
Appendices
Contents

1 Introduction 1

2 Related Work 3

3 Alternating Compressed / DeCompressed (AC/DC) Training 4

3.1 Background and Assumptions . 4

3.2 AC/DC: Applying IHT to Deep Neural Networks . 6

4 Experimental Validation 7

5 Conclusion, Limitations, and Future Work 10

Appendices 15

A Convergence Proofs 15

A.1 Overview . 16

A.1.1 Stochastic IHT for Functions with Concentrated PL Condition 16

A.1.2 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity . . . 17

A.1.3 Finding a Sparse Nearly-Stationary Point . 17

A.1.4 Proof Approach . 18

A.2 Stochastic IHT for Non-Convex Functions with Concentrated PL Condition 19

A.3 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity 22

A.4 Finding a Sparse Nearly-Stationary Point . 24

A.5 Deferred Proofs . 25

B Additional Experiments 28

B.1 CIFAR-100 Experiments . 28

B.2 ResNet50 on ImageNet . 29

B.3 MobileNet on ImageNet . 31

B.4 Inference Speedups . 33

B.5 Sparse-Dense Output Comparison . 34

B.6 Memorization Experiments on CIFAR10 . 35

C Computational Details 35

C.1 Hardware Details . 35

C.2 FLOPs Computation . 35

C.3 Choice of Hyper-parameters . 36

A Convergence Proofs

In this section we provide the convergence analysis for our algorithms. We prove Theorem 1 and show as a
corollary that under reasonable assumptions our implementation of AC/DC converges to a sparse minimizer.

15

A.1 Overview

We use the notation and assumptions defined in Section 3.1. As all of our analyses revolve around bounding the
progress made in a single iteration, to simplify notation we will generally use θ to denote the current iterate, and
θ′ to denote the iterate obtained after the IHT update:

θ′ = Tk(θ − ηgθ) .

Additionally, we let S, S′, S∗ ⊆ [N] to denote the support of θ, θ′ and θ∗ respectively, where θ∗ is the promised
k∗-sparse minimizer. Given an arbitrary vector x, we use supp(x) to denote its support, i.e. the set of coordinates
where x is nonzero. We may also refer to the minimizing value of f as f∗ = f(θ∗).

Before providing more intuition for the analysis, we give the main theorem statements.

A.1.1 Stochastic IHT for Functions with Concentrated PL Condition

We restate the Theorem from Section 3.1.

Theorem 1. Let f : RN → R be a function with a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let
k = C ·k∗ · (β/α)2 for some appropriately chosen constant C, and suppose that f is (2k+3k∗, β)-smooth and
(k∗, α)-CPL. For initial parameters θ0 and precision ε > 0, given access to stochastic gradients with variance

σ, stochastic IHT (3) converges in O
(
β
α
· ln f(θ0)−f(θ∗)

ε

)
iterations to a point θ with ‖θ‖0 ≤ k, such that

E [f (θ)− f (θ∗)] ≤ ε+
16σ2

α
.

Additionally, we give a corollary that justifies our implementation of AC/DC. As opposed to the theoretical
stochastic IHT algorithm, AC/DC performs a sequence of several dense SGD steps before applying a single
pruning step. We show that even with this change we can provide theoretical convergence bounds, although
these bounds can be weaker than the baseline IHT method under our assumptions.

Corollary 1 (Convergence of AC/DC). Let f : RN → R be a function that decomposes as f(θ) =
1
m

∑m
i=1 fi(θ), and has a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let k = C · k∗ · (β/α)2 for

some appropriately chosen constant C, suppose that each fi is (N, β)-smooth, and L-Lipschitz, and that f is
(k∗, α)-CPL.

Let ∆c and B be integers, and let {S1, . . . , SB} be a partition of [m] into B subsets of cardinality O(m/B)

each. Given θ, let g(i)θ = 1
|Si|

∑
j∈Si
∇fj(θ).

Suppose we replace the IHT iteration with a dense/sparse phase consisting of

1) ∆c phases during each of which we perform a full pass over the data by performing the iteration θ′ =

θ − ηg(i)θ for all i ∈ [B], with an appropriate step size η;

2) a pruning step implemented via an application the truncation operator Tk;

3) an optional sparse training phase which fully optimizes f over the sparse support.

For initial parameters θ0 and precision ε > 0, this algorithm converges inO
(
β
α
· ln f(θ0)−f(θ∗)

ε

)
dense/sparse

phases to a point θ with ‖θ‖0 ≤ k, such that

f (θ)− f (θ∗) ≤ ε+O

(
L2

α

)
.

To provide more intuition for these results, let us understand how various parameters affect convergence. As we
will argue in more detail in Section A.1.4, the main idea behind these algorithms is based on the vanilla IHT
algorithm, which consists of alternating full gradient steps with pruning/truncation steps. Pruning to the largest
k coordinates in absolute value essentially represents projecting the current weights onto the non-convex set of
k-sparse vectors, so a natural approach is to simply try to adapt the analysis of projected gradient methods to this
setup. The major caveat of this idea is that projecting onto a non-convex set can potentially undo some of the
progress made so far, unlike the standard case of projections over convex sets. However, we can argue that if we
set the target sparsity k sufficiently large compared to the promised sparsity k∗ of the optimum, the pruning step
can only increase the function value by a fraction of how much it was decreased by the full gradient step.

Notably, in order to guarantee this property, we require the target sparsity k to be of order Ω(k∗ · (β/α)2),
where β/α represents the "restricted condition number" of f . Hence "well conditioned" functions allow for
better sparsity. The number of iterations is same as in vanilla smooth and strongly convex optimization, which
only depends on the function f , and not on the target sparsity.

