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Abstract

One of the key drivers of complexity in the classical (stochastic) multi-armed bandit
(MAB) problem is the difference between mean rewards in the top two arms, also
known as the instance gap. The celebrated Upper Confidence Bound (UCB) policy
is among the simplest optimism-based MAB algorithms that naturally adapts to
this gap: for a horizon of play n, it achieves optimal O (log n) regret in instances
with “large” gaps, and a near-optimal O

�p
n log n

�
minimax regret when the gap

can be arbitrarily “small.” This paper provides new results on the arm-sampling
behavior of UCB, leading to several important insights. Among these, it is shown
that arm-sampling rates under UCB are asymptotically deterministic, regardless of
the problem complexity. This discovery facilitates new sharp asymptotics and a
novel alternative proof for the O

�p
n log n

�
minimax regret of UCB. Furthermore,

the paper also provides the first complete process-level characterization of the
MAB problem under UCB in the conventional diffusion scaling. Among other
things, the “small” gap worst-case lens adopted in this paper also reveals profound
distinctions between the behavior of UCB and Thompson Sampling, such as an
incomplete learning phenomenon characteristic of the latter.

1 Introduction

Background and motivation. The MAB paradigm provides a succinct abstraction of the quintessen-
tial exploration vs. exploitation trade-offs inherent in many sequential decision making problems.
This has origns in clinical trial studies dating back to 1933 [30] which gave rise to the earliest known
MAB heuristic, Thompson Sampling [1]. Today, the MAB problem manifests itself in various forms
with applications ranging from dynamic pricing and online auctions to packet routing, scheduling,
e-commerce and matching markets among others (see [9] for a comprehensive survey of different
formulations). In the canonical stochastic MAB problem, a decision maker (DM) pulls one of K
arms sequentially at each time t 2 {1, 2, ...}, and receives a random payoff drawn according to an
arm-dependent distribution. The DM, oblivious to the statistical properties of the arms, must balance
exploring new arms and exploiting the best arm played thus far in order to maximize her cumulative
payoff over the horizon of play. This objective is equivalent to minimizing the regret relative to an
oracle with perfect ex ante knowledge of the optimal arm (the one with the highest mean reward).
The classical stochastic MAB problem is fully specified by the tuple

⇣
(Pi)16i6K , n

⌘
, where Pi

denotes the distribution of rewards associated with the ith arm, and n the horizon of play.

The statistical complexity of regret minimization in the stochastic MAB problem is governed by a
key primitive called the gap, denoted by �, which accounts for the difference between the top two
arm mean rewards in the problem. For a “well-separated” or “large gap” instance, i.e., a fixed �
bounded away from 0, the seminal paper [22] showed that the order of the smallest achievable regret
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is logarithmic in the horizon. There has been a plethora of subsequent work involving algorithms
which can be fine-tuned to achieve a regret arbitrarily close to the optimal rate discovered in [22] (see
[6, 14, 13, 2, 4], etc., for a few notable examples). On the other hand, no algorithm can achieve an
expected regret smaller than C

p
n for a fixed n (the constant hides dependence on the number of arms)

uniformly over all problem instances (also called minimax regret); see, e.g., [23], Chapter 15. The
saddle-point in this minimax formulation occurs at a gap that satisfies � ⇣ 1/

p
n. This has a natural

interpretation: approximately 1/�2 samples are required to distinguish between two distributions
with means separated by �; at the 1/

p
n-scale, it becomes statistically impossible to distinguish

between samples from the top two arms within n rounds of play. If the gap is smaller, despite the
increased difficulty in the hypothesis test, the problem becomes “easier” from a regret perspective.
Thus, � ⇣ 1/

p
n is the statistically “hardest” scale for regret minimization. A number of popular

algorithms achieve the
p
n minimax-optimal rate (modulo constants), see, e.g., [4, 2], and many more

do this within poly-logarithmic factors in n. Many of these are variations of the celebrated upper
confidence bound algorithms, e.g., UCB1 [7], that achieve a minimax regret of O

�p
n log n

�
, and at

the same time also deliver the logarithmic regret achievable in the instance-dependent setting of [22].

A major driver of the regret performance of an algorithm is its arm-sampling characteristics. For
example, in the instance-dependent (large gap) setting, optimal regret guarantees imply that the
fraction of time the optimal arm(s) are played approaches 1 in probability, as n grows large. However,
this fails to provide any meaningful insights as to the distribution of arm-pulls for smaller gaps, e.g.,
the � ⇣ 1/

p
n “small gap” that governs the “worst-case” instance-independent setting.

An illustrative numerical example involving “small gap.” Consider an A/B testing problem (e.g.,
a vaccine clinical trial) where the experimenter is faced with two competing objectives: first, to
estimate the efficacy of each alternative with the best possible precision given a budget of samples,
and second, keeping the overall cost of the experiment low. This is a fundamentally hard task
and algorithms incurring a low cumulative cost typically spend little time exploring sub-optimal
alternatives, resulting in a degraded estimation precision (see, e.g., [5]). In other words, algorithms
tailored for (cumulative) regret minimization may lack statistical power [31]. While this trade-off
is unavoidable in “well-separated” instances, numerical evidence suggests a plausible resolution in
instances with “small” gaps as illustrated below. For example, such a situation might arise in trials
conducted using two similarly efficacious vaccines (abstracted away as � ⇡ 0). To illustrate the
point more vividly, consider the case where � is exactly 0 (of course, this information is not known
to the experimenter). This setting is numerically illustrated in Figure 1, which shows the empirical
distribution of N1(n)/n (the fraction of time arm 1 is played until time n) in a two-armed bandit with
� = 0, under two different algorithms (UCB and Thompson Sampling), and reward configurations.

