7it).
19: end for R
20: Optimize the parameters with SGD: Wt(fr)l = Wt(l) — othWa)E, 0<I<L-1.
21: end for '

Same as BanditSampler, we also use the embeddings of 1-st layer to calculate rewards and update the
policy, i.e. the policy of 1-st layer also serves other layers.

C Related Algorithms

Algorithm 3 Exp3
1: Input: n > 0,7 € (0,1], %, 7.
2: Forany i € [D,], setw; 1 = 1.
3: fort=1,2,...,T do
4: Compute the policy p;: Vi € [D,],pis = (1 — v)ﬁ + 7.
’ GEDy] Wirt v
5: Draw an arm [; according to the distribution p; and receive a reward ry, ;.
6: Fori € [D,], compute 7’; ; = %liest,wz'}t+1 = w; s exp(NTi¢).
7: end for ’
Algorithm 4 DepRound

1: Input: Sample size k(k < D,,), sample distribution (p1, pa, . ..,pp,) with le:“l = k.
2: while there is an 7 with 0 < p; < 1 do
3: Choose distinct ¢ and j with 0 < p; < 1and 0 < p; < 1.
4: Set f =min{l — p;,p,;} and { = min{p;,1 — p;}.
5: Update p; and p; as:

(i) (pi + B,p; — B), with probability 5%=;

Dbi,Pj) = . 1.

J (pi — ¢,pj +¢), with probability ﬁiﬂ

6: end while
7: return: {i:p; =1,1<i < D,}.

13

Algorithm 5 Exp3.M

1: Input: n > 0,7 € (0,1],k,T.

2: Forany i € [D,], setw; 1 = 1.

3: fort=1,2,...,7T do

4 if argmax;c(p wj > (% - Dlv) then

5: Decides a; so as to satisfy

ay
qu‘,,tzat ag + Zwi,t<5.f, wivt

L v
Z(%—va)/(l—w

6: Set Uy = {i : w;; > a;} and wg’t =ay fori € Uy
7: else

8: Set Ut = @

9: endif

10: Compute the policy p;: fori € [D,)]

/

Wi ¢ Y
pi,tzk((1—7)++7>-
Zj:l w;’,t D,

11: Sample a subset S; with k elements: S; = DepRound(k, (p1,¢,p2,t,---,PDy.t))-
12: Receive the rewards ry, ¢, I; € S;.
13: Fori € [D,], set

N Tit/Dit, € St w; cexp(rie), ¢ Uy
Tit = . Wi t+1 = .
0, otherwise, Wi ¢, otherwise.

14: end for
D The Derivation of Reward (3)

For the biased estimator:

We have its bias-variance decomposition as
~(1 l l ~(1 ~(1 . l ~(1
B[l — sl =lhs — BIAIE + Vi, () £ Bias(fiy)) + Vi, (y)-
Then, by letting £ = 1, we have:

> pall -5 A

iEN, JEN,
~(1
Vm(#i)) DQEH Z pj tz H]
O]

2, (T o Zt
WP+ 20T iz — 2200 E)
JEN, JEN,
l nT l
vpl,tvm:Di(u—pzt)nz”n% TN pas))
JEN,

In an effort to find an improved balance for bias-variance trade-off, we optimize the bias and variance
simultaneously, defining the reward as the negative gradient w.r.t. both terms:

l l
D2 —3 Vo Blas(uy))) - fvm Vi (ui) "
()T-w_‘ w2
zt t

2
Bias(uv t = D?

Tit =

v, zi,t

where zfjl)t = D%UNE,{)t = ﬁv D jeN, zyz Note that our reward assigns the same weight to the

gradients of bias and variance terms. Actually, we can in principle scale the two gradients differently

14

to explore a different balance between bias and variance. For example, deriving the reward with
k > 11is equivalent to weighting variance lower than bias. We leave it as a future work.

E The Proof of Variation Budget

Lemma [I| (Dynamic of Embedding) Based on our assumptions on GCN, for any i € V at the layer [,
we have:
&

where C, = GI=1AC,CyC, and C, = 3C?2. Then, consider the training dynamic of GCN optimized
by SGD. For any node i € V at the layer l, we have

O] o

Zite1 T Rt

()
it

<G,

k2l fi,t Tit S C’r‘) (12)

< G AC,CL0,.