16

The next step is specializing this approach to the non-convex case, under the restricted smoothness and CPL
conditions, when only stochastic gradients are available. To handle non-convexity, we show that in fact a
weaker property than strong convexity is required, and we can achieve similar results only under these restricted
assumptions. More importantly, we can also handle stochastic gradients, which occur naturally in deep learning.
In fact, the stochastic variance ends up contributing an extra additive error of O(σ2/α) to our final error bound
(see Theorem 1). This can be reduced by decreasing variance, i.e. taking larger batches. Additionally, this term
carries a dependence in the CPL parameter α – the larger α, the smaller the error. We leave as an open problem
whether this dependence on variance can be eliminated for stochastic IHT methods.

Building on this, in Corollary 1 we provide theoretical guarantees for the algorithm we implemented. Notably,
while stochastic IHT takes a single stochastic gradient step, followed by pruning, in practice we replace this with
a dense training phase, followed by optimization in the sparse support. We show that this does not significantly
change the state of affairs. The dense training phase can be thought of as a replacement for a single stochastic
gradient step. The difficulty in AC/DC comes from the fact that the total movement of the weights during
the dense phase does not constitute an unbiased estimator for the true gradient, as it was previously the case.
However, by damping down the learning rate we can see that under reasonable assumptions this total movement
does not differ too much from the step we would have made using a single full gradient. The sparse training
phase can only help, since our entire analysis is based on proving that the function value decreases in each step.
Hence as long as sparse training reduces the function value, it can only improve convergence.

We provide the main proofs for these statements in Section A.2.

A.1.2 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity

We also provide a streamlined analysis for stochastic IHT under standard assumptions. Compared to [31] which
achieves similar guarantees (in particular both suffer from a blow-up in sparsity that is quadratic in the restricted
condition number of f) we significantly simplify the analysis and provide guarantees when only stochastic
gradients are available. Notably, the quadratic dependence in condition number can be improved to linear, at the
expense of a significantly more sophisticated algorithm which requires a longer running time [3].
Theorem 2. Let f : RN → R be a function with a k∗-sparse minimizer θ∗. Let β > α > 0 be parameters, let
k = C · k∗ · (β/α)2 for some appropriately chosen constant C, and suppose that f is (2k+ k∗, β)-smooth and
(k + k∗, α)-strongly convex in the sense that

f(θ + δ) ≥ f(θ) +∇f(θ)>δ +
α

2
‖δ‖2, for all θ, δ s. t. ‖δ‖0 ≤ k + k∗.

For initial parameters θ0 and precision ε > 0, given access to stochastic gradients with variance σ, IHT (3)
converges in O

(
β
α
· ln ‖θ0−θ∗‖

ε/β+σ2/(αβ)

)
iterations to a point θ with ‖θ‖0 ≤ k, such that

E
[
‖θ − θ∗‖2

]
≤ ε

β
+

2σ2

αβ

and

E [f (θ)− f (θ∗)] ≤ ε+
2σ2

α
.

We prove this statement in Section A.3.

A.1.3 Finding a Sparse Nearly-Stationary Point

We can further relax the assumptions, and show that IHT can recover sparse iterates that are nearly-stationary (i.e.
have small gradient norm). Finding nearly-stationary points is a standard objective in non-convex optimization.
However, enforcing the sparsity guarantee is not. Here we show that IHT can further provide stationarity
guarantees even with minimal assumptions.

Intuitively, this results suggests that error feedback may not be necessary for converging to stationary points
under parameter sparsity.

In this case, we alternate IHT steps with optimization steps over the sparse support, which reduce the norm of
the gradient resteicted to the support to some target error ε.
Theorem 3. Let f : RN → R. Let β, ε > 0 be parameters, let k be the target sparsity, and suppose that f is
(2k, β)-smooth. Furthermore, suppose that after each IHT step with a step size η = β−1 and target sparsity k,
followed by optimizing over the support to gradient norm ε, all the obtained iterates satisfy

‖θ‖∞ ≤ R∞ .

For initial parameters θ0 and precision ε > 0, given access to stochastic gradients with variance σ, in
O
(
β (f (θ0)− f (θT)) ·min

{
1
ε2
, 1
β2kR2

∞
, 1
β2σ2

})
iterations we can obtain an k-sparse iterate θ such that

‖∇f (θ)‖∞ = O
(
βR∞

√
k + βσ + ε

)
.

17

This theorem provides provable guarantees even in absence of properties that bound distance to the optimum
via function value (such as restricted strong convexity or the CPL condition. Instead, it uses the reasonable
assumption that the `∞ norm of all the sparse iterates witnessed during the optimization process is bounded by a
parameter R∞. In fact, in practice we often notice that weights stay in a small range, so this assumption is well
motivated.

Since it can not possibly offer guarantees on global optimality, this theorem instead provides a sparse near-
stationary point, in the sense that the `∞ norm of the gradient at the returned point is small. In fact this depends
on several parameters, including the target sparsity k, smoothness β and the promise on R∞. It is worth
mentioning that the `∞ norm of the gradient depends on the norm of the output sparsity, which is independent
on the sparsity of any promise, unlike in the previously analyzed cases.

Several other works attempted to compute sparse near-stationary points [40, 45]. As opposed to these we do not
require feedback, nor do we sparsify the gradients. Instead, we simply prune the weights after updating them
with a dense gradient, following which we optimize in the sparse support until we reach a point whose gradient
has only small coordinates within that support.

Since all iterates are in a small `∞ box, we can show that the progress guaranteed by the dense gradient step
alone is "mildly" affected by pruning. Hence unless we are already at a near-stationary point in, which case the
algorithm can terminate, we decrease the value of f significantly, while only suffering a bit of penalty which is
bounded by the parameters of the instance.