(a) q = 0.5 (b) q = 0.5 (c) q = 0

Figure 1: Incomplete learning under Thompson Sampling. A two-armed bandit with arms having
Bernoulli(q) rewards each: Histograms show the empirical (probability) distribution of N1 (n) /n for
n = 10,000 pulls, plotted using 20,000 experiments. Algorithms: UCB1 [7], TS with Beta priors [1].

A desirable property of the outcome in this setting is to have a linear allocation of the sampling
budget per arm on almost every sample-path of the algorithm, as this leads to “complete learning:”
an algorithm’s ability to discern statistical indistinguishability of the arm-means, and induce a
“balanced” allocation in that event. However, despite the simplicity of the zero-gap scenario, it is far
from obvious whether the aforementioned property may be satisfied for standard bandit algorithms
such as UCB and Thompson Sampling. Indeed, Figure 1 exhibits a striking difference between
the two. The concentration around 1/2 observable in Figure 1(a) indicates that UCB results in
an approximately “balanced” sample-split, i.e., the allocation is roughly n/2 per arm for large n

2



(and this is observed for “most” sample-paths). In fact, we will later see that the “bell curve” in
Figure 1(a) eventually collapses into the Dirac measure at 1/2 (Theorem 1). On the other hand, under
Thompson Sampling, the allocation of samples across arms may be arbitrarily “imbalanced” despite
the arms being statistically identical, as seen in Figure 1(b) (see, for contrast, Figure 1(c), where
the allocation is perfectly “balanced”). Namely, the distribution of the posterior may be such that
arm 1 is allocated anywhere from almost no sampling effort all the way to receiving almost the entire
sampling budget, as Figure 1(b) suggests. Non-degeneracy of arm-sampling rates is observable also
under the more widely used version of the algorithm that is based on Gaussian priors and Gaussian
likelihoods (Algorithm 2 in [2]); see Figure 2(a). Such behavior can be detrimental for ex post causal
inference in the general A/B testing context, and the vaccine testing problem referenced earlier. This
is demonstrated via an instructional example of a two-armed bandit with one deterministic reference
arm (aka the “one-armed” bandit paradigm), illustrated in Figure 2, and discussed below.

A numerical example illustrating inference implications. Consider a model where arm 1 returns a
constant reward of 0.5, while arm 2 yields rewards distributed as Bernoulli(0.5). In this setup, the
estimate of the gap � (average treatment effect in causal inference parlance) after n rounds of play
is given by �̂ = X̄2(n)� 0.5, where X̄2(n) denotes the empirical mean reward of arm 2 at time n.
The Z statistic associated with this gap estimator is given by Z = 2

p
N2(n)�̂, where N2(n) is the

visitation count of arm 2 at time n. In the absence of any sample-adaptivity in the arm 2 data, results
from classical statistics such as the Central Limit Theorem (CLT) would posit an asymptotically
Normal distribution for Z . However, since the algorithms that play the arms are adaptive in nature,
e.g., UCB and Thompson Sampling, asymptotic-normality may no longer be guaranteed. Indeed, the
numerical evidence in Figure 2(b) strongly points to a significant departure from asymptotic-normality
of the Z statistic associated with the gap estimator under Thompson Sampling (TS). Non-normality
of the Z statistic can be problematic for inferential tasks, e.g., it can lead to statistically unsupported
inferences in the binary hypothesis test H0 : � = 0 vs. H1 : � 6= 0 performed using confidence
intervals constructed as per the conventional CLT approximation. In sharp contrast, our work shows
that UCB satisfies a certain “balanced” sampling property (such as that in Figure 1(a)) in instances
with “small” gaps, formally stated as Theorem 1, that drives the Z statistic towards asymptotic-
normality in the aforementioned binary hypothesis testing example (asymptotic-normality being a
consequence of Theorem 4). Furthermore, since the

p
n-normalized “stochastic” regret (defined in

(1) in §2) equals �
⇣p

N2(n)/(4n)
⌘
Z , it follows that this too, satisfies asymptotic-normality under

UCB (due to Theorem 4, in conjunction with Theorem 1). These properties are evident in Figure 2(c)
below, and signal reliability of ex post causal inference (under classical assumptions like validity of
CLT) from “small gap” data collected by UCB vis-à-vis Thompson Sampling (TS). The reliability of
inference under TS may be doubtful even in the limit of infinite data, as Figure 2(b) suggests.

(a) Distribution of N1(n)/n (b) Departure from CLT (c) Asymptotic normality per CLT

Figure 2: Failure of CLT under TS. A two-armed bandit with � = 0: Arm 1 returns a constant
reward of 0.5, and arm 2 yields rewards distributed as Bernoulli(0.5). In (a), the histogram shows
the empirical (probability) distribution of N1(n)/n. Algorithms: TS (Algorithm 2 in [2]) and UCB
(UCB1 in [7]). All histograms have n = 10,000 pulls, and are plotted using @ = 20,000 experiments.