A7y = max|
Proof. We have to clarify that a typo was found in (6) after submitting the full paper. (I2) is the
correct version of (6) and the other proofs actually depend on (12)) and still hold true after switching

() to (12). We will correct this typo in the final version. Let v = argmax;.,, (||h) for any
1<t<T

||h(H (Z ayih Elt 1)Wz 1)_ ()H <0, HZ ayih (z 1)W(z 1)” (13)

1EN,
<C, HZ amh“ DNwEV) < CoCo S awl IRV (14)
PEN, i€EN,
<CyCyAD max|h('; V| (15)
<(CoCpAD)'™ max||hy}| (16)
<(C,CyAD)"1C,Cy max|| Z ajiz;|| (17)
1EN
<(C,CyAD)"1C,CyCy (18)
<G 'C,0yC, (19)

(T3) uses the assumption that the activation function o (-) is C,-Lipschitz continuous function. (T4)
uses the assumption of bounded parameters and the triangle inequality. (T6)) recursively expands (13)
from layer-/ to 1-st layer. Therefore, we can obtain, forany v € V,any 1 <t < T

RS < GITLC,CoC,, and |21 < GITLAC,CC, = (20)

Then, define A}, = max;cy || hl') 1 hglz ||, forany v € V,

I+1 (141 l 1) l
Hhi-t:-)l U-t’_)H = ‘ (Z Qi zt+1Wt(+)l) _U(Z amh(Wt())H (21)
i€ENY
(W =V o) = > auhiw?| (22)
ieEN,
< Cy| Z a1 — KWL + Con > awi ”HVWU)EH (23)
i€EN, i€EN,
l l l
< Coll Y avihs = RO + aiColl D auib o Vo £
i€EN, i€ENY
24)
l l >
< CoCoA Y ey = Al + aeCo Y lavilln IV, Ll 25)
iEN, iEN,

< C,CAD max||h,Z Do —n)+ aillVyyo L] - C; AD I?eaﬁ(nhﬁfiﬂll (26)
< GAY + 0|V, 0 L] - Co ADC,Cy(C,CyAD) 1O, (27)
= GAl + G CoC, ||V oo L] (28)

15

i.e.

Aoy SGAL + G CoCal|V 0 L] (29)
1 <GAL L + GO0, ||VW<Z,1>Z|| (30)

(22) uses the update rule of SGD and the C,,-Lipschitz continuous assumption of o (). (27) is based
on (20). Then, we recursively unfold the above inequality from layer- to 1-st layer

Al <GA |+ atGl—lcgcw||vaa71>E||
gG(GA{{l,Q + atGl—2ogc$||vW<172>E||) + GO, CL |V L
<G2AL Ly + G Co G (1Y £l + 1V a2 £))

-1
<SGTIAR + G0 Yy IV L]
j=1
-1
— 0 0 — >
<GTC| Y anaill W - Wi+ G oG Y IV £l
P1€ENY, j=1
<G O G|V o L] + 0 G o O Zuvwfj)cn
, 1w,
-1 N
=G CC Y IV L] € r G CLCCy
j=0
Therefore,
Al = max||h2 Vo - R < aGre, e, 31)

Since a,,; is fixed in GCN, we can further get

O]

zi,t-i—l -z t,l < atGl_IACUCng- (32)

A7, = max}
' iey
Meanwhile, for any ¢ € V, we have

sl =|ReLU (220 Z =) —||z§f2||2)\
1
’ Z k §lt

JES:

I
PRtk
JES.

k”

H\

The first inequality uses the fact that ReLU(-) is 1-Lipschitz continuous and ReLU(0) = 0. Similarly,
for r; in (3)), we have:

nT 1
el <2/ > Df%i
JEN, T

g 307

< o)

)
\

[\

2
l
<2|z{) 20| <scz.

\Z!

O
Lemma [2| (Variation Budget) Given the learning rate schedule of SGD as oy = 1/t and our
assumptions on the GCN training, for any T' > 2, any v € V, the variation of the expected reward in

16

(@) and @) can be bounded as:

T
> [Elri] - Blridd
t=1

where C,, = 12G*\=YDC2C2 A%2CyC,,.