We provide full proofs in Section A.4.

A.1.4 Proof Approach

Let us briefly explain the intuition behind our theoretical analyses. We can view IHT as a version of projected
gradient descent, where iterates are projected onto the non-convex domain of k-sparse vectors.

In general, when the domain is convex, projections do not hurt convergence. This is because under specific
assumptions, gradient descent makes progress by provably decreasing the `2 distance between the iterate and the
optimal solution. As projecting the iterate back onto the convex domain can only improve the distance to the
optimum, convergence is unaffected even in those constrained settings.

In our setting, as the set of k-sparse vectors is non-convex, the distance to the optimal solution can increase.
However, we can show a trade-off between how much this distance increases and the ratio between the target
and optimal sparsity k/k∗.

Intuition. Intuitively, consider a point θ̃ obtained by taking a gradient step

θ̃ = θ − η∇f(θ) . (6)

While this step provably decreases the distance to the optimum ‖θ̃ − θ∗‖ � ‖θ − θ∗‖, after applying the
projection by moving to the projection Tk(θ̃), the distance ‖Tk(θ̃)− θ∗‖ may increase again. The key is that
this increase can be controlled. For example, the new distance can be bounded via triangle inequality by

‖Tk(θ̃)− θ∗‖ ≤ ‖θ̃ − Tk(θ̃)‖+ ‖θ̃ − θ∗‖ ≤ 2‖θ̃ − θ∗‖ .

The last inequality follows from the fact that by definition Tk(θ̃) is the closest k-sparse vector to θ̃ in `2 norm,
and thus the additional distance payed to move to this projected point is bounded by ‖θ̃ − θ∗‖. Thus, if the
gradient step (6) made sufficient progress, for example ‖θ̃ − θ∗‖ ≤ 1

3
‖θ − θ∗‖ we can conclude that the

additional truncating step does not fully undo progress, as

‖Tk(θ̃)− θ∗‖ ≤ 2‖θ̃ − θ∗‖ ≤ 2

3
‖θ − θ∗‖ ,

so the iterate still converges to the optimum.

In reality, we can not always guarantee that a single gradient step reduces the distance by a large constant fraction
– as a matter of fact this is determined by how well the function f is conditioned. However we can reduce the
lost progress that is caused by the truncation step simply by increasing the number of nonzeros of the target
solution, i.e. increasing the ratio k/k∗.

This is captured by the following crucial lemma which also appears in [31]. A short proof can be found in
Section A.5.

Lemma 1. Let θ∗ be a k∗-sparse vector, and let θ be an n-sparse vector. Then

‖Tk (θ)− θ‖2

n− k ≤ ‖θ
∗ − θ‖2

n− k∗ .

18

Its usefulness is made obvious in the proof of Theorem 2 which explicitly tracks as a measure of progress the
distance between the current iterate and the sparse optimum. This is shown in detail in Section A.3.

The proofs of Theorems 1 and 3 are slightly more complicated, as they track progress in terms of function value
rather than distance to the sparse optimum. However, similar arguments based on Lemma 1 still go through.
An added benefit is that these analyses show that alternating IHT steps with gradient steps over the sparse
support can only help convergence, as these additional steps further decrease error in function value. This fact is
important to theoretically justify the performance of the AC/DC algorithm. In the following sections we provide
proofs for our theorems.

A.2 Stochastic IHT for Non-Convex Functions with Concentrated PL Condition

In this section we prove Theorem 1 by showing that the ideas developed before apply to non-convex settings. We
analyze IHT for a class of functions that satisfy a special version of the Polyak-Łojasiewicz (PL) condition [34]
which is standard in non-convex optimization, and certain versions of it were essential in several works analyzing
the convergence of training methods for deep neural networks [41, 2]. Usually this condition says that small
gradient norm i.e. approximate stationarity implies closeness to optimum in function value. Here we use the
stronger (r, α)-CPL condition (see Equation 5), which considers the norm of the gradient contributed by its
largest coordinates in absolute value.

We prove strong convergence bounds for functions that satisfy the CPL condition. Compared to the classical
Polyak-Łojasiewicz condition, this adds the additional assumption that most of the mass of the gradient is
concentrated on a small subset of coordinates. This phenomenon has been witnessed in several instances, and is
implicitly used in [40].

Before proceeding with the proof we again provide a few useful lemmas.

Lemma 2. If f is (`, β)-smooth, then for any `-sparse δ, one has that

f (θ + δ) ≤ f (θ) +
β

2

∥∥∥∥∥
(

1

β
∇f (θ) + δ

)
supp(δ)

∥∥∥∥∥
2

− 1

2β

∥∥∥∇f (θ)supp(δ)

∥∥∥2 .

Proof. Applying smoothness we bound

f (θ + δ) ≤ f (θ) + 〈∇f (θ) , δ〉+
β

2
‖δ‖2

= f (θ) +
1

2β
‖∇f (θ)‖2 + 〈∇f (θ) , δ〉+

β

2
‖δ‖2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
1

2

∥∥∥∥ 1√
β
∇f (θ) +

√
βδ

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥ 1

β
∇f (θ) + δ

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2 .

Next we notice that the contributions of the two terms β
2

∥∥∥ 1
β
∇f (θ) + δ

∥∥∥2 and 1
2β
‖∇f (θ)‖2 exactly match

on the coordinates not touched by δ. Hence everything outside the support of δ cancels out, which yields the
desired conclusion.

We require another lemma which will be very useful in the analysis.

Lemma 3. Let θ, g ∈ RN such that supp (θ) = S, and let S′, S∗ be some arbitrary subsets, with |S′| = |S| >
|S∗|. Furthermore suppose that

Tk (θ + g) = (θ + g)S′ .

