
Notation

In the following denote `(w, (x, y))
def
= 1

2 (fW(x) − y)2. Unless stated otherwise, we work with
vectorised quantities so W ∈ Rdm and therefore simply interchange ‖ · ‖2 with ‖ · ‖F . We also
use notation (W)k so select k-th block of size d, that is (W)k = [W(d−1)k+1, . . . ,Wdk]>. We use

notation (a ∨ b) def
= max {a, b} and (a ∧ b) def

= min {a, b} throughout the paper. Let (W
(i)
t )t be the

iterates of GD obtained from the data set with a resampled data point:

S(i) def
= (z1, . . . , zi−1, z̃i, zi+1, . . . , zn)

where z̃i is an independent copy of zi. Moreover, denote a remove-one version of S by

S\i
def
= (z1, . . . , zi−1, zi+1, . . . , zn) .

A Smoothness and Curvature of the Empirical Risk (Proof of Lemma 1)

Lemma 1 (restated). Fix W,W̃ ∈ Rd×m. Consider Assumption 1, Assumption 2, and assume that
LS(W̃) ≤ C2

0 . Then, for any S,

λmax(∇2LS(W)) ≤ ρ where ρ
def
= C2

x

(
B2
φ′ +Bφ′′Bφ +

Bφ′′Cy√
m

)
,

min
α∈[0,1]

λmin(∇2LS(W̃ + α(W − W̃))) ≥ −
Bφ′′

(
Bφ′Cx + C0

)
√
m

· (1 ∨ ‖W − W̃‖F ) . (10)

Proof. Vectorising allows the loss’s Hessian to be denoted

∇2`(W, z) = ∇fW(x)∇fW(x)> +∇2fW(x)(fW(x)− y) (11)

where

∇fW(x) =


u1xφ

′ (〈(W)1,x〉)
u2xφ

′ (〈(W)2,x〉)
...

umxφ′ (〈(W)m,x〉)

 ∈ Rdm

and ∇2fW(x) ∈ Rdm×dm with

∇2fW(x) =


u1xx>φ′′(〈(W)1,x〉) 0 0 . . . 0

0 u2xx>φ′′(〈(W)2,x〉) 0 . . . 0
...

. . . . . .
...

...
0 0 0 . . . umxx>φ′′(〈(W)m,x〉)


Note that we then immediately have with v = (v1,v2, . . . ,vm) ∈ Rdm with vi ∈ Rd

‖∇2fW(x)‖2 = max
v:‖v‖2≤1

m∑
j=1

uj〈vj ,x〉2φ′′(〈(W)j ,x〉)

≤ 1√
m
‖x‖22Bφ′′ max

v:‖v‖2≤1

m∑
j=1

‖vj‖22

≤ C2
xBφ′′√
m

. (12)

We then see that the maximum Eigenvalue of the Hessian is upper bounded for any W ∈ Rdm, that is

‖∇2`(W, z)‖2 ≤ ‖∇fW(x)‖22 + ‖∇2fW(x)‖2|fW(x)− y| (13)

≤ C2
xB

2
φ′ +

C2
xBφ′′√
m

(
√
mBφ + Cy) (14)
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and therefore the objective is ρ-smooth with ρ = C2
x

(
B2
φ′ +Bφ′′Bφ +

Bφ′′Cy√
m

)
.

Let us now prove the lower bound (10). For some fixed W,W̃ ∈ Rd×m define

W(α)
def
= W̃ + α(W − W̃) α ∈ [0, 1] .

Looking at the Hessian in (11), the first matrix is positive semi-definite, therefore

λmin(∇2LS(W(α))) ≥ −
(

max
i=1,...,n

{
‖∇2fW(α)(xi)‖2

}) 1

n

n∑
i=1

|fW(α)(xi)− yi|

≥ −C
2
xBφ′′√
m
· 1

n

n∑
i=1

|fW(α)(xi)− yi|

where we have used the upper bound on ‖∇2fW(xi)‖2. Adding and subtracting f
W̃

(xi) inside the
absolute value we then get

1

n

n∑
i=1

|fW(α)(xi)− yi| ≤
1

n

n∑
i=1

|fW(α)(xi)− fW̃(xi)|+
1

n

n∑
i=1

|f
W̃

(xi)− yi|

≤ Bφ′Cx‖W(α)− W̃‖2 +

√
LS(W̃)

≤ Bφ′Cx‖W(α)− W̃‖2 +
√
LS(W0)

≤
(
Bφ′Cx + C0

)
(1 ∨ ‖W(α)− W̃‖2)

where for the second term we have simply applied Cauchy-Schwarz inequality. For the first term, we
used that for any W,W̃ ∈ Rdm we see that

|fW(x)− f
W̃

(x)| ≤ 1√
m

m∑
i=1

|φ(〈(W)i,x〉)− φ(〈(W̃)i,x〉)| (15)

≤ Bφ′√
m

m∑
i=1

∣∣∣〈(W)i − (W̃)i,x〉
∣∣∣

≤ CxBφ′‖W − W̃‖2. (16)
Bringing everything together yields the desired lower bound

λmin(∇2LS(W(α))) ≥ − C2
x√
m
Bφ′′

(
Bφ′Cx + C0

)
(1 ∨ ‖W(α)− W̃‖2)

≥ − C2
x√
m
Bφ′′

(
Bφ′Cx + C0

)
(1 ∨ ‖W − W̃‖2) .