<V =C,yInT, Z’Emﬂ] Eff; | < Ve =ConT

t=1

Proof. Based on Lemma. |I|, we then discuss the variation budget of our reward 7;; =

ReLU(nglz zv \ — Hz)l) where z(l)t =% 2jes, zglz Forany v € V, any i € N,,,

Furt = Fa| =[ReLU@=]1 201 — 2400 17) — ReLU=) =20, - 12013 633)

<[220 — 120 — @220 — 120)12) (34)
2|20l 20 — 20T 2|+ 1200 - ||zi,t||2\ (35)
<2 Elt)+121()l)t+1 zsz 1(1lt+1‘ +2|z) 1(;l)t+1 _zz('fz—rzvl,)t (36)
+ ‘(§l2+1 Elz) zt+1 (ZE?H _Zglt)) (37
<2|=), - = Um(ff)m =0 (38)
+ \ zE?H El2+1] 21| 0, - z§f2 | (39)
IR Z H JMHHC Z Z H 20y - 24 (40)
i Cz+Cz A7, 41
SGCZA;Z (42)
=6G2"VC2 A2C2C,Ch - oy (43)

(34) uses the fact that ReLU is 1-Lipschitz continuous function. (39) uses the Cauchy-Schwarz
inequality. (@T) uses the triangle inequality. Then, given the expected reward E[7;¢] =
251 Sy p(Si, ..., Si—1)Ti, we can obtain that forany v € V,any i € N, andany 1 <¢ < T,

:‘ Z p(Sl, e 78t)fi,t+1 — Z p(Sh e >St71)fi,t

S1,82,...,5t S1,82,..,8t—1

(44)

= Z p(sl, e ,Stfl) Zp(8t|81, - ,Stfl) ('Fi,t+1 — 'Fi,t) (45)

S1,..,8t-1 St
= Z p(S1, ... ,St—l)ZP(SASh ey S Fip1 — Tig (46)
S1,0,8e-1 Sy
< Y (S S8im1) Y p(SiSy, - Sim1)6CL A (47)
S,y St—1 St
=6C,A;, = 6G*VC2A2C2C,Ch - oy (48)
(11_3]) uses the fact that 7; , is only a function of previous actions (S1,Ss, . ..,S;—1) and does not

depends on {S;|7 > t}. Therefore, we have the variation budget of expected rewards as

T
Zsup ’E[Fi,t_H] —E[F; 4 ’ ZGGQ(Z 1)C2A202C' 0Co - 0y
t=1

—6G2-V 2 A2C2 0,0 Z %
t=1

=6G2"VC2A2C2C,Co(InT + €)
where € is the Euler-Mascheroni constant. Hence, for 7' > 2, we have,

17

—E[fi4]| <CpInT (49)

T
> sup ’E[ﬁ,wﬂ
t=1

where C,, = 12G?(=1DC2A2C20,Cy.

Then, for the reward function in 3} we also have

Fogen = Fia| =|@2201 2000 — 120, 1%) — @207 20 - 1201
<2|=) 20 - =0 2+ \uz%lH? 1= 12|
<2720, - T2 42 zglszsaH TR0
+ ‘(Elt)+1 ZEQ)T Elt+1 (Z£l2+1 Elg)
<2 Elt)+1 ZEQ ut+1H zf zg;l)t+1_21(;l,)t‘
+‘ Zit+1 ZEE £l2+1H+‘ flﬁ ‘ZE?H—ZEQ
<20 4 Z\]t+1H+2C’ Z\ 2 - 20| + a5, cv 0 A
<6C.A7, =6 GQU 1) 03/12050909-%

For its expected reward E[r; ;] =
anyi € M, andany 1 <¢ <T,

Y550, P(S1, .o Si—1)7i 4, We can obtain that for any v € V,

Efrsen] —Elfradl| =| Y

S1,82,...,S¢

S,

Z p(Sl,...