Then ∥∥∥(θ + g)S\S′

∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)Z\S′

∥∥∥2 − ‖gS∗‖2 ,
for some set Z such that |Z \ S′| ≤ 2 |S∗|.

19

Proof. We prove this as follows. We write∥∥∥(θ + g)S\S′

∥∥∥2 − ‖gS∪S′‖2 =
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ∥∥∥(θ + g)S∗\(S∪S′)

∥∥∥2 − ‖gS∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ∥∥gS∗\(S∪S′)∥∥2 − ‖gS∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ‖gS∗∪S∪S′‖2
=
∥∥∥(θ + g)(S∗∪S)\S′

∥∥∥2 − ∥∥gS′\(S∗∪S)∥∥2 − ‖gS∗∪S‖2 .
Since ∥∥gS′\(S∗∪S)∥∥2 =

∥∥∥(θ + g)S′\(S∗∪S)

∥∥∥2 ≥ ∥∥(θ + g)R
∥∥2 ,

where R is a subset R ⊆ (S∗ ∪ S) \ S′ with |R| = |S′ \ (S∗ ∪ S)|. Such a set definitely exists as∣∣(S∗ ∪ S) \ S′
∣∣ ≥ ∣∣S \ S′∣∣ =

∣∣S′ \ S∣∣ ≥ ∣∣S′ \ (S∗ ∪ S)
∣∣ = |R| .

Hence we obtain that∥∥∥(θ + g)S\S′

∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)((S∗∪S)\S′)\R

∥∥∥2 − ‖gS∗∪S‖2 .
Note that ∣∣((S∗ ∪ S) \ S′

)
\R
∣∣ =

∣∣(S∗ ∪ S) \ S′
∣∣− |R| = ∣∣(S∗ ∪ S) \ S′

∣∣− ∣∣S′ \ (S∗ ∪ S)
∣∣

≤
(
|S∗|+

∣∣S \ S′∣∣)− (∣∣S′ \ S∣∣− |S∗|)
= 2 |S∗| .

This concludes the proof.

Using this we derive the following useful corollary.

Corollary 2. Let θ, g ∈ RN such that supp (θ) = S, and let S′, S∗ be arbitrary subsets, with |S′| = |S| > |S∗|.
Furthermore suppose that

Tk (θ + g) = (θ + g)S′ .

Then one has that∥∥∥(θ + g)S\S′

∥∥∥2 − ‖gS∪S′‖2 ≤ 2 |S∗|+ |supp (θ∗)|
|S′| − |supp (θ∗)| ·

∥∥(θ + g)T − θ
∗∥∥2 − ‖gS∗‖2 ,

for some T , such that |T | ≤ 2 |S∗|+ |supp (θ∗)|+ |S′| and supp (θ∗) ⊆ T .

Proof. Using Lemma 3 we can write∥∥∥(θ + g)S\S′

∥∥∥2 − ‖gS∪S′‖2 ≤ ∥∥∥(θ + g)Z\S′

∥∥∥2 − ‖gS∗‖2 ≤ ∥∥∥(θ + g)(Z∪supp(θ∗))\S′

∥∥∥2 − ‖gS∗‖2
=
∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − (θ + g)S′

∥∥∥2 − ‖gS∗‖2 .
where |Z ∪ supp (θ∗) ∪ S′| ≤ 2 |S∗|+ |supp (θ∗)|+ |S′|. Applying Lemma 1 we furthermore obtain that∥∥(θ + g)Z∪S∗∪S′ − (θ + g)S′

∥∥2 ≤ |Z ∪ supp (θ∗) ∪ S′| − |S′|
|Z ∪ supp (θ∗) ∪ S′| − |supp (θ∗)| ·

∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − θ
∗
∥∥∥2

≤ 2 |S∗|+ |supp (θ∗)|
|S′| − |supp (θ∗)| ·

∥∥∥(θ + g)Z∪supp(θ∗)∪S′ − θ
∗
∥∥∥2 .

We can now proceed with the main proof.

Proof of Theorem 1. For simplicity we first provide the proof for the deterministic version, which roughly
follows the ideas described in [31]. Afterwards, we extend it to the stochastic setting. To simplify notation,
throughout this proof we will use η = 1

β
.

Using Lemma 2 we can write that for the update

δ = Tk (θ − η∇f (θ))− θ ,

20

we have

f
(
θ′
)
≤ f (θ) +

1

2η

∥∥∥∥∥
(

1

β
∇f (θ) + Tk (θ − η∇f (θ))− θ

)
supp(δ)

∥∥∥∥∥
2

− 1

2η

∥∥∥η∇f (θ)supp(δ)

∥∥∥2
= f (θ) +

1

2η

∥∥∥(Tk (θ − η∇f (θ))− (θ − η∇f (θ)))supp(δ)

∥∥∥2 − 1

2η

∥∥∥η∇f (θ)supp(δ)

∥∥∥2 .
At this point we use the fact that by definition supp (δ) = S′ ∪ S. Furthermore we see that∥∥(Tk (θ − η∇f (θ))− (θ − η∇f (θ)))S′∪S

∥∥2 =
∥∥∥(θ − η∇f (θ))S\S′

∥∥∥2
since Tk (θ − η∇f (θ)) exactly matches θ− η∇f (θ) for the coordinates in S′, and is 0 for all the others. Thus
we have that

f
(
θ′
)
≤ f (θ) +

1

2η

(∥∥∥(θ − η∇f (θ))S\S′

∥∥∥2 − ∥∥η∇f (θ)S∪S′
∥∥2) .