While traditional literature on stochastic bandits is dedicated primarily to the regret minimization
problem, there has been significant recent interest also in finer-grain properties of popular “adaptive”
MAB algorithms such as UCB and Thompson Sampling. For example, a recent line of work
([27, 28, 29]) investigates the “bias” of optimistic algorithms like UCB. The focus of our work is on
understanding the distribution of arm-pulls, which as discussed earlier, has significant bearings on
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ex post causal inference from data collected adaptively by bandit algorithms (see, e.g., [33, 16, 32],
etc., and references therein for recent developments), algorithmic fairness in the broader context of
fairness in machine learning (see [25] for a survey), as well as on novel formulations of the MAB
problem such as [20]. Below, we discuss extant literature relevant to our line of work.

Previous work. The study of “well-separated” instances, or the large gap regime, is supported
by rich literature. For example, [6] provides high-probability bounds on arm-sampling rates un-
der a parametric family of UCB algorithms. However, as the gap diminishes, leading to the so
called small gap regime, the aforementioned bounds become vacuous. The understanding of arm-
sampling behavior remains relatively under-studied here even for popular algorithms such as UCB
and Thompson Sampling. This regime is of special interest in that it also covers the classical
diffusion scaling1, where � ⇣ 1/

p
n, which as discussed earlier, corresponds to instances that

statistically constitute the “worst-case” for hypothesis testing and regret minimization. Recently, a
partial diffusion-limit characterization of the arm-sampling distribution under a version of Thompson
Sampling with horizon-dependent prior variances2, was provided in [32] as a solution to a certain
stochastic differential equation (SDE). The numerical solution to said SDE was observed to have
a non-degenerate distribution on [0, 1]. Similar numerical observations on non-degeneracy of the
arm-sampling distribution also under standard versions of Thompson Sampling were reported in
[10, 20], among others, albeit limited only to the special case of � = 0, and absent a theoretical
explanation for the aforementioned observations. Thus, outside of the so called “easy” problems,
where � is bounded away from 0 by an absolute constant, theoretical understanding of the sampling
behavior of bandit algorithms remains an open area of research.

Contributions. In this paper, we provide the first complete asymptotic characterization of arm-
sampling distributions under canonical UCB (Algorithm 1) as a function of the gap � (Theorem 1).
This gives rise to a fundamental insight: arm-sampling rates are asymptotically deterministic under
UCB regardless of the hardness of the instance. We also provide the first theoretical explanation for an
“incomplete learning” phenomenon under Thompson Sampling (Algorithm 2) alluded to in Figure 1,
as well as a sharp dichotomy between Thompson Sampling and UCB evident therein (Theorem 2).
This result earmarks an “instability” of Thompson Sampling in terms of the limiting arm-sampling
distribution. As a sequel to Theorem 1, we provide the first complete characterization of the worst-case
performance of canonical UCB (Theorem 3). One consequence is that the O

�p
n log n

�
minimax

regret of UCB is strictly unimprovable in a precise sense. Moreover, our work also leads to the first
process-level characterization of the two-armed bandit problem under canonical UCB in the classical
diffusion limit, according to which a suitably normalized cumulative reward process converges in law
to a Brownian motion with fully characterized drift and infinitesimal variance (Theorem 4). To the
best of our knowledge, this is the first such characterization of UCB-type algorithms. Theorem 4
facilitates a complete distribution-level characterization of UCB’s diffusion-limit regret, thereby
providing sharp insights as to the problem’s minimax complexity. Such distribution-level information
may also be useful for a variety of inferential tasks, e.g., construction of confidence intervals (see the
binary hypothesis testing example referenced in Figure 2(c)), among others. We believe our results
may also present new design considerations, in particular, how to achieve, loosely speaking, the “best
of both worlds” for Thompson Sampling, by addressing its “small gap” instability. Lastly, we note
that our proof techniques are markedly different from the conventional methodology adopted in MAB
literature ([6, 9, 2]), and may be of independent interest in the study of related learning algorithms.

Organization of the paper. A formal description of the model and the canonical UCB algorithm
is provided in §2. All theoretical propositions are stated in §3, along with a high-level overview of
their scope and proof sketch; detailed proofs and ancillary results are relegated to the supplementary
material. Finally, concluding remarks and open problems are presented in §4.

2 The model and notation

The technical development in this paper will focus on the two-armed problem purely for expositional
reasons; we provide extensions to the general K-armed setting in Appendix B. The restriction to
two-armed bandits has precedence also in the literature due to its tractability for sharp asymptotic

1This is a standard technique for performance evaluation of stochastic systems, commonly used in the
operations research and mathematics literature, see, e.g., [15].

2Assumed to be vanishing in n; standard versions of the algorithm involve fixed (positive) prior variances.
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analyses, see, e.g., [21]. This setting encapsulates the core statistical complexity of the MAB problem
in the “small gap” regime, as well as concisely highlighting the key novelties in our approach. Before
describing the model formally, we introduce the following asymptotic conventions.

Notation. We say f(n) = o (g(n)) or g(n) = ! (f(n)) if limn!1
f(n)
g(n) = 0. Similarly, f(n) =

O (g(n)) or g(n) = ⌦ (f(n)) if lim supn!1

��� f(n)g(n)

��� 6 C for some constant C. If f(n) = O ((g(n)))

and f(n) = ⌦ ((g(n))) hold simultaneously, we say f(n) = ⇥ (g(n)), or f(n) ⇣ g(n), and we
write f(n) ⇠ g(n) in the special case where limn!1

f(n)
g(n) = 1. If either sequence f(n) or g(n) is

random, and one of the aforementioned ratio conditions holds in probability, we use the subscript
p with the corresponding Landau symbol. For example, f(n) = op (g(n)) if f(n)/g(n) p�! 0 as
n!1. Lastly, the notation ‘)’ will be used for weak convergence.