7St—1) Zp(8t|817 ceey
St

;St)ﬁ',tﬂ - Z

81,582,811

P(S1,. . Sem1)rig

Si—1) (Ti,t+1 - ?"z,t)

31,..‘,$t71

= Z p(Sla-~-7St71)zp(8t‘817--~a8t71) Tit+1 — Tit
S St 1 St

< Z Slv"'7‘St—1)zp(8t‘817'"aSt—l)'6OzAtz7[
S1,00,8t-1 S;

=6C. A7, = 6G*!"VC2A*C2CyCh - oy

Further, for 7' > 2, we have the variation budget of expected rewards as

T T
S sup (E[rml} - E[ri,t]‘ <3 6GA D2 ACA0,Cy - ay (50)
t=1 t=1
~ T 9
=6G*(NC2APCIC,Cy Y - (51)
t=1
=6G*=VC2A2C2C,Co(InT +¢) < C,InT (52)
O

F The Worst-Case Regret with a Dynamic Oracle

Theorem 3 (Regret Bound) Consider @) as the reward function and Algortthm l as the
neighbor sampling algorithm for training GCN. Let Ap = (C,InT)~: (D InD)3Ts n =

\/%, and vy = min{1, \/(eXP(CT)g;)C?}IH(D”/k) }. Given the variation budget in (8],
forevery T > D,, > 2, we have the regret bound of Q) as

R(T) < C(D,InD,)5 - (TVInT)5.
where C'is a absolute constant independent with D,, and T.

18

Proof. Theorem 3]is a non-trivial adaptation of Theorem 2 from [4] in the context of GCN training
and multiple-play setting. We consider the following regret:

T T
R(I) =D > Effid =) D Elir,l
t=14ieN} t=1 €S,
where N} = argmaxy; —n, Y ien;, Elfie], [Nk| = k. As the current reward 7;; () deter-
mined by previous sampling and optimization steps, the expectation E[7;,] is taken over the
randomness of rewards caused by the previous history of arm pulling (action trajectory), i.e.

Elfie] =32 (s1.8,....8, 1) P(S1,82, ..., S¢—1) - iy On the other hand, the expectation E™[7,] is
taken over the joint distribution of action trajectory (S1, Sa, ..., St) of policy m. Namely, we have
EW[’FImt] = Z p(817"'aST) .’Fltvt
S1,82,...,S1
= > pS8) > (St SIS, 82, St T
81,82,...,8¢ St41s-,ST
= Z p(S1,. - St) T Z p(St+15- -, SrlS1, 82, .., St)
S1,52,...,S5¢ Stt1,0-,ST
= Z p(Sl,...,St)-f[t,t.
S1,82,...,5¢

We adopt the similar idea to prove the worst-case regret: decompose R(T) into the gap between two
oracles and the weak regret with the static oracle.

R(T) :ZT:(Z E[7;] — Z]Eﬁ[flt,t])

t=1 ieN? I,ES,
T T T

=\ 22 D Blrudl - gmay 32 3 Elfud | + (ﬁ?é‘?&vZ DIERIEIDS Eu)
t=1ieN} t=1ieN} t=1ieN} t=1 I, €S,

where NV} = argmax, -, D ;e n, ElFit), [NVk| = k, is the dynamic oracle at each step.

First, we break the horizon [T] in a sequence of batches 71,75, ..., 7; of size Ar each (except
possible 7;) according to Algorithm[I] For batch m, we decompose its regret as:

Z (Z E[fi] — Z E[flt,t]) = Z Z E[75.¢] - Jnax. Z Z E[7;] (53)

t€Tm €N IeSe tETm iEN t€Tm jENK
J1,m
e 45 S B - Y Y E b
tE€Tm jEN teTm It€S:
J2.m

J1,m is the gap between dynamic oracle and static oracle; Ja ,,, is the weak regret with the static
oracle. We analyze them separately. Denote the variation of rewards along 7,,, by V,,,, i.e. V,,, =
> ier, MaXie(p,] |E[Fit41] — E[;][, we note that:

Z Vi = Z Z ig%x] ’E[f’i,tﬂ} —E[fi4]| = Vr (55)
m=1 v

m=1tcT,,

Let N, be the static oracle in batch 7y,,, i.e. Nk, = argmaxy;, - nr, D i1, 2jen; ElF5,¢]- Then,
we have: for any ¢ € T,