This holds for any α ∈ [0, 1], therefore, we took the minimum.

B Optimisation Error Bound (Proof of Lemma 2)

In this section we present the proof for the Optimisation Error term. We begin by quoting the result
which we set to prove.
Lemma 2 (restated). Consider Assumptions 1 and 2. Fix t > 0. If η ≤ 1/(2ρ), then

1

t

t∑
j=0

LS(Wj) ≤ min
W∈Rd×m

{
LS(W) +

‖W −W0‖2F
ηt

+
b̃‖W −W0‖3F√

m

}
+ b̃C0 ·

(ηt)
3
2

√
m

where b̃ = C2
xBφ′′ (Bφ′Cx + C0).

Proof. Using Lemma 1 as well as that ηρ ≤ 1 from the assumption within the theorem yields for
t ≥ 0

LS(Wt+1) ≤ LS(Wt)− η
(
1− ηρ

2

)
‖∇LS(Wt)‖22

≤ LS(Wt)−
η

2
‖∇LS(Wt)‖22.
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Fix some W ∈ Rdm. We then use the following inequality which will be proven shortly:

LS(Wt) ≤ LS(W)− 〈W −Wt,∇LS(Wt)〉+
b̃√
m

(
1 ∨ ‖W −Wt‖2

)3
(17)

Plugging in this inequality we then get

LS(Wt+1) ≤ LS(W)− 〈W −Wt,∇LS(Wt)〉 −
η

2
‖∇LS(Wt)‖22 +

b̃√
m

(
1 ∨ ‖W −Wt‖2

)3
.

Note that we can rewrite

− 〈W −Wt,∇LS(Wt)〉 −
η

2
‖∇LS(Wt)‖22

=
1

η
〈W −Wt,Wt+1 −Wt〉 −

1

2η
‖Wt+1 −Wt‖22

=
1

η

(
‖W −Wt‖22 − ‖Wt+1 −W‖22

)
where we used that for any vectors x,y, z: 2〈x − y,x − z〉 = ‖x − y‖22 + ‖x − z‖22 − ‖y − z‖22
(which is easier to see if we relabel 2〈a,b〉 = ‖a‖22 + ‖b‖22 − ‖a− b‖22). Plugging in and summing
up we get

1

t

t∑
s=0

LS(Wt) ≤ LS(W) +
‖W −W0‖22

ηt
+

b̃√
m
· 1

t

t∑
s=0

(
1 ∨ ‖W −Wt‖2

)3
.

Since the choice of W was arbitrary, we can simply take the minimum.

Proof of Eq. (17). Let us now prove the key Eq. (17). Fix t ≥ 0, and let us define the following
functions for α ∈ [0, 1]

W(α)
def
= Wt + α(W −Wt) ,

g(α)
def
= LS(W(α)) +

b̃√
m
· α

2

2

(
1 ∨ ‖W −Wt‖2

)3
.

Note that computing the derivative we have

g′′(α) = (W −Wt)
>∇2LS(W(α))(W −Wt) +

b̃√
m

(
1 ∨ ‖W −Wt‖2

)3
.

On the other hand by Lemma 1 we have

min
α∈[0,1]

λmin(∇2LS(W(α))) ≥ − b̃√
m

(
1 ∨ ‖W −Wt‖2

)
and we immediately have g′′(α) ≥ 0, and thus, g(·) is convex on [0, 1]. Inequality (17) then arises
from g(1)− g(0) ≥ g′(0), in particular

g(1)− g(0) = LS(W) +
b̃√
m

(
1 ∨ ‖W −Wt‖2

)3 − LS(Wt)

≥ 〈W −Wt,∇LS(Wt)〉
= g′(0)

as required.

C Generalisation Gap Bound (Proof of Theorem 1)

In this section we prove:

16



Theorem 1 (restated). Consider Assumptions 1 and 2. Fix t > 0. If η ≤ 1/(2ρ) and

m ≥ 144(ηt)2C4
xC

2
0B

2
φ′′

(
4Bφ′Cx

√
ηt+

√
2
)2

then E
[
εGen(Wt+1)

∣∣ W0,u
]
≤ b

(
η

n
+
η2t

n2

) t∑
j=0

E [LS(Wj) |W0,u]

where b = 16e3C
3
2
x B2

φ′(1 + C
3
2
x B2

φ′).

To prove this result we use algorithmic stability arguments. Recall that we can write [Shalev-Shwartz
and Ben-David, 2014, Chapter 13],

E [L(Wt+1)− LS(Wt+1) |W0,u] =
1

n

n∑
i=1

E
[
`(Wt+1, z̃i)− `(W(i)

t+1, z̃i)
∣∣∣ W0,u

]
.

The following lemma shown in Appendix C.1 then bounds the Generalisation error in terms of a
notation of stability.
Lemma 3 (restated). Consider Assumptions 1 and 2. Then, for any t ≥ 0,

E [L(Wt)− LS(Wt) |W0,u]

≤ Bφ′
√
Cx
√

E [LS(Wt) |W0,u]

√√√√ 1

n

n∑
i=1

E
[
‖Wt −W

(i)
t ‖2op

∣∣∣ W0,u
]

+ CxB
2
φ′ ·

1

n

n∑
i=1

E
[
‖Wt −W

(i)
t ‖2op

∣∣∣ W0,u
]

where ‖ · ‖op denotes the spectral norm.