The model. The arms are indexed by {1, 2}. Each arm i 2 {1, 2} is characterized by a reward
distribution Pi supported on [0, 1] with mean µi. The difference between the two mean rewards, aka
the gap, is given by � = |µ1 � µ2|; as discussed earlier, this captures the hardness of an instance.
The sequence of rewards associated with the first m pulls of arm i is denoted by (Xi,j)16j6m. The
rewards are assumed to be i.i.d. in time, and independent across arms.3 The number of pulls of arm i
up to (and including) time t is denoted by Ni(t). A policy ⇡ := (⇡t)t2N is an adapted sequence
that prescribes pulling an arm ⇡t 2 S at time t, where S denotes the probability simplex on {1, 2}.
The natural filtration at time t is given by Ft := �

n
(⇡s)s6t ,

⇣
(Xi,j)j6Ni(t)

: i = 1, 2
⌘o

. The
stochastic regret of policy ⇡ after n plays, denoted by R⇡

n, is given by

R⇡
n :=

nX

t=1

⇥
max (µ1, µ2)�X⇡t,N⇡t (t)

⇤
. (1)

The decision maker is interested in the problem of minimizing the expected regret, given by

inf
⇡2⇧

ER⇡
n,

where ⇧ is the set of policies satisfying the non-anticipation property ⇡t : Ft�1 ! S, 1 6 t 6 n,
and the expectation is w.r.t. the randomness in reward realizations as well as possible randomness in
the policy ⇡. In this paper, we will focus primarily on the canonical UCB policy given by Algorithm 1
below. This policy is parameterized by an exploration coefficient ⇢, which controls its arm-exploring
rate. The standard UCB1 policy [7] corresponds to Algorithm 1 with ⇢ = 2; the effect of ⇢ on the
expected and high-probability regret bounds of the algorithm is well-documented in [6] for problems
with a “large gap.” In what follows, X̄i(t�1) denotes the empirical mean reward from arm i 2 {1, 2}

at time t� 1, i.e., X̄i(t� 1) :=
PNi(t�1)

j=1 Xi,j

Ni(t�1) .

Algorithm 1 The canonical UCB policy for two-armed bandits.
1: Input: Exploration coefficient ⇢ 2 R+.
2: At t = 1, 2, play each arm i 2 {1, 2} once.
3: for t 2 {3, 4, ...} do
4: Play arm ⇡t 2 argmaxi2{1,2}

⇣
X̄i(t� 1) +

q
⇢ log(t�1)
Ni(t�1)

⌘
.

3 Main results

Algorithm 1 is known to achieve ER⇡
n = O (log n) in the instance-dependent setting, and

ER⇡
n = O

�p
n log n

�
in the “small gap” minimax setting. The primary focus of this paper is

on the distribution of arm-sampling rates, i.e., Ni(n)/n, i 2 {1, 2}. Our main results are split across
two sub-sections; §3.1 examines the behavior of UCB (Algorithm 1) as well as another popular
bandit algorithm, Thompson Sampling (specified in Algorithm 2). §3.2 is dedicated to results on the
(stochastic) regret of Algorithm 1 under the � ⇣

p
(log n) /n “worst-case” gap and the � ⇣ 1/

p
n

“diffusion-scaled” gap.
3These assumptions can be relaxed in the spirit of [7]; our results also extend to sub-Gaussian rewards.
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3.1 Asymptotics of arm-sampling rates

Theorem 1 (Arm-sampling rates under UCB) Let i⇤ 2 argmax {µi : i = 1, 2} with ties broken
arbitrarily. Then, the following results hold for arm i⇤ as n!1 under Algorithm 1 with ⇢ > 1:

(I) “Large gap:” If � = !

✓q
logn
n

◆
, then Ni⇤(n)/n

p�! 1.

(II) “Small gap:” If � = o

✓q
logn
n

◆
, then Ni⇤(n)/n

p�! 1/2.

(III) “Moderate gap:” If � ⇠
q

✓ logn
n for some fixed ✓ > 0, then Ni⇤(n)/n

p�! �⇤
⇢(✓), where the

limit is the unique solution (in �) to

1p
1� �

� 1p
�
=

s
✓

⇢
, (2)

and is monotone increasing in ✓, with �⇤
⇢(0) = 1/2 and �⇤

⇢(✓)! 1 as ✓ !1.

Remark 1 (Permissible values of ⇢ in Algorithm 1) For ⇢ > 1, the expected regret of the policy ⇡

given by Algorithm 1 is bounded as ER⇡
n 6 C⇢

⇣
logn
� + �

⇢�1

⌘
for some absolute constant C > 0;

the upper bound becomes vacuous for ⇢ 6 1 (see [6], Theorem 7). We therefore restrict Theorem 1 to
⇢ > 1 to ensure that ER⇡

n remains non-trivially bounded for all �.

Discussion and intuition. Theorem 1 essentially asserts that the sampling rates Ni(n)/n, i 2 {1, 2}
are asymptotically deterministic in probability under canonical UCB; � only serves to determine the
value of the limiting constant. The “moderate” gap regime offers a continuous interpolation from
instances with zero gaps to instances with “large” gaps as ✓ sweeps over R+ in that �⇤

⇢(✓) increases
monotonically from 1/2 at ✓ = 0 to 1 at ✓ =1, consistent with intuition. The special case of ✓ = 0
is numerically illustrated in Figure 1(a). The tails of Ni⇤(n)/n decay polynomially fast near the end
points of the interval [0, 1] with the best possible rate approaching O

�
n�3

�
, occurring for ✓ = 0.