STEF] - Y Elfig < 2kVin. (56)
iEN} 10 €Nk,
(36) holds by following arguments: otherwise, there exist a time step tg € T, for which
ZiEN,:]E[’IZ»L‘?tO] — ZiUENkO E[f@o,to] Z 2I€Vm If SO, let Nkl = argmaxNkCNv Z’hENk]E[f’il,to]- In

19

such case, for all ¢ € 7,,, one has:
Z E[Fh,t] > Z (E[lf;ilyto] - Vm) > Z (]E[Fio,to] + Vm) > Z E[fimt] (57)
i1€/\fk1 ileNkl ioENko ioENkO

since V},, is the maximum variation of expected rewards along batch 7,,. However, (57) contradicts
the optimality of N, in batch 7,,. Thus, (36) holds. Therefore, we obtain

J1,m < 2kV, Ap (58)
As for Jy,,, according to Lemma EI, the weak regret with the static oracle incurred
by Exp3.M along batch 7, with size Ap, tuned by n = \/ % and

v = min{1, \/(exp(c"');,i)c?}lnw”/k) }, is bounded by +/2kC,.(exp(C,) — 1)\/D,Ar In(D,/k).
Therefore, for each m € {1,2,..., s}, we have

Jom = max { > E[m,t}} = > " E"[y,.4) < V2kCr(exp(C;) — 1)y/DyArIn D,

N CNy
R L teTom ieNG, te€T, ILES,

(59
(39) holds because the arm is pulled according to Exp3.M policy within batch 7,,.

Then, summing over s = [T / AT—‘ , we have

R(T) < Z (szmAT + V/2kC, (exp(Cy) — 1)/DyArIn Dv)

T
<2kVpAr + (A + 1) V/2kC,(exp(C,) — 1)/DyArIn D,
T

DyInD
<2kVirAg + \/2kC, (eCr — 1),/ %T +/2kC,(eC — 1)\/ArD, In D,
T

Let Ap = (D, InD,)3 (T/Vr)3. We have
R(T) <2k(VrDyIn D,)3T3 + (/2kC(eCr — 1) (VD In D)3 T3 (60)

+1/2kC,(eCr — 1)(Dy In D)3 (T/ Vi) (61)

In (6I), we consider the variation budget under the GCN training (Lemma 2): Vr = CyIn T.
Assuming C,, = 12C2C2A%2CyC, - G*=Y = 120202 A%2CyC, - (C,CoA)2(-D . D2U=1) > D,

given2 < D, < DandT > D, > 2, itis easy to conclude
(Co(InT)D,In D,)35T5 > ((62)
Therefore,
1 3 3
R(T) <(2y/26C, (e = 1) + 2k) € (D D,) (TVINT) (63)
where we define C' = (2\/2kCT(eCT —1)+ Qk) o8

Then, we consider (3] as the reward function and bound its regret. Note that we already bounded its
variation budget in (52)), same as the variation budget of {@). Hence, by substituting it into (61)), we
can get the same regret bound of (3) as (63)

R(T) < (2, [2kC, (eCr — 1) + Qk) c3 (Dv In Dv) $ (T\/ﬁ) ! (64)
where we define C' = (%/W + 2k:> cF. O

20

G Weak Regret with a Static Oracle

2k In(D, /k)

Lemma 4 (Weak Regret). Given the reward function v; ; < C,, setn = \/ e (C) o) BT and

~ = min{1, \/(CXP 1)?}IH(D“/M }. Then, we have the regret bound for Exp3.M as:

R(T) = max Z ST EF =YY B[y, < V/2kCr(exp(C,) — 1)y/DyTIn(D, /k)

NieClDul 1= 1 5ENG t=1 I,E€S;
(65)

where N, is a subset of [D,] with k elements.