We note while the stability is only required on the spectral norm, our bound will be on the element
wise L2-norm i.e. Frobenius norm, which upper bounds the spectral norm. It is summarised within
the following lemma shown in Appendix C.2.
Lemma 4 (Bound on On-Average Parameter Stability). Consider Assumptions 1 and 2. Fix t > 0. If
η ≤ 1/(2ρ), then

1

n

n∑
i=1

E
[
‖Wt+1 −W

(i)
t+1‖2F

∣∣∣ W0,u
]
≤ 8e

η2t

n2

( 1

1− 2ηε

)t 1

n

n∑
i=1

t∑
j=0

E
[
‖∇`(Wj , zi)‖22

∣∣ W0,u
]

where ε = 2 · C
2
x

√
C0Bφ′′√
m

(
4Bφ′Cx

√
ηt+

√
2
)
.

Theorem 1 then arises by combining Lemma 3 and Lemma 4, and noting the following three points.
Firstly, recall that

1

n

n∑
i=1

‖∇`(W, zi)‖22 ≤
(

max
i=1,...,n

‖∇fW(xi)‖22
) 1

n

n∑
i=1

(fW(xi)− yi)2

≤ 2C2
xB

2
φ′LS(W).

Secondly, note that we have
(

1
1−2ηε

)t ≤ exp( 2ηtε
1−2ηtε ) ≤ e

2 when 2ηtε ≤ 2/3. For this to occur we
then require

ε = 2 · C
2
x

√
C0Bφ′′√
m

·
(
4Bφ′Cx

√
ηt+

√
2
)
≤ 1

3ηt
,

which is satisfied by scaling m sufficient large, in particular, as required within condition (7) within
the statement of Theorem 1. This allows us to arrive at the bound on the L2-stability

1

n

n∑
i=1

E
[
‖Wt+1 −W

(i)
t+1‖2F

∣∣∣ W0,u
]
≤ η2t

n2
· 16e3C2

xB
2
φ′

t∑
j=0

E [LS(Wj) |W0,u] .
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Third and finally, note that we can bound

√
E [LS(Wt+1) |W0,u]

√√√√η2t

n2

t∑
j=0

E [LS(Wj) |W0,u]

=
η

n

√
tE [LS(Wt+1) |W0,u]

√√√√ t∑
j=0

E [LS(Wj) |W0,u]

≤ η

n

t∑
j=0

E [LS(Wj) |W0,u]

since LS(Wt+1) ≤ 1
t

∑t
j=1 LS(Wj). This then results in

E [L(Wt+1)− LS(Wt+1) |W0,u]

≤
( η
n

(
4e2C3/2

x B2
φ′
)

+
η2t

n2
(
16e3C3

xB
4
φ′
)) t∑

j=0

E [LS(Wj) |W0,u]

≤ 16e3C3/2
x B2

φ′(1 + C3/2
x B2

φ′)
( η
n

+
η2t

n2

) t∑
j=0

E [LS(Wj) |W0,u]

as required.

C.1 Proof of Lemma 3: From loss stability to parameter stability

Recall that z̃i = (x̃i, yi) ∈ Bd2(Cx)× [−Cy, Cy]. Expanding the square loss and some basic algebra
gives us:

2
(
`(Wt, z̃i)− `(W(i)

t , z̃i)
)

= (fWt
(x̃i)− ỹi)2 −

(
f
W

(i)
t

(x̃i)− ỹi
)2

= (fWt
(x̃i)− ỹi)

(
fWt

(x̃i)− fW(i)
t

(x̃i)
)

+
(
f
W

(i)
t

(x̃i)− ỹi
)(

fWt
(x̃i)− fW(i)

t
(x̃i)

)
=
(
fWt(x̃i)− fW(i)

t
(x̃i)

)2
+ 2

(
f
W

(i)
t

(x̃i)− ỹi
)(

fWt(x̃i)− fW(i)
t

(x̃i)
)
.

We then have

1

n

n∑
i=1

E
[
`(Wt, z̃i)− `(W(i)

t , z̃i)
∣∣∣ W0,u

]
≤ 1

n

n∑
i=1

E
[∣∣∣(fW(i)

t
(x̃i)− ỹi

)∣∣∣ ∣∣∣(fWt
(x̃i)− fW(i)

t
(x̃i)

)∣∣∣ ∣∣∣ W0,u
]

+
1

2n

n∑
i=1

E

[(
fWt

(x̃i)− fW(i)
t

(x̃i)
)2 ∣∣∣∣ W0,u

]

≤

√√√√ 1

n

n∑
i=1

E

[(
f
W

(i)
t

(x̃i)− ỹi
)2 ∣∣∣∣ W0,u

]√√√√ 1

n

n∑
i=1

E

[(
fWt(x̃i)− fW(i)

t
(x̃i)

)2 ∣∣∣∣ W0,u

]

+
1

2n

n∑
i=1

E

[(
fWt(x̃i)− fW(i)

t
(x̃i)

)2 ∣∣∣∣ W0,u

]
where performing steps as in Eq. (15)-(16) we have(

fWt(x̃i)− fW(i)
t

(x̃i)
)2
≤ C2

xB
2
φ′‖Wt −W

(i)
t ‖22 .