In order to apply the CPL property, we need to relate this to the contribution to the gradient norm given by the
heavy signal ‖Tk∗ (∇f (θ))‖2. Let S∗ be the support of Tk∗ (∇f (θ)). We apply Corollary 2 to further bound

f
(
θ′
)
≤ f (θ) +

1

2η

(
3k∗

k − k∗
∥∥(θ − η∇f (θ))T − θ

∗∥∥2 − ∥∥η∇f (θ)S∗
∥∥2) ,

where |T | ≤ 3k∗ + k. Now we apply the CPL property as follows. From Lemma 6 we upper bound∥∥(θ − η∇f (θ))T − θ
∗∥∥2 ≤ ∥∥(θ − η∇f (θ))T∪S − θ

∗∥∥2
≤ 8

α

(
f
(
θ − η∇f (θ)T∪S

)
− f (θ∗)

)
≤ 8

α
(f (θ)− f (θ∗)) ,

In the first inequality we used the fact that supp (θ∗) ⊆ T . In the second one we applied Lemma 6. In the third
one we applied (3k∗ + 2k, β)-smoothness (since |T ∪ S| ≤ 3k∗ + 2k) together with the fact that η = 1/β,
and so f

(
θ − η∇f (θ)T∪S

)
≤ f (θ).

Similarly we apply the CPL inequality to conclude that

f
(
θ′
)
≤ f (θ) +

1

2η

(
3k∗

k − k∗ ·
8

α
(f (θ)− f (θ∗))− η2 · α

2
(f (θ)− f (θ∗))

)
.

Thus equivalently:

f
(
θ′
)
− f (θ∗) ≤ (f (θ)− f (θ∗))

(
1 +

12k∗

k − k∗ ·
1

ηα
− ηα

4

)
= (f (θ)− f (θ∗))

(
1 +

12k∗

k − k∗ · κ−
1

4κ

)
,

where κ = β/α = 1/(ηα). Since k ≥ k∗ ·
(
96κ2 + 1

)
we equivalently have that k∗

k−k∗ ≤
1

96k2
and thus

12k∗

k−k∗ · κ ≤
1
8κ

. Hence

f
(
θ′
)
− f (θ∗) ≤ (f (θ)− f (θ∗)) ·

(
1− 1

8κ

)
.

This shows that in O
(
κ ln

f(θ0)−f(θ∗)
ε

)
we reach a point θ such that f (θ)− f (θ∗) ≤ ε, which concludes the

proof.

We extend this proof to the stochastic version in Section A.5.

Now let us show how Corollary 1 follows from the same analysis.

Proof of Corollary 1. The proof extends from that to Theorem 1. The difference we need to handle is the error
introduced by performing ∆c passes through the data instead of a single stochastic gradient step. Suppose that
before starting the dense training phase, the current iterate is θ. The key is to bound the error introduced by
performing these ∆c passes instead of simply changing the iterate by −η∇f(θ), prior to applying the pruning
step. To do so we first upper bound the change in the iterate after ∆c passes, which lead to a new iterate θ̃. Since
we perform ∆c ·B iterations instead of a single one, we damp down our step size by setting η′ = η/(∆cB),

21

and measure the movement we made compared to the one we would have made with a single deterministic
gradient step.

Using the Lipschitz property of the functions in the decomposition, we see that each step changes our iterate by
at most η′L in `2 norm. Hence over ∆c passes through the data, each of which involves B mini-batches, the
total change in the iterate is at most:

‖θ̃ − θ‖ ≤ ∆c ·B · η′L = ηL .

Using the smoothness property of each fi this guarantees that for all the seen iterates θ̂, the gradients of fi’s
never deviate significantly from their values at the original point θ:

‖∇fi(θ̂)−∇fi(θ)‖ ≤ βηL ,

Thus if we interpret the scaled total movement in iterate 1
η

(θ − θ̃) as a gradient mapping, it satisfies∥∥∥∥1

η
(θ − θ̃)−∇f(θ)

∥∥∥∥ ≤ βηL .
Applying the analysis for the stochastic version of Theorem 1 we can treat the error in the gradient mapping
exactly as the stochastic noise. For the specific choice of step size used there η = 1/Θ(β), we thus get that∥∥∥∥1

η
(θ − θ̃)−∇f(θ)

∥∥∥∥2 = O(L2) ,

which enables us to conclude the analysis. Note that the steps performed during the sparse training phases do not
affect convergence as they can only improve error in function value, which is the main quantity that our analysis
tracks.

A.3 Stochastic IHT for Functions with Restricted Smoothness and Strong Convexity

Here we prove Theorem 2. Before proceeding with the proof, we provide a few useful statements related to the
fact that f is well conditioned along sparse directions.
Lemma 4. If f is (2k + k∗, β)-smooth and (k + k∗, α)-strongly convex then

f(θ∗) ≥ f(θ) + 〈∇f(θ)S∪S′∪S∗ , θ
∗ − θ〉+

α

2
‖θ − θ∗‖2 ,

f

(
θ − 1

β
∇f(θ)S∪S′∪S∗

)
≤ f(θ)− 1

2β
‖∇f(θ)S∪S′∪S∗‖2 .

Proof. The former follows directly from the definition. For the latter we have

f

(
θ − 1

β
∇f(θ)S∪S′∪S∗

)
≤ f(θ)− 1

β
〈∇f(θ),∇f(θ)S∪S′∪S∗〉+

β

2
‖∇f(θ)S∪S′∪S∗‖2

= f(θ)− 1

2β
‖∇f(θ)S∪S′∪S∗‖2 .