However, as Ni⇤(n)/n approaches its limit, convergence becomes slower and is dominated by fatter
⇥
⇣q

log logn
logn

⌘
tails. The behavior in this regime is regulated by the O

�p
n log log n

�
envelope of

the zero-drift random walk process driving the algorithm’s regret (see proof of Theorem 1 for details).

Proof sketch. To provide the most intuitive explanation, we pivot to the special case where the
arms have identical reward distributions, and in particular, � = 0. The natural candidate then for
the limit of the empirical sampling rate is 1/2. On a high level, the proof relies on polynomially
decaying bounds in n for ✏-deviations of the form P

⇣���N1(n)
n � 1

2

��� > ✏
⌘

derived using the standard
trick for bounding the number of pulls of any arm on a given sample-path, to wit, for any u, n 2 N,
N1(n) can be bounded above by u +

Pn
t=u+1 {⇡t = 1, N1(t� 1) > u}, path-wise. Setting

u = d(1/2 + ✏)ne in this expression, one can subsequently show via an analysis involving careful
use of the policy structure together with appropriate Chernoff bounds that with high probability
(approaching 1 as n ! 1), N1(n)/n 6 1/2 + "⇢ for some "⇢ 2 (0, 1/2) that depends only on ⇢.
An identical result would naturally hold also for the other arm by symmetry arguments, and therefore
we arrive at a meta-conclusion that Ni(n)/n > 1/2 � "⇢ > 0 for both arms i 2 {1, 2} with high
probability (approaching 1 as n ! 1). It is noteworthy that said conclusion cannot be arrived at
for an arbitrary ✏ > 0 (in place of "⇢) since the polynomial upper bounds on P

⇣���N1(n)
n � 1

2

��� > ✏
⌘

derived using the aforementioned path-wise upper bound on N1(n), become vacuous if u is set “too
close” to n/2, i.e., if ✏ is “near” 0. Extension to the full generality of ✏ > 0 is achieved via a refined
analysis that uses the Law of the Iterated Logarithm (see [11], Theorem 8.5.2), together with the
previous meta-conclusion, to obtain fatter O

⇣q
log logn
logn

⌘
tail bounds when ✏ is near 0. Here, it is

imperative to point out that the “log n” appearing in the denominator is essentially from the
p
⇢ log t

optimistic bias term of UCB (see Algorithm 1), and therefore the convergence will, as such, hold also
for other variations of the policy that have “less aggressive” ! (log log t) exploration functions vis-à-
vis log t. However, this will be achieved at the expense of the policy’s expected regret performance,
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as noted in Remark 1. We also note that the extremely slow O
⇣q

log logn
logn

⌘
convergence is not an

artifact of our analysis, but in fact, supported by the numerical evidence in Figure 1(a), suggestive of
a plausible non-convergence (to 1/2) in the limit. We believe such observations in previous works
likely led to incorrect folk conjectures ruling out the existence of a deterministic limit under UCB à
la Theorem 1 (see, e.g., [10] and references therein). The proof for a general � in the “small” and
“moderate” gap regimes is skeletally similar to that for � = 0, albeit guessing a candidate limit for
Ni⇤(n)/n is non-trivial; a closed-form expression for �⇤

⇢(✓) is provided in Appendix A. Full details
of the proof of Theorem 1 are provided in Appendix D,E,F. ... ⇤

Remark 2 (Possible generalizations of Theorem 1) A simple extension to the K-armed setting is
provided in Appendix B as Theorem 5. The behavior of UCB policies is largely governed by their
optimistic bias. While Theorem 1 only covers the generic UCB policy with

p
⇢ log t bias, results of

the form Ni(n)/n
p�! ci for some ci 2 (0, 1) continue to hold also under smaller !

�p
⇢ log log t

�

bias (driven by the Law of the Iterated Logarithm). We believe this observation will be useful when
examining more complicated UCB-inspired policies such as KL-UCB [13], DMED [18], etc.

What about Thompson Sampling? Results such as those discussed above for other popular
adaptive algorithms like Thompson Sampling4 are only arable in “well-separated” instances where
Ni⇤(n)/n

p�! 1 as n ! 1 follows as a trivial consequence of its O (
p
n) minimax regret bound

[2]. For smaller gaps, theoretical understanding of the distribution of arm-pulls under Thompson
Sampling remains largely absent even for its most widely-studied variants. In this paper, we provide
a first result in this direction: Theorem 2 formalizes a revealing observation for classical Thompson
Sampling (Algorithm 2) in instances with zero gap, and elucidates its instability in view of the
numerical evidence reported in Figure 1(b) and 1(c). This result also offers an explanation for the
sharp contrast with the statistical behavior of canonical UCB (Algorithm 1) à la Theorem 1, also
evident from Figure 1(a). In what follows, rewards are assumed to be Bernoulli, and Si (respectively
Fi) counts the number of successes/1’s (respectively failures/0’s) associated with arm i 2 {1, 2}.

Algorithm 2 Thompson Sampling for the two-armed Bernoulli bandit.