Plugging in this bound then yields the result.
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C.2 Proof of Lemma 4: Bound on on-average parameter stability

Throughout the proof empirical risk w.r.t. remove-one tuple S\i is denoted as

LS\i(W) = LS(W)− 1

n
`(W, zi) = LSi(W)− 1

n
`(W, z̃i) .

Plugging in the gradient updates with the inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 for p > 0
then yields (this technique having been applied within [Lei and Ying, 2020])

‖Wt+1 −W
(i)
t+1‖22 ≤ (1 + p) ‖Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
‖22︸ ︷︷ ︸

Expansiveness of the Gradient Update

+ (1 + 1/p) · 2η2

n2
·
(
‖∇`(Wt, zi)‖22 + ‖∇`(W(i)

t ), z̃i)‖22
)
.

We must now bound the expansiveness of the gradient update. Opening-up the squared norm we get

‖Wt −W
(i)
t − η(∇LS\i(Wt)−∇LS\i(W

(i)
t ))‖22

= ‖Wt −W
(i)
t ‖22 + η2‖∇LS\i(Wt)−∇LS\i(W

(i)
t )‖22

− 2η
〈
Wt −W

(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )
〉

For this purpose we will use the following key lemma shown in Appendix C.3.1:
Lemma 5 (Almost Co-coercivity of the Gradient Operator). Consider the assumptions of Lemma 4.
Then for t ≥ 1

〈Wt −W
(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )〉 ≥ 2η

(
1− ηρ

2

)
‖∇LS\i(Wt)−∇LS\i(W

(i)
t )‖22

− ε
∥∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)∥∥∥2

2

where

ρ = C2
x

(
B2
φ′ +Bφ′′Bφ +

Bφ′′Cy√
m

)
,

ε = 2 · C
2
x

√
C0Bφ′′√
m

(
4Bφ′Cx

√
ηt+

√
2
)
.

Thus by Lemma 5 we get

‖Wt −W
(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
‖22

≤ ‖Wt −W
(i)
t ‖22 + η2(2ηρ− 3)

∥∥∥∇LS\i(Wt)−∇LS\i(W
(i)
t )
∥∥∥2
2

+ 2ηε
∥∥∥Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)∥∥∥2

2
.

Rearranging and using that ηρ ≤ 1/2 we then arrive at the recursion

‖Wt+1 −W
(i)
t+1‖2F ≤

1 + p

1− 2ηε
· ‖Wt −W

(i)
t ‖2F

+

(
1 +

1

p

)
· 2η2

n2

(
‖∇`(Wt, zi)‖22 + ‖∇`(W(i)

t ), z̃i)‖22
)

≤
(

1 +
1

p

)
· 2η2

n2

(
1 + p

1− 2ηε

)t t∑
j=0

(
‖∇`(Wj , zi)‖22 + ‖∇`(W(i)

j ), z̃i)‖22
)
.

Taking expectation and summing we then get

1

n

n∑
i=1

E
[
‖Wt+1 −W

(i)
t+1‖2F

∣∣∣ W0,u
]

≤ 4(1 + 1/p)
2η2

n2

(
(1 + p)

1− 2ηε

)t t∑
j=0

E
[
‖∇`(Wj , zi)‖22

∣∣ W0,u
]
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where we note that E
[
‖∇`(Wj , zi)‖22

∣∣ W0,u
]

= E
[
‖∇`(W(i)

j , z̃i)‖22
∣∣∣ W0,u

]
since zi and z̃i

are identically distributed. Picking p = 1/t and noting that (1 + p)t = (1 + 1/t)t ≤ e yields the
bound.

C.3 Proof of Lemma 5: Almost-co-coercivity of the Gradient Operator

In this section we show Lemma 5 which says that a gradient operator of an overparameterised shallow
network is almost-co-coercive. The proof of this lemma will require two auxiliary lemmas.

Lemma 6. Consider Assumptions 1 and 2 and assume that η ≤ 1/(2ρ). Then for any t ≥ 0, i ∈ [n],

‖Wt −W0‖F ≤
√

2ηtLS(W0) ,

‖W(i)
t −W0‖F ≤

√
2ηtLS(i)(W0) .

Proof. The proof is given in Appendix C.3.2.

We also need the following Lemma (whose proof is very similar to Lemma 1).

Lemma 7. Consider Assumptions 1 and 2. Fix s ≥ 0, i ∈ [n]. For any α ∈ [0, 1] denote

W(α)
def
= W(i)

s + α
(
Ws −W(i)

s − η
(
∇LS\i(Ws)−∇LS\i(W(i)

s )
))

,

W̃(α)
def
= Ws + α

(
W(i)

s −Ws − η
(
∇LS\i(W(i)

s )−∇LS\i(Ws)
))

.

If η ≤ 1/(2ρ), then

min
α∈[0,1]

λmin

(
∇2LS\i (W(α))

)
≥ −ε̃ ,

min
α∈[0,1]

λmin

(
∇2LS\i

(
W̃(α)

))
≥ −ε̃ .

with

ε̃ =
C2
xBφ′′√
m

(
4Bφ′C

√
ηs
(√
LS(W0) +

√
LSi(W0)

)
+
√

2LSi(W0) +
√

2LS(W0)
)
.