Finally we can prove the main statement:

Proof. We will track progress by measuring the distance‖θ − θ∗‖2. To do so we write∥∥θ′ − θ∗∥∥2 = ‖Tk (θ − ηgθ)− θ∗‖2

= ‖(θ − ηgθ − θ∗) + (Tk (θ − ηgθ)− (θ − ηgθ))‖2

=
∥∥(θ − ηgθ − θ∗)S′∪S∗ +

(
Tk
(
(θ − ηgθ)S′∪S∗

)
− (θ − ηgθ)S′∪S∗

)∥∥2 .
The last identity follows from the fact that the term inside the norm is only supported at S′ ∪ S∗. Thus, after
applying the triangle inequality, we obtain that:∥∥θ′ − θ∗∥∥2 ≤ (∥∥(θ − ηgθ)S′∪S∗ − θ

∗∥∥+
∥∥Tk ((θ − ηgθ)S′∪S∗)− (θ − ηgθ)S′∪S∗

∥∥)2 .
The second term can now be bounded using Lemma 1. Since the sparsity of the projected point is k + k∗ we
have that ∥∥Tk ((θ − ηgθ)S′∪S∗)− (θ − ηgθ)S′∪S∗

∥∥2 ≤ k + k∗ − k
k + k∗ − k∗

∥∥(θ − ηgθ)S′∪S∗ − θ
∗∥∥2

=
k∗

k
·
∥∥(θ − ηgθ)S′∪S∗ − θ

∗∥∥2 .
22

Therefore:∥∥θ′ − θ∗∥∥2 ≤ (1 +

√
s∗

s

)2

·
∥∥(θ − ηgθ)S′∪S∗ − θ

∗∥∥2 ≤ (1 +

√
s∗

s

)2

·
∥∥(θ − ηgθ)S∪S′∪S∗ − θ

∗∥∥2 .
The second inequality follows from the fact that as we increase the support of θ−ηgθ to also include S\(S′ ∪ S∗),
the norm inside can only increase. Finally by expanding, we write:∥∥(θ − ηgθ)S∪S′∪S∗ − θ

∗∥∥2 =
∥∥θ − η (gθ)S∪S′∪S∗ − θ

∗∥∥2
= ‖θ − θ∗‖2 − 2η

〈
(gθ)S∪S′∪S∗ , θ − θ

∗〉+ η2
∥∥(gθ)S∪S′∪S∗

∥∥2
≤ ‖θ − θ∗‖2 − 2η

〈
∇f (θ)S∪S′∪S∗ , θ − θ

∗〉+ 2η2
∥∥∇f (θ)S∪S′∪S∗

∥∥2
+ 2η

〈
(∇f (θ)− gθ)S∪S′∪S∗ , θ − θ

∗〉+ 2η2
∥∥(∇f (θ)− gθ)S∪S′∪S∗

∥∥2︸ ︷︷ ︸
ζ

,

where we use ζ to denote the error term introduced by using stochastic gradients. Next we bound the fist part of
the term above. To do so we use lemma to write

‖θ − θ∗‖2 − 2η
〈
∇f (θ)S∪S′∪S∗ , θ − θ

∗〉+ 2η2
∥∥∇f (θ)S∪S′∪S∗

∥∥2
≤‖θ − θ∗‖2 − 2η

(
f (θ)− f (θ∗)− α

2
‖θ − θ∗‖2

)
+ 2η2

∥∥∇f (θ)S∪S′∪S∗
∥∥2

= ‖θ − θ∗‖2 (1− ηα)− 2η
(
f (θ)− f (θ∗)− η

∥∥∇f (θ)S∪S′∪S∗
∥∥2)

= ‖θ − θ∗‖2 (1− ηα)− 2η

(
f (θ)− f (θ∗)− 1

2β

∥∥∇f (θ)S∪S′∪S∗
∥∥2)− 2η ·

(
1

2β
− η
)∥∥∇f (θ)S∪S′∪S∗

∥∥2
≤‖θ − θ∗‖2 (1− ηα)− 2η ·

(
1

2β
− η
)∥∥∇f (θ)S∪S′∪S∗

∥∥2 .
For the first inequality we used the restricted strong convexity property, while for the second we used the
restricted smoothness property. Now for the error term we have that:

E [ζ|θ] ≤ 2η2σ2 ,

which enables us to conclude that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
k∗

k

)2

·
(
‖θ − θ∗‖2 (1− ηα)− 2η ·

(
1

2β
− η
)∥∥∇f (θ)S∪S′∪S∗

∥∥2 + 2η2σ2

)
.

Setting η = 1
2β

this gives us that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
s∗

s

)2

·

(
‖θ − θ∗‖2

(
1− 1

2
· α
β

)
+

1

2

(
σ

β

)2
)
.

Thus for as long as ‖θ − θ∗‖2 ≥ 2 σ
2

αβ
we have that

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤

(
1 +

√
k∗

k

)2

·
(

1− 1

4
· α
β

)
· ‖θ − θ∗‖2 .

We see that the expected squared distance contracts by setting the ratio k/k∗ sufficiently large. Indeed if
k ≥ 81 (β/α)2 · k∗ we have that:

E
[∥∥θ′ − θ∗∥∥2 ∣∣∣∣θ] ≤ (1 +

1

9
· α
β

)2

·
(

1− 1

4
· α
β

)
· ‖θ − θ∗‖2 ≤

(
1− 1

36
· α
β

)
· ‖θ − θ∗‖2 .

Taking expectation over the entire history of iterates we can thus conclude that after T = O

(
β
α
· ln ‖θ0−θ

∗‖2
ε/β+σ2/αβ

)
iterations we obtain

E
[
‖θT − θ∗‖2

]
≤ ε

β
+

2σ2

αβ
.

Applying the restricted smoothness property, this also gives us that:

E [f (θT)− f (θ∗)] ≤ ε+
2σ2

α
.

which is what we wanted.