Proof. The techniques are similar with Theorem 2 in Uchiya et al. [31]] except the scale of our reward

is 7;,; < C,.. Besides, we explain how to take expectation over joint distribution of (S, S, ..., Sr)
in (78) more clearly. Let M, M denote ZZ | Wit ZiD:”l wj , respectively. Then, for any ¢ € [T,
M4 Wi, t+1 Wi 41
TS +y = (66)
) [Dl,] Uf €Uy
= > L el + Z i (67)
i€[Dy]—Us i€y
< O PP Lit 68
= Z : +nri + 50, 777"zt Z (68)
i€[D,|—-Uy, €Uy
M| wig [eCr—1,
=+ X S KT V0 (69)
[Dv]_Ut
My pit/k — /D e“r —1
—14 2t % e i)’ 70
+ N, > T Nt + 2C. (n7it) (70)
i€[Dy]—Us
<14 1 3 Pt }: 1)
V2N) 7"7, 7N 7 7’2
= k(l—’y) DitTit 2C, kj(l—) DitTi¢
€[D,]-U; =U
<143 f1t+5;——— E:r” (72)
T k(l—9) " 2
L €S —U ’LE[D

Inequality (68) uses exp(z) < 1+ x + Mﬁ for x < C,. Inequality (71) holds because

Mt < 1 and inequality (72) uses the facts that p; ,7; , = 7;, for i € Sy and p; 47, = 0fori ¢ S,.

Smce In(1 4 z) < x, we have

M4 n _ eCr —
| < _ 73
ST, _k(l—v)le;U”"t+ 2 6%3:7‘” 73)

By summing over ¢, we obtain

M T
lnﬁfgkl— Z Z Frop+ —— 17 z:szj (74)

t=11;€S;—
On the other hand, we have

MT Z iEN wjaT Z iENG 111 wj»T Dv
In —= >Ip =20k > = —In— 75
A k y? (75
”Z Zr]t—ln— (76)
JEN t:5¢ U,

(73] uses the Cauchy-Schwarz inequality:

Z wj T > k(H wj’T)l/k.

FEN JENK

21

uses the update rule of EXP3.M: wj 7 = exp(n 3. ;¢17, Tit)-
Thus, from (74)) and (76), we conclude:

T
> Zm—*lnf_iz > o — Z (77)

JEN t:5¢U, 7= 1,eS—U, i€[D,]
Since ZjeNk Zt-jeUf Fie < ﬁ ZtT—1 >_icu, Ti trivially holds, we have
T
-1
ZZ% <sz+ 1“7*). ZTMHZZM (78)
t= IJGNk t=1I;€S; t= 17,€D] t= 1]€Nk
Then, we take expectation on both side of (78] over the joint distribution 7 of action trajectory
(81,82, ...,S7) with 7 4, 71, + as the random variable. Then,
E*[Fid = Y p(S1,82,....87) T (79)
S1,S2,...,Sr
=) PStS) D PSS Sas - Sic1) Y P(Seras e, SISt S) T
S1,..,8t-1 St Siq1,0-,ST
(80)
= Z p(St,-- ., Si-1) ZP(St\Sl,Sm oy Sem1) T Z p(St+15---, S8, St)
S1,0.,8t-1 St Siq1,00,ST
(1)
= > DS, 8im1) > p(SiS1, e, Sict) T (82)
S1,...,8t-1 St
= Z p(sla-"78t71) 'Est[;ﬂ\i,“Sl)"-aStfl] (83)
51 St—l
(BT) uses the fact that 7; ; does not depends on future actions (Sy41, . . ., Sr). Then, given DepRound
(Algorithm selects arm-¢ with probability p; ,, we have Eg, [¢|S1,S2, ..., Si—1] = pis - Tit -+
(1 —ps¢) - 0=7;4. Thus, we have
E™[ri] = Z p(S1, 82, Sem1) - Tiye = Elfi¢]. (84)

S1,-,8t—1

Thus, while taking expectation on both side of (78]) over the joint distribution of action trajectory, we
have

SN Elfd - ZZE Froql < 1n%+ WZ > lEmeZZlEm

t=1 jEN t=1 I,€S; t=1ie[D,] t=1 jEN}

(85)
k. D, CT(eCT -1)

<-1In
n &k 2

Letn = \/ Tl DT (eQkal(nC(yf;“flk))DuT and v = min{1, \/ (exp(cr);;é?l"plnw“/ k) }, we have the weak regret

with the static oracle as:
T
R(T) = g S S ERI-Y Y B (87
R T SN =1 I,es,

<V/2kC,(exp(Cy) — 1)/ D, T In(D, /k) (88)
O]

nD,T + ~C,kT. (86)

H Implicit Assumptions for (2)

In this section, we will explain the implicit assumptions Liu et al. [24] made to hold true so we
focus on the reward function defined in (I)). The most crucial issue lies in taking expectation on their
equation (51) in Liu et al. [24]. The only random variable while taking expectation is the action, i.e.