Proof. The proof is given in Appendix C.3.3.

C.3.1 Proof of Lemma 5

The proof of this Lemma follows by arguing that the operator w 7→ ∇LS\i(w) is almost-co-coercive:
Recall that the operator F : X → X is co-coercive whenever 〈∇F (x)−∇F (y),x− y〉 ≥
α‖∇F (x)−∇F (y)‖2 holds for any x,y ∈ X with parameter α > 0. In our case, right side of the
inequality will be replaced by α‖∇F (x)−∇F (y)‖2 − ε, where ε is a small.

Let us begin by defining the following two functions

ψ(W) = LS\i(W)− 〈∇LS\i(W
(i)
t ),W〉 , ψ?(W) = LS\i(W)− 〈∇LS\i(Wt),W〉 .

Observe that

ψ(Wt)− ψ(W
(i)
t ) + ψ?(W

(i)
t )− ψ?(Wt) (18)

= LS\i(Wt)− 〈∇LS\i(W
(i)
t ),Wt〉 − LS\i(W

(i)
t ) + 〈∇LS\i(W

(i)
t ),W

(i)
t 〉

+ LS\i(W
(i)
t )− 〈∇LS\i(Wt),W

(i)
t 〉 − LS\i(Wt) + 〈∇LS\i(Wt),Wt〉

= 〈Wt −W
(i)
t ,∇LS\i(Wt)−∇LS\i(W

(i)
t )〉 ,

from which follows that we are interesting in giving lower bounds on ψ(Wt) − ψ(W
(i)
t ) and

ψ?(W
(i)
t )− ψ?(Wt).
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From Lemma 1 we know the loss is ρ-smooth with ρ = C2
x

(
B2
φ′ +Bφ′′Bφ +

CyBφ′′√
m

)
, and thus,

for any i ∈ [n], we immediately have the upper bounds

ψ(Wt −∇ψ(Wt)) ≤ ψ(Wt)− η
(

1− ηρ

2

)
‖∇ψ(Wt)‖22 (19)

ψ?(W
(i)
t − η∇ψ?(W

(i)
t )) ≤ ψ?(W(i)

t )− η
(

1− ηρ

2

)
‖∇ψ?(W(i)

t )‖22 (20)

Now, in the smooth and convex case [Nesterov, 2003], convexity would be used here to lower bound
the left side of each of the inequalities by ψ(W

(i)
t ) and ψ?(Wt) respectively. In our case, while the

functions are not convex, we can get an “approximate” lower bound by leveraging that the minimum
Eigenvalue evaluated at the points Wt,W

(i)
t is not too small. More precisely, we have the following

lower bounds by applying Lemma 7, which will be shown shortly:

ψ(Wt − η∇ψ(Wt)) ≥ ψ(W
(i)
t )− ε

2
‖Wt −W

(i)
t − η∇ψ(Wt)‖22 , (21)

ψ?(W
(i)
t − η∇ψ?(W

(i)
t )) ≥ ψ?(Wt)−

ε

2
‖W(i)

t −Wt − η∇ψ?(W(i)
t )‖22. (22)

Combining this with Eq. (19), (20), and rearranging we get:

ψ(Wt)− ψ(W
(i)
t ) ≥ η

(
1− ηρ

2

)
‖∇ψ(Wt)‖22 −

ε

2
‖Wt −W

(i)
t − η∇ψ(Wt)‖22 , (23)

ψ?(W
(i)
t )− ψ?(Wt) ≥ η

(
1− ηρ

2

)
‖∇ψ?(W(i)

t )‖22 −
ε

2
‖W(i)

t −Wt − η∇ψ?(W(i)
t )‖22. (24)

Adding together the two bounds and plugging into Eq. (18) completes the proof.

Proof of Eq. (21) and Eq. (22). All that is left to do, is to prove Eq. (21) and (22). To do that, we
will use Lemma 7 while recalling the definition of W(α) and W̃(α) given in the Lemma. That said,
let us then define the following two functions:

g(α)
def
= ψ(W(α)) +

ε̃α2

2
‖Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
‖22 ,

g̃(α)
def
= ψ?(W̃(α)) +

ε̃α2

2
‖Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
‖22 .

Note that from Lemma 7 we have that g′′(α), g̃′′(α) ≥ 0 for α ∈ [0, 1]. Indeed, we have with
∆

def
= Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
:

g′′(α) =
〈
∆,∇2LS\i(W(α))∆

〉
+ ε̃‖∆‖22 ≥ 0

and similarly for g̃(α). Therefore both g(·) and g̃(·) are convex on [0, 1]. The first inequality then
arises from noting the follow three points. Since g is convex we have g(1) − g(0) ≥ g′(0) with
g′(0) = 〈∇ψ(W

(i)
t ),∆〉 = 0 since ∇ψ(W

(i)
t ) = 0. This yields

0 ≤ g(1)− g(0)

= ψ(Wt − η∇ψ(Wt)) +
ε̃

2
‖Wt −W

(i)
t − η

(
∇LS\i(Wt)−∇LS\i(W

(i)
t )
)
‖22 − ψ(W

(i)
t )

which is almost Eq. (21): The missing step is showing that ε̃ ≤ ε. This comes by the uniform
boundedness of the loss, that is, having `(W0, z) ≤ C0 a.s. we can upper-bound

ε̃ ≤ 2 · C
2
x

√
C0Bφ′′√
m

(
4Bφ′Cx

√
ηs+

√
2
)

= ε

This proves Eq. (21), while Eq. (22) comes by following similar steps and considering g̃(1)− g̃(0) ≥
g̃′(0).