23

A.4 Finding a Sparse Nearly-Stationary Point

Here we prove Theorem 3. For simplicity, we first prove the deterministic version of the theorem, where σ = 0.
We show how to extend this proof to the stochastic version in Section A.5.

Proof. The proof is similar to that of Theorem 1, but in addition requires that the algorithm alternates standard
IHT steps with optimizing inside the support of the iterate. More precisely given a current iterate supported at S,
we additionally run an inner loop which optimizes only over the coordinate in S, seeking a near stationary point
θ such that

∥∥∇f (θ)S
∥∥ ≤ ε. Thus in our analysis we can assume that before performing a gradient, followed

by a pruning step, our current iterate supported at S satisfies
∥∥∇f (θ)S

∥∥ ≤ ε. Hence following the previous
analyses and setting η = 1/β, we have:

f
(
θ′
)
≤ f (θ) +

1

2η

(∥∥∥(θ − η∇f (θ))S\S′

∥∥∥2 − ∥∥η∇f (θ)S∪S′
∥∥2)

≤ f (θ) +
1

2η

(
2
∥∥θS\S′∥∥2 + 2η2ε2 − ‖η∇f (θ)‖2∞

)
.

For the second inequality we first applied triangle inequality together with the near stationarity condition for θ to
bound ∥∥∥(θ − η∇f (θ))S\S′

∥∥∥ ≤ ∥∥θS\S′∥∥+
∥∥∥η∇f (θ)S\S′

∥∥∥ ≤ ∥∥θS\S′∥∥+ ηε ,

then applied (a+ b)2 ≤ 2a2 + 2b2. In addition we used the fact that∥∥∇f (θ)S∪S′
∥∥
∞ = ‖∇f (θ)‖∞ .

This follows from a simple case analysis. If one of the coordinates of the gradient with the largest absolute
value lies in S ∪ S′, we are done. Otherwise, we have two possibilities. Either S′ is different from S, so
S ∪ S′ contains one coordinate outside of S. Since these coordinates are obtained by hard thresholding and θ is
supported only at S, the absolute value of∇f (θ) at the largest coordinate in S′ \ S must be at least as large as
the largest in S∗ \ S, which yields our claim. Otherwise we have that S = S′, which means that the pruning
step did not change the support, and thus∥∥η∇f (θ)S

∥∥
∞ ≤ min

i∈S
|θ − η∇f (θ)|i ≤ R∞ + ηε

which guarantees that

‖∇f (θ)‖∞ = max
{∥∥∇f (θ)S

∥∥
∞ ,
∥∥∇f (θ)S

∥∥
∞

}
≤ max

{
ε, ε+

R∞
η

}
= ε+ βR∞ ,

and so we are done.

In the former case we thus see that

η

2
‖∇f (θ)‖2∞ ≤ f (θ)− f

(
θ′
)

+

(∥∥θS\S′∥∥2
η

+ ηε2
)
≤ f (θ)− f

(
θ′
)

+

(
kR2
∞

η
+ ηε2

)
.

Telescoping over T iterations we see that

η

2

T−1∑
t=0

‖∇f (θt)‖2∞ ≤ f (θ0)− f (θT) + T ·
(
kR2
∞

η
+ ηε2

)
and so returning a random point θ among those witnessed during the algorithm we have

E
[
‖∇f (θ)‖2∞

]
≤ 2 (f (θ0)− f (θT))

ηT
+ 2

(
kR2
∞

η2
+ ε2

)
By AM-QM,

E
[
‖∇f (θ)‖∞

]
≤
√

E
[
‖∇f (θ)‖2∞

]
,

which enables us to conclude that after sufficiently many iterations we are guaranteed to find a point such that

‖∇f (θ)‖∞ = O

(
R∞
√
k

η
+ ε

)
= O

(
βR∞

√
k + ε

)
.

24

A.5 Deferred Proofs

Proof of Lemma 1. Our proofs crucially rely on the following lemma. Intuitively it shows that projecting a
vector θ onto the non-convex set of sparse vectors does not increase the distance to the optimum by too much.
While this is indeed always true for projections onto convex sets, in this case we can provably show that the
possible increase in distance is small.

Proof. We have that the function

h(k) =
‖Tk (θ)− θ‖2

n− k
is non-increasing. Indeed, using more nonzeros can only decrease the ratio. Thus

‖Tk (θ)− θ‖2

n− k ≤ ‖Tk
∗ (θ)− θ‖2

n− k∗ ≤ ‖θ
∗ − θ‖2

n− k∗ ,

where the last inequality follows from the fact that among all k-sparse vectors, Tk (θ) minimizes the distance to
θ.

Proof of Theorem 1 (stochastic version). Next we extend the proof of Theorem 1 to the case when only
stochastic gradients are available.

Proof. Similarly to before we can write

f
(
θ′
)
≤ f (θ) +

β

2

∥∥∥∥ 1

β
∇f (θ) + (Tk (θ − ηgθ)− θ)

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥(Tk (θ − ηgθ)−
(
θ − 1

β
∇f (θ)

))
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) +
β

2

(∥∥(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′
∥∥+

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥)2

− 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) + β
∥∥(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′

∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2

= f (θ) + β
∥∥∥(θ − ηgθ)S\S′

∥∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2 .