1: Initialize: Number of successes (1’s) and failures (0’s) for each arm i 2 {1, 2}, (Si, Fi) = (0, 0).
2: for t 2 {1, 2, ...} do
3: Sample for each i 2 {1, 2}, Ti ⇠ Beta (Si + 1, Fi + 1).
4: Play arm ⇡t 2 argmaxi2{1,2} Ti and observe reward rt 2 {0, 1}.
5: Update success-failure counts: S⇡t  S⇡t + rt, F⇡t  F⇡t + 1� rt.

Theorem 2 (Incomplete learning under Thompson Sampling) In a two-armed model where both
arms yield rewards distributed as Bernoulli(q), the following holds under Algorithm 2 as n!1:

(I) If q = 0, then N1(n)/n) 1/2.

(II) If q = 1, then N1(n)/n) Uniform distribution on [0, 1].

Proof sketch. The proof of Theorem 2 relies on a careful application of two subtle properties of the
Beta distribution (Fact 2 and Fact 3), stated and proved in Appendix C,K. For part (I), we invoke
symmetry to deduce EN1(n) = n/2, and use Fact 2 to show that the standard deviation of N1(n) is
sub-linear in n, thus proving the stated assertion in (I). More elaborately, Fact 2 states for the reward
configuration in (I) that the probability of playing arm 1 after it has already been played n1 times,
and arm 2 n2 times, equals (n2 + 1) /(n1 +n2 +2). This probability is smaller than 1/2 if n1 > n2,
which provides an intuitive explanation for the fast convergence of N1(n)/n to 1/2 observed in
Figure 1(c). In fact, we conjecture that the result in (I) holds also with probability 1 based on the
aforementioned “self-balancing” property. The conclusion in part (II) hinges on an application of
Fact 3 to show the stronger result: N1(n) is uniformly distributed over {0, 1, ..., n} for any n 2 N.
Contrary to Fact 2, Fact 3 states that quite the opposite is true for the reward configuration in (II): the
probability of playing arm 1 after it has already been played n1 times, and arm 2 n2 times, equals
(n1 + 1) /(n1+n2+2), which is greater than 1/2 when n1 > n2. That is, the posterior distributions

4This is the version based on Gaussian priors and Gaussian likelihoods, not the classical version based on
Beta priors and Bernoulli likelihoods which has a minimax regret of O

�p
n log n

�
[2].
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evolve in such a way that the algorithm is “deceived” into incorrectly believing one of the arms
(arm 2 in this case) to be inferior. This leads to large sojourn times between successive visitations of
arm 2 on such a sample-path, thereby resulting in a perpetual “imbalance” in the sample-counts. This
provides an intuitive explanation for the non-degeneracy observed in Figure 1(b) and 2(a), which
additionally, also indicates that such behavior, in fact, persists also for general (non-deterministic)
reward distributions, as well as under the Gaussian prior-based version of the algorithm. Full proof of
Theorem 2 is provided in Appendix G. ⇤
More on “incomplete learning.” The zero-gap setting is a special case of the “small gap” regime
where canonical UCB guarantees a (1/2, 1/2) sample-split in probability (Theorem 1). On the other
hand, Theorem 2 suggests that second order factors such as the mean signal strength (magnitude of
the mean reward) could significantly affect the nature of the resulting sample-split under Thompson
Sampling. Note that even though the result only presupposes deterministic 0/1 rewards, the aforemen-
tioned claim is, in fact, borne out by the numerical evidence in Figure 1(b) and 1(c). The sampling
distribution seemingly flattens rapidly from the Dirac measure at 1/2 to the Uniform distribution on
[0, 1] as the mean rewards move away from 0. This uncertainty in the limiting sampling behavior has
non-trivial implications for a variety of application areas of such learning algorithms. For instance,
a uniform distribution of arm-sampling rates on [0, 1] indicates that the sample-split could be arbi-
trarily imbalanced along a sample-path, despite, as in the setting of Theorem 2, the two arms being
statistically identical; this phenomenon is typically referred to as “incomplete learning” (see [26, 24]
for the original context). Non-degeneracy in the limiting distribution is also observable numerically
up to diffusion-scale gaps of O (1/

p
n) under other versions of Thompson Sampling (see [32] for

examples); our focus on the more extreme zero-gap setting simplifies the illustration of these effects.

A brief survey of Thompson Sampling. While extant literature does not provide any explicit
result for Thompson Sampling characterizing its arm-sampling behavior in instances with “small”
and “moderate” gaps, there has been recent work on its analysis in the � ⇣ 1/

p
n regime under

what is known as the diffusion approximation lens (see [32, 12]). Cited works study Thompson
Sampling primarily under the assumption that the prior variance associated with the mean reward
of any arm vanishes in the horizon of play at an “appropriate” rate.5 Such a scaling, however, is
not ideal from a regret standpoint and indeed, the versions of Thompson Sampling optimized for
regret performance use fixed (non-vanishing) prior variances, e.g., Algorithm 2 and its Gaussian
prior-based counterpart (see [2]). On a high level, [32, 12] establish that as n ! 1, the pre-limit
(Ni(nt)/n)t2[0,1] under Thompson Sampling converges weakly to a “diffusion-limit” stochastic
process on t 2 [0, 1]. Recall from earlier discussion that � ⇣ 1/

p
n is covered under the “small gap”