C.3.2 Proof of Lemma 6

Recalling the Hessian (11) we have for any parameter W and data point z = (x, y),

‖∇2`(W, z)‖2 ≤ ‖∇fW(x)‖22 + ‖∇2fW(x)‖2|fW(x)− y|

≤ C2
x

(
B2
φ′ +Bφ′′Bφ +

Bφ′′Cy√
m

)
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That is we have from (12) the bound ‖∇2fW(x)‖2 ≤ C2
x√
m
Bφ′′ , meanwhile we can trivially bound

|fW(x)− y| ≤ 1√
m

m∑
j=1

|φ(〈(W)j ,x〉)|+ Cy

≤
√
mBφ + Cy.

and

‖∇fW(x)‖22 = ‖x‖22 ·
1

m

m∑
j=1

φ′(〈(W)j ,x〉)

≤ C2
xB

2
φ′ .

The loss is therefore ρ-smooth with ρ = C2
x

(
B2
φ′ +BφBφ′′ +

CyBφ′′√
m

)
. Following standard argu-

ments we then have for j ∈ N0

LS(Wj+1) ≤ LS(Wj)− η
(

1− ηρ

2

)
‖∇LS(Wj)‖2F

which when rearranged and summed over j yields

η
(
1− ηρ

2

) t∑
j=0

‖∇LS(Wj)‖2F ≤
t∑

j=0

LS(Wj)− LS(Wj+1) = LS(W0)− LS(Wt+1)

We also note that

Wt+1 −W0 = −η
t∑

s=0

∇LS(Ws)

and therefore by convexity of the squared norm we have ‖Wt+1 − W0‖2F =

η2‖
∑t
s=0∇LS(Ws)‖2F ≤ η2t

∑t
s=0 ‖∇LS(Ws)‖2F . Plugging this in we get when ηρ ≤ 1/2

3

4
· 1

ηt
‖Wt+1 −W0‖2F ≤ LS(W0)

Rearranging then yields the inequality. An identical set of steps can be performed for the cases W
(i)
t

for i ∈ [n].

C.3.3 Proof of Lemma 7

Looking at (11) we note the first matrix is positive semi-definite and therefore for any W ∈ Rdm:

λmin(∇2LS\i(W)) ≥ −λmax

 1

n

∑
j∈[n]:j 6=i

∇2fW(xi)
(
fW(xj)− yj

)
≥ −C

2
xBφ′′√
m
· 1

n

∑
j∈[n]:j 6=i

|fW(xj)− yj |

where we have used the operator norm of the Hessian ‖∇2fW(x)‖2 bound (12). We now choose
W = W(α) and thus need to bound 1

n

∑
j∈[n]:j 6=i |fW(α)(xj)−yi| and 1

n

∑
j∈[n]:j 6=i |fW̃(α)

(xi)−
yi|. Note that we then have for any iterate Wt with t ∈ N0,
1

n

∑
j∈[n]:j 6=i

|fW(α)(xi)− yi| ≤
1

n

∑
j∈[n]:j 6=i

|fW(α)(xi)− fW(i)
t

(xi)|+
1

n

∑
j∈[n]:j 6=i

|f
W

(i)
t

(xi)− yi|

≤ Bφ′Cx‖W(α)−W
(i)
t ‖F +

√
2LS\i(W

(i)
t )

where the first term on the r.h.s. is bounded using Cauchy-Schwarz inequality as in Eq. (15)-(16), and
the second term is bounded by Jensen’s inequality. A similar calculation yields

1

n

n∑
j=1,j 6=i

|f
W̃(α)

(xi)− yi| ≤ Bφ′Cx‖W̃(α)−Wt‖F +

√
2LS\i(W

(i)
t ) .
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Since the loss is ρ-smooth by Lemma 1 we then have

‖W(α)−W
(i)
t ‖F ≤ α

(
‖Wt −W

(i)
t ‖F + η‖∇LS\i(Wt)−∇LS\i(W

(i)
t )‖F

)
≤ (1 + ηρ)‖Wt −W

(i)
t ‖F

≤ 3

2

(
‖Wt −W0‖F + ‖W0 −W

(i)
t ‖F

)
≤ 3

2

√
2ηs
(√
LS(W0) +

√
LS(i)(W0)

)
where at the end we used Lemma 6. A similar calculation yields the same bound for ‖W̃(α)−Wt‖F .
Bringing together we get

λmin(∇2LS\i(W(α))) ≥ −C
2
xBφ′′√
m

(
4Bφ′Cx

√
ηs
(√
LS(W0) +

√
LS(i)(W0)

)
+

√
2LS\i(W

(i)
t )

)
λmin(∇2LS\i(W̃(α))) ≥ −C

2
xBφ′′√
m

(
4Bφ′Cx

√
ηs
(√
LS(W0) +

√
LS(i)(W0)

)
+
√

2LS\i(Wt)
)

The final bound arises from noting that LS\i(Wt) ≤ LS(Wt) ≤ LS(W0) and LS\i(W
(i)
t ) ≤

LS(i)(W
(i)
t ) ≤ LS(i)(W0).