Next we apply Corollary 2 to further bound∥∥∥(θ − ηgθ)S\S′
∥∥∥2 ≤ 2 |S∗|+ |supp (θ∗)|

|S′| − |supp (θ∗)| ·
∥∥(θ − ηgθ)T − θ

∗∥∥2 − ∥∥η (gθ)S∗
∥∥2 +

∥∥η (gθ)S∪S′
∥∥2

=
3k∗

k − k∗ ·
∥∥(θ − ηgθ)T − θ

∗∥∥2 − ∥∥η (gθ)S∗
∥∥2 +

∥∥η (gθ)S∪S′
∥∥2 ,

where |T | ≤ 3k∗ + k. Thus

f
(
θ′
)
≤ f (θ) + β

(
3k∗

k − k∗ ·
∥∥(θ − ηgθ)T − θ

∗∥∥2 − ∥∥η (gθ)S∗
∥∥2 +

∥∥η (gθ)S∪S′
∥∥2)

+ β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2 .

Taking expectations, and applying Lemma 5 we see that

E
[
f
(
θ′
)
− f∗|θ

]
≤ E [f (θ)− f∗|θ]

+ β

(
3k∗

k − k∗ ·
∥∥(θ − η∇f (θ))T − θ

∗∥∥2 − ∥∥η∇f (θ)S∗
∥∥2 +

∥∥η∇f (θ)S∪S′
∥∥2)

+ β

∥∥∥∥(η∇f (θ)− 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2 + 2βη2σ2

= E [f (θ)− f∗|θ] + β

(
3k∗

k − k∗ ·
∥∥(θ − η∇f (θ))T − θ

∗∥∥2 − ∥∥η∇f (θ)S∗
∥∥2)

+
∥∥∇f (θ)S∪S′

∥∥2(βη2 + β

(
η − 1

β

)2

− 1

2β

)
+ 2βη2σ2

≤ E [f (θ)− f∗|θ] + β

(
3k∗

k − k∗ ·
∥∥(θ − η∇f (θ))T − θ

∗∥∥2 − ∥∥η∇f (θ)S∗
∥∥2)+ 2βη2σ2 ,

25

where the last inequality follows from setting η = 1
2β

, which makes βη2 + β
(
η − 1

β

)2
− 1

2β
= 0.

Finally, repeating the argument used for the deterministic proof in Section A.2, we further bound

E
[
f
(
θ′
)
− f∗|θ

]
≤ f (θ)− f∗ + β

(
3k∗

k − k∗ ·
8

α
(f (θ)− f (θ∗))− η2 · α

2
(f (θ)− f (θ∗))

)
+ 2βη2σ2

= (f (θ)− f∗)
(

1 +
24k∗

k − k∗ ·
β

α
− βη2α

2

)
+ 2βη2σ2

= (f (θ)− f∗)
(

1 +
24k∗

k − k∗ ·
β

α
− α

8β

)
+
σ2

2β
.

Setting k = k∗ ·
(

384
(
β
α

)2
+ 1
)

we have 24k∗

k−k∗ ·
β
α
≤ 24 · 1

384·(β/α)2 ·
β
α

= 1
16
· α
β

, so

E
[
f
(
θ′
)
− f∗|θ

]
≤ (f (θ)− f∗)

(
1− α

16β

)
+
σ2

2β
.

Thus for as long as
σ2

2β
≤ (f (θ)− f∗) · α

32β
⇐⇒ f (θ)− f∗ ≥ 16 · σ

2

α

one has that

E
[
f
(
θ′
)
− f∗|θ

]
≤ (f (θ)− f∗)

(
1− α

32β

)
.

Taking expectation over the entire history, this shows that after T = O
((

β
α

)
ln f(θ0)−f∗

ε

)
iterations we obtain

an iterate θT such that

E [f (θT)− f∗] ≤ ε+
16σ2

α
,

which concludes the proof.

Proof of Theorem 3 (stochastic version). We also provide the proof for the stochastic version of
Theorem 3.

Proof. We follow the steps of the proof provided in Section A.4. More precisely we write:

f
(
θ′
)
≤ f (θ) +

β

2

∥∥∥∥ 1

β
∇f (θ) + (Tk (θ − ηgθ)− θ)

∥∥∥∥2 − 1

2β
‖∇f (θ)‖2

= f (θ) +
β

2

∥∥∥∥(Tk (θ − ηgθ)−
(
θ − 1

β
∇f (θ)

))
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) +
β

2

(∥∥(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′
∥∥+

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥)2

− 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) + β
∥∥(Tk (θ − ηgθ)− (θ − ηgθ))S∪S′

∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2

= f (θ) + β
∥∥∥(θ − ηgθ)S\S′

∥∥∥2 + β

∥∥∥∥(ηgθ − 1

β
∇f (θ)

)
S∪S′

∥∥∥∥2 − 1

2β

∥∥∇f (θ)S∪S′
∥∥2 ,

where we used the inequality (a+ b)2 ≤ 2a2 +2b2. Applying Lemma 5 and using the fact that
∥∥∇f (θ)S

∥∥ ≤ ε,
we see that setting η = 1/β we obtain:

E
[
f
(
θ′
)]
≤ f (θ) + β

(∥∥∥(θ − η∇f (θ))S\S′

∥∥∥2 + σ2

)
+ β

(∥∥∥∥((η − 1

β

)
∇f (θ)

)
S∪S′

∥∥∥∥2 + σ2

)
− 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) + 2β

(∥∥θS\S′∥∥2 +
ε2

β2
+ σ2

)
− 1

2β

∥∥∇f (θ)S∪S′
∥∥2

≤ f (θ) + 2β

(
kR2
∞ +

ε2

β2
+ σ2

)
− 1

2β
‖∇f (θ)‖2∞ ,

26

where again we used the fact that
∥∥∇f (θ)S∪S′

∥∥
∞ = ‖∇f (θ)‖∞, unless ‖∇f (θ)‖∞ ≤

R∞
η

= βR∞. Thus,
telescoping over T iterations we see that

1

2β

T−1∑
t=0

‖∇f (θt)‖2∞ ≤ f (θ0