22

arm pulling. The estimated reward 7; ; and the policy p; ; can be regard as the function of actions.
If the adversary is assumed non-oblivious, the setting of GNN neighbor sampling, there should be
expected reward Es, . s, ,)[ri,¢] instead of r; ; after taking expectation over joint distribution of
actions for 7 ; in the equation (51) of Liu et al. [24]]. Since r; ; appears in (2), they should implicitly
assume the reward distribution at time step ¢ is independent with previous neighbor sampling and
optimization step, i.e. oblivious adversary. Hence, they have

T T T T
Es,....s0) {Zﬁt} = Es,onfidd = Y Es,[Fud] = Y ri
1 t=1 t=1 t=1

t=

Even so, there is a second issue lying in the first term Zle > JEN, pj.+7j,¢ of r.hus of the equation
(51)in Liu et al. [24]. Although r; ; might be assumed from an oblivious adversary, the policy p; ; as a
function of previous observed rewards of sampled arms cannot be assumed independent with previous

actions. Hence, taking expectation for this term, i.e. E(s,, .. s;) {Zf:l D jeN, pj,t?j’t} will be quite

complicated since p; ; is a function of (S1,...,8:—1) and ?M is a function of S; given oblivious
adversary, incurring a expected policy Es, . s, 1) [pi,] instead of p; ;. Providing non-oblivious
adversary, the expectation of this term will be more complicated since p; + and r; ; depend with each
other and get intertwined while taking expectation.

Auer et al. [1]], Uchiya et al. [31]] avoid this issue by rewriting Zje/\fv Dj,¢7j,¢ as T, ¢ so that p; , does
not emerge before taking expectation. Liu et al. [24] does not adopt this technique and encounters
these issues. Furthermore, Liu et al. [24] assumed the embedding is bounded: ||h; || < 1,Vie V
in their proof, but did not verify the sensitivity of this assumption. If h;; grows beyond 1, they
implicitly assumed the variation of embedding has to be bounded in that scenario.

I Experimental Details

All datasets we use are public standard benchmark datasets: ogbn-arxiv, ogbn-products [18]], Cora-
Full [5], Chameleon [11] and Squirrel [27]. For Chameleon and Squirrel, the dataset split for
train/validate/test is 0.6/0.2/0.2. For ogb datasets, the dataset split follows the default option of OGB
E] (See Table . For CoraFull, we select 20 nodes each class for validation set, 30 nodes each class
for test set and the others for training set.

Table 3: Summary of the statistics and data split of datasets.

Dataset | #Node # Edges # Classes # Features # Train # Val. # Test
Chameleon 2,277 31,371 5 2325 1,367 455 455
Squirrel 5,201 198,353 5 2,089 3,121 1,040 1040
CoraFull 19,793 130,622 70 8,710 16,293 1,400 2,100
ogbn-arxiv 169,343 1,166,243 40 128 90,941 29,799 48,603
ogbn-products | 2,449,029 61,859,140 47 100 196,615 39,323 2,213,091

Table 4: The detailed sampling hyperparameters for Chameleon.

| GCN | GAT
Algorithm | ~ n Ar | v n Ar
0.4 0.01 1000 ‘ 0.4 0.01 1000

Thanos

BanditSampler | 0.4 0.01 N/A | 04 001 N/A

Table 5: The detailed sampling hyperparameters for Squirrel.

| GCN | GAT
Algorithm | ~ n Ar | ~ n Ar
0.2 0.01 500 ‘ 04 0.1 500

Thanos

BanditSampler | 0.4 0.01 N/A | 04 0.01 N/A

*https://ogb.stanford.edu/

23

https://ogb.stanford.edu/

Table 6: The detailed sampling hyperparameters for CoraFull.