D Connection between ∆oracle
S and NTK

This section is dedicated to the proof of Theorem 2. We will first need the following standard facts
about the NTK.

Lemma 8 (NTK Lemma). For any W,W̃ ∈ Rd×m and any x ∈ Rd,

fW(x) = f
W̃

(x) +

m∑
k=1

ukφ
′
(〈

x,W̃k

〉)〈
Wk − W̃k,x

〉
+ ε(x)

where

ε(x) =
1

2

m∑
k=1

uk

(∫ 1

0

φ′′
(
τ 〈x,Wk〉+ (1− τ)

〈
x,W̃k

〉)
dτ

)〈
x,Wk − W̃k

〉2
.

Note that

|ε(x)| ≤ Bφ′′‖x‖
2
√
m
· ‖W − W̃‖2F .

Proof. By Taylor theorem,

fW(x) = f
W̃

(x) +
∑
k

ukφ
′
(〈

x,W̃k

〉)〈
x,Wk − W̃k

〉
+

1

2

∑
k

uk

(∫ 1

0

φ′′
(
τ 〈x,Wk〉+ (1− τ)

〈
x,W̃k

〉)
dτ

)〈
x,Wk − W̃k

〉2
︸ ︷︷ ︸

ε(x)

.

Cauchy-Schwarz inequality gives us

|ε(x)| ≤ Bφ′′‖x‖
2
√
m
· ‖W − W̃‖2F .

We will use the following proposition [Du et al., 2018, Arora et al., 2019]:
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Proposition 1 (Concentration of NTK gram matrix). With probability at least 1− δ over W0,

‖K̂−K‖2 ≤ Bφ′

√
ln
(
2n
δ

)
2m

.

Proof. Since each entry is independent, by Hoeffding’s inequality we have for any t ≥ 0,

P
(
n|(K̂)i,j − (K)i,j | ≥ t

)
≤ 2e−2nt

2/B2
φ′ ,

and applying the union bound

‖K̂−K‖2F ≤
B2
φ′ ln

(
2n
δ

)
2m

.

Now we are ready to prove the main Theorem of this section (in the main text we only report the
second result).
Theorem 2 (restated). Denote

Φ0
def
=

 u1X diag
(
φ′(X>W0,1)

)
...

umX diag
(
φ′(X>W0,m)

)


and K̂
def
= 1

nΦ>0 Φ0. Assume that m & (ηT )5. Then,

∆oracle
S = O

(
1

ηT

〈
y, (nK̂)−1y

〉)
as ηT →∞ .

Consider Assumption 1 and that ηT = n. Moreover, assume that entries of W0 are i.i.d., K =

E[K̂ | S,u] with λmin(K) & 1/n, and assume that u ∼ unif ({±1/
√
m})m independently from all

sources of randomness. Then, with probability least 1− δ over (W0,u),

∆oracle
S = ÕP

(
1

n

〈
y, (nK)−1y

〉)
as n→∞ .

Proof. The proof of the first inequality will follow by relaxation of the oracle R-ERM ∆oracle
S to the

Moore-Penrose pseudo-inverse solution to a linearised problem given by Lemma 8. The proof of the
second inequality will build on the same idea, in addition making use of the concentration of entries
of K̂ around K.

Define

f linW (x)
def
=

m∑
k=1

ukφ
′ (〈x,W0,k〉) 〈Wk −W0,k,x〉 ,

Llin
S (W)

def
=

1

2

n∑
i=1

(
yi − f linW (x)

)2
.

Then for the square loss we have

(fW(xi)− yi)2 =
(
fW0

(xi) + f linW (xi) + ε(xi)− yi
)2

≤ 2
(
f linW (xi)− (yi − fW0

(xi))
)2

+ 2ε(xi)
2

and so,

L(W) ≤ Llin(W) +
B2
φ′′

m
· ‖W −W0‖4F
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where we observe that

Llin(W) =
1

n
‖Φ>0 (W −W0)− (y − ŷ0)‖2

and with Φ0, the matrix of NTK features, defined in the statement.

Solving the above undetermined least-squares problem using the Moore-Penrose pseudo-inverse we
get

Wpinv −W0 =
(
Φ0Φ

>
0

)†
Φ0(y − ŷ0) ,

and so

‖Wpinv −W0‖2F = (y − ŷ0)>Φ>0
(
Φ0Φ

>
0

)†2
Φ0(y − ŷ0)

= (y − ŷ0)>
(
Φ>0 Φ0

)−1
(y − ŷ0)

= (y − ŷ0)>(nK̂)−1(y − ŷ0)

where the final step can be observed by Singular Value Decomposition (SVD) of Φ0. Since
LS(Wpinv) = 0,

∆oracle
S = O

(
1

ηT

〈
(y − ŷ0), (nK̂)−1(y − ŷ0)

〉)
as ηT →∞ .

This proves the first result.