regime; consequently, it follows from Theorem 1 that the analogous limit for UCB is, in fact, the
deterministic process t/2. In sharp contrast, the diffusion-limit process under Thompson Sampling
may at best be characterizable only as a solution (possibly non-unique) to an appropriate stochastic
differential equation or ordinary differential equation driven by a suitably (random) time-changed
Brownian motion. Consequently, the diffusion limit under Thompson Sampling is more difficult
to interpret vis-à-vis UCB (see Theorem 4), and it is much harder to obtain lucid insights as to the
nature of the distribution of Ni(n)/n as n ! 1. The asymptotic distribution of Ni(n)/n under
Thompson Sampling is also investigated in [19], albeit in a significantly different setting. Cited
paper considers the Bayesian setting where a prior distribution exists over problem instances, and
the Thompson Sampling algorithm is “well-specified,” i.e., information about said prior is baked
into the algorithm. Specifically, a sample path of the algorithm in their model involves a random
problem instance from the instance-space. In contrast, the derivation of the asymptotic distribution of
arm-pulls in our work is for specific (fixed) problem instances, viz., reward configurations (I) and (II)
described in Theorem 2, and under the classical version of Thompson Sampling (Algorithm 2).

3.2 Beyond arm-sampling rates

This part of the paper is dedicated to a more fine-grained analysis of the “stochastic” regret of UCB
(defined in (1) in §2). Results are largely facilitated by insights on the sampling behavior of UCB in
instances with “small” gaps, attributable to Theorem 1; however, we believe they are of interest in
their own right. We commence with an application of Theorem 1 which provides the first complete
characterization of the worst-case (minimax) performance of canonical UCB. A full diffusion-limit
characterization of the two-armed bandit problem under UCB is provided thereafter in Theorem 4.

5The only result applicable to the case of non-vanishing prior variances is Theorem 4.2 of [12].
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Theorem 3 (Minimax regret complexity of UCB) In the “moderate gap” regime referenced in

Theorem 1 where � ⇠
q

✓ logn
n , the regret of the policy ⇡ given by Algorithm 1 with ⇢ > 1 satisfies

R⇡
np

n log n
)
p
✓
�
1� �⇤

⇢(✓)
�
=: h⇢(✓) as n!1, (3)

where �⇤
⇢(✓) is the (unique) solution to (2).

To the best of our knowledge, this is the first algorithm-specific result (sharp asymptotic) that is
distinct from the general ⌦ (

p
n) information-theoretic lower bound by a horizon-dependent factor.6

Discussion. A closed-form expression for �⇤
⇢(✓) and h⇢(✓) is provided in Appendix A. The behavior

of h⇢(✓) is illustrated below in Figure 3. For a fixed ⇢, the function h⇢(✓) is numerically observed
to be uni-modal in ✓ and admit a global maximum at a unique ✓⇤⇢ := arg sup✓>0 h⇢(✓), bounded
away from 0. Theorem 3 establishes that the worst-case (instance-independent) regret admits the
sharp asymptotic R⇡

n ⇠ h⇢

�
✓⇤⇢
�p

n log n. In standard bandit parlance, this substantiates that the
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Figure 3: h⇢(✓) vs. ✓ for different values of the exploration coefficient ⇢ in Algorithm 1. The graphs
exhibit a unique global maximizer ✓⇤⇢ for each ⇢. The

�
✓⇤⇢, h⇢

�
✓⇤⇢
��

pairs for ⇢ 2 {1.1, 2, 3, 4} in
that order are: (1.9, 0.2367), (3.5, 0.3192), (5.3, 0.3909), (7, 0.4514).

O
�p

n log n
�

worst-case (minimax) performance guarantee of canonical UCB cannot be improved in
terms of its horizon-dependence. In addition, the result also specifies the precise asymptotic constants
achievable in the worst-case setting. This can alternately be viewed as a direct approach to proving
the O

�p
n log n

�
performance bound for UCB vis-à-vis conventional minimax analyses such as [9].

Proof sketch. On a high level, note that when � =
p

(✓ log n)/n, it follows from Theorem 1 that
ER⇡

n =
p
(✓ log n)/nE [n�Ni⇤(n)] ⇠ h⇢(✓)

p
n log n (convergence in probability implies that

in mean since |Ni⇤(n)/n| 6 1). That R⇡
n also admits the same sharp asymptotic can be shown

via a finer analysis. In other regimes of �, viz., “small” and “large” gaps, we already know that
R⇡

n = op
�p

n log n
�
. This is obvious for “small” � since ER⇡

n 6 �n = o
�p

n log n
�
, while for

“large” �, we use ER⇡
n 6 C⇢ ((log n)/�+ 1/(⇢� 1)) for some absolute constant C (given ⇢ > 1,

� 6 1) [6], followed by Markov’s inequality. Thus, the multiplicative constant sup✓>0 h⇢(✓) obtained
in the “moderate” gap regime must correspond to the worst-case performance of the algorithm. ⇤
Towards diffusion asymptotics. Diffusion scaling is a classical stochastic analysis tecnnique widely
used in the mathematics and operations research literature, see, e.g., steady-state analyses of queuing
systems in [15], and a recent application to certain sequential testing problems in [3]. Under this
lens, time is accelerated linearly in n, space contracted by a factor of

p
n, and a sequence of systems

indexed by n is considered. In our problem, the nth such system refers to an instance of the two-armed
bandit with: n as the horizon of play; a gap that vanishes in the horizon as � = c/

p
n for some fixed

c; and fixed reward variances given by �2
1 ,�

2
2 . This is a natural scaling for MAB experiments in that

it “preserves” the hardness of the learning problem as n sweeps over the sequence of systems. Recall
also from previous discussion that the “hardest” information-theoretic instances have a ⇥ (1/

p
n) gap;

in short, the diffusion limit is an appropriate asymptotic lens for observing interesting process-level
behavior in the MAB problem. However, despite the aforementioned reasons, the diffusion limit
behavior of bandit algorithms remains poorly understood and largely unexplored. A recent foray

6Previous work establishes matching ⇥
�p

Kn logK
�

upper and lower bounds for the minimax expected
regret of the Gaussian prior-based Thompson Sampling algorithm in the K-armed problem, see [2].
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was made in [32, 12], however, deterministic algorithms like UCB remain outside the ambit of such
analysis, on account of discontinuities. Theorem 4 provides a complete characterization of this limit.