| GCN | GAT
Algorithm | ~ n Ar | v Ui Ar
Thanos 0.2 0.01 2000 | 0.4 1 2000

BanditSampler | 0.4 0.01 N/A | 04 0.01 N/A

Table 7: The detailed sampling hyperparameters for ogbn-arxiv.

| GCN | GAT
Algorithm | ~ n Ar | ~ n Ar
Thanos 0.2 1 8000 | 0.2 0.1 8000

BanditSampler | 0.4 001 N/A | 04 001 N/A

Table 8: The detailed sampling hyperparameters for ogbn-products.

| GCN | GAT
Algorithm | ~ n Ar | v n Ar

02 0.1 10000 | 04 0.1 10000
04 001 NA | 04 001 NA

Thanos
BanditSampler

Table 9: The detailed sampling hyperparameters for cSSBM synthetic data.

| GCN |
Algorithm | ~ n Ar

Thanos 0.4 1 1000
BanditSampler | 0.4 0.01 N/A

Table 10: The configuration of ClusterGCN.

Dataset | Chameleon Squirrel ~Ogbn-arxiv CoraFull ~Ogbn-products
Partition size | 10 20 500 80 5000

J Reward Visualization

We first show the visualization of rewards to demonstrate their numerical stability in Fig. El

3pm
103 ‘ ‘ 10-1 17
" 0.8
10 ’ o
o o -0.85
& 51072 178
S 0 ' 3
z 10 & ‘ 252
-3.4
JMAANBNAMb ANl J 0 4.2
100 ¥ Max Reward (BS) 107 Max Reward 5.0
—— Mean Reward (BS) “ —— Mean Reward A | 5.9
0 500 1000 1500 0 500 1000 1500 #1_1 0 1 2 3
Iteration Iteration z;
(a) Rewards of BanditSampler (b) Rewards of Thanos (c) Visualization of Eq.

Figure 5: Fig.[5ajand Fig. [5Sb{show the max vs. mean of all received rewards of two samplers during
the training of GCN on Cora. Fig. [2c|visualizes the reward function in (3) after setting 21(2 = (1,17,
Inside the dashed circle, the reward is positive, otherwise negative. When zglt) = zv{)t, it has the

maximum reward.

K Efficiency Evaluation

To showcase the efficiency provided by our sampler, we select the ogbn-products dataset, which is
sufficiently large such that loading onto a GPU is not even possible and vanilla base models like GCN

24

and GAT struggle. Hence we compare the time and memory usage of all methods on CPU servers.
Results are shown in Table[TT} where Thanos display huge gains in efficiency.

Table 11: Comparison of time and space efficiency. ‘#Node’ denotes the number of node features involved in
computation per iteration.

| | Methods | #Node | Ave.RSS | Time/Epoch
GCN Vanilla GCN | 1,000,700 | 49.1GB 24h38min
. GraphSage 2440 47.7GB 499s
2 BanditSampler 2462 47.4GB 545s
2 Thanos 2439 46.8GB 490s
g GAT Vanilla GAT | 1,010,200 52.5GB 31h50min
& GraphSage 2417 49.8GB 568s
BanditSampler 2415 48.7GB 619s
Thanos 2421 48.2GB 584s

L. Experiment Extension

We present the extensive experiments on cSBM in this section. Fig. @plots Pintra OVET Vo N Vipain,
which suggests both samplers have close piy, on Va.

0.90
0.18
0.85
00.16
o 0,80 ce e e E
80.75 5014
...) o1
........................... 0 0.
0.70 — A=1.50
oesl - A=1.00 0.10 B Thanos
s A=0.50 Hl BanditSampler
0 600 200 400 600 800 0 080 200 400 600 800
Iteration Iteration
(a) Average Pinra among Vo N Viain (b) Std. curve of Fig. @

Figure 6: Fig. @plots Dintra ON V2 N Virain and Fig. plots its std. curve over Vo N Viain.

0.22
0.20 e

2
©0.18
o

50.16
b
V0.14

0.12 I Thanos
Il BanditSampler

0.10

0 200 400 600 800
Iteration

Figure 7: The Std. curve of Fig. 2alover V1 N Viin.

25