Now we prove the second result involving K. We will first handle the empirical risk by concentration
between K̂ and K. For α ∈ Rn define Wα = Φ0α + W0. Then,

Llin(Wα) =
1

n
‖Φ>0 Φ0α− (y − ŷ0)‖2

=
1

n
‖n(K̂−K)α + nKα− (y − ŷ0)‖2

≤ 2

n
‖n(K̂−K)α‖2 +

2

n
‖nKα− (y − ŷ0)‖2

≤ 2n‖K̂−K‖22‖α‖22 +
2

n
‖nKα− (y − ŷ0)‖2

Plug into the above α̂ = (nK)−1(y − ŷ0) (note that K is full-rank by assumption)

Llin(Wα̂) ≤ 2n‖K̂−K‖22‖α̂‖22

≤ n ·
B2
φ′ ln

(
2n
δ

)
m

·
(
(y − ŷ0)>(nK)−2(y − ŷ0)

)
≤ ‖y − ŷ0‖2 ·

B2
φ′ ln

(
2n
δ

)
m

· 1

nλmin(K)2

= 2LS(W0) ·
B2
φ′ ln

(
2n
δ

)
m

· 1

λmin(K)2

where the last inequality hold w.p. at least 1− δ by Proposition 1.

Now we pay attention to the quadratic term within ∆oracle
S :

‖Wα̂ −W0‖22 = ‖Φ0α̂‖22
= ‖Φ0(nK)−1(y − ŷ0)‖22
= (y − ŷ0)>(nK)−1(nK̂)(nK)−1(y − ŷ0)

= (y − ŷ0)>(nK)−1(nK̂− nK)(nK)−1(y − ŷ0)︸ ︷︷ ︸
(i)

+ (y − ŷ0)>(nK)−1(y − ŷ0)︸ ︷︷ ︸
(ii)

.

25



We will show that (i) is “small”:

(y − ŷ0)>(nK)−1(nK̂− nK)(nK)−1(y − ŷ0)

≤ ‖y − ŷ0‖2‖(nK)−2‖n‖K̂−K‖2

≤ ‖y − ŷ0‖2‖(nK)−2‖ · nBφ′

√
ln
(
2n
δ

)
2m

≤ 2LS(W0) · 1

λmin(K)2
·Bφ′

√
ln
(
2n
δ

)
2m

where we used Proposition 1 once again. Putting all together w.p. at least 1− δ over W0 we have

∆oracle
S = OP

(
1

ηT

〈
(y − ŷ0), (nK)−1(y − ŷ0)

〉
+

2LS(W0)

λmin(K)2
·
B2
φ′ ln

(
2n
δ

)
m

+
1

ηT
· 2LS(W0)

λmin(K)2
·Bφ′

√
ln
(
2n
δ

)
2m

)
as ηT →∞ .

Moreover, assuming that λmin(K) & 1/n and ηT = n, the above turns into

∆oracle
S = ÕP

(
1

n

〈
(y − ŷ0), (nK)−1(y − ŷ0)

〉)
as n→∞ .

The final bit is to note that

〈
ŷ0, (nK)−1ŷ0

〉
≤ ‖ŷ0‖22
nλmin(K)

. ‖ŷ0‖22

can be bounded w.h.p. by randomising u ∼ unif ({±1/
√
m})m: For any i ∈ [n] and δ ∈ (0, 1) by

Hoeffding’s inequality we have:

P

fW0
(xi) ≥ Bφ

√
ln
(
1
δ

)
2

 ≥ P

fW0
(xi) ≥

√√√√ ln
(
1
δ

)
2

1

m

m∑
k=1

φ (〈(W0)k,x〉)2


≥ 1− δ .

Taking a union bound over i ∈ [n] completes the proof of the second result.
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E Additional Proofs

Corollary 2 (restated). Assume the same as in Theorem 1 and Lemma 2. Then,

E [L(WT ) |W0,u] ≤
(

1 + C · ηT
n

(
1 +

ηT

n

))
E
[
∆oracle
S

∣∣ W0,u
]
.

Proof. Considering Theorem 1 with t = T − 1, and noting that LS(WT ) ≤ 1
T

∑T
j=0 LS(Wj) then

yields

E[L(WT ) |W0,u] ≤
(

1 + b

(
ηT

n
+
η2T 2

n2

))
1

T

T∑
j=0

E[LS(Wj) |W0,u]

≤
(

1+b

(
ηT

n
+
η2T 2

n2

))

·E

 min
W∈Rd×m

{
LS(W)+

‖W −W0‖2F
ηt

+
b̃√
m
· 1

T

T∑
j=0

(1 ∨ ‖W−Wj‖F )
3
} ∣∣∣∣∣∣ W0,u


where at the end we applied Lemma 2 to bound 1

T

∑T
j=0 E[LS(Wj)|W0]. The constants b, b̃ are

then defined in Theorem 1 and Lemma 2. Note from smoothness of the loss we have

‖W −Wj‖3F ≤ 23/2
(
‖W −W0‖3F + ‖W0 −Wj‖3F

)
≤ 23/2

(
‖W −W0‖3F + (ηjC0)3/2

)
,

in particular from the properties of graident descent ‖W0 −Wj‖2F ≤ ηjLS(W0) for j ∈ [T ].
Plugging in then yields the final bound.
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