Theorem 4 (Diffusion asymptotics for canonical UCB) Suppose that the mean reward of arm i 2
{1, 2} is given by µi = µ + ✓i/

p
n, where n is the horizon of play and µ, ✓1, ✓2 > 0 are fixed

constants, and reward variances are �2
1 ,�

2
2 . Define �0 := |✓1 � ✓2|. Denote the cumulative reward

earned from arm i until time m by Si,m :=
PNi(m)

j=1 Xi,j , and let S̃i,m := Si,m � µNi(m). Then,
the following process-level convergences hold under the policy ⇡ given by Algorithm 1 with ⇢ > 1:

(I)

 
S̃1,bntcp

n
,
S̃2,bntcp

n

!
)
✓
✓1t

2
+

�1p
2
B1(t),

✓2t

2
+

�2p
2
B2(t)

◆
,

(II)
R⇡

bntcp
n
) �0t

2
+

r
�2
1 + �2

2

2
B̃(t),

where the process-level convergence is over t 2 [0, 1], and B1(t) and B2(t) are independent standard

Brownian motions in R, and B̃(t) := �
q

�2
1

�2
1+�2

2
B1(t)�

q
�2
2

�2
1+�2

2
B2(t).

Proof sketch. Note that if the arms are played bn/2c times each independently over the horizon of
play n (resulting in Ni(n) = bn/2c, i 2 {1, 2}), part (I) of the stated assertion would immediately
follow from Donsker’s Theorem (see [8], Section 14). However, since the sequence of plays,
and hence also the eventual allocation (N1(n), N2(n)), is determined adaptively by the policy,
the aforementioned convergence may no longer be true. Here, the result hinges crucially on the
observation from Theorem 1 that for any arm i 2 {1, 2} as n ! 1, Ni(n)/n

p�! 1/2 under
UCB when � ⇣ 1/

p
n (diffusion-scaled gaps are covered under the “small gap” regime). This

observation facilitates a standard “random time-change” argument t  Ni(bntc)/n, i 2 {1, 2},
which followed upon by an application of Donsker’s Theorem, leads to the stated assertion in (I).
This has the profound implication that for diffusion-scaled gaps, a two-armed bandit under UCB is,
in fact, well-approximated by a classical system with independent samples (sample-interdependence
due to the adaptive nature of the policy is washed away in the limit). The conclusion in (II) follows
after a direct application of the Continuous Mapping Theorem (see [8], Theorem 2.7) to (I). ⇤
Discussion. An immediate observation following Theorem 4 is that the normalized regret R⇡

n/
p
n is

asymptotically Normal with mean �0/2 and variance
�
�2
1 + �2

2

�
/2 under UCB. Apart from aiding

in obvious inferential tasks like construction of (asymptotically valid) confidence intervals (see, e.g.,
the binary hypothesis testing example referenced in Figure 2(c)), etc., such information provides
new insights as to the problem’s minimax complexity as well. This is because � ⇣ 1/

p
n is known

to be the information-theoretic “worst-case” for the problem; the smallest achievable regret in this
regime must asymptotically be dominated by that under UCB, i.e., �0

p
n/2. It is also noteworthy

that while the diffusion limit in Theorem 4 does not itself depend on the exploration coefficient ⇢, the
rate at which the system converges to said limit indeed depends on ⇢. Theorem 4 will continue to
hold only as long as ⇢ = ! ((log log n) / log n); for smaller ⇢, the convergence of Ni(n)/n to 1/2
may no longer be true (refer to the proof of Theorem 1 in the “small” gap regime in Appendix E).

4 Concluding remarks and open problems

Our results for the two-armed problem under canonical UCB (Algorithm 1) may be generalizable to
the K-armed setting, leveraging the observations and insights from Theorem 1 (a simple extension
is provided in Appendix B). The K-armed problem under UCB is of interest in its own right: we
postulate a division of sampling effort within and across clusters of “similar” and “separated” arms,
determined by their relative sub-optimality gaps in the spirit of Theorem 1. We expect that similar
generalizations are possible also for Theorem 3 and Theorem 4. For Thompson Sampling, on the
other hand, things are less obvious even in the two-armed setting. For example, in spite of compelling
numerical evidence (refer, e.g., to Figure 1(b)) suggesting a plausibly non-degenerate distribution of
arm-sampling rates for bounded rewards in [0, 1] with means away from 0, the proof of Theorem 2
relies heavily on the rewards being deterministic 0/1, and cannot be extended to the general case. In
addition, similar results are conjectured also for the more widely used Gaussian prior-based version of
the algorithm. Such results may, in future, shed light on several important diffusion-limit performance
metrics of Thompson Sampling, and elucidate its normalized minimax (stochastic) regret behavior.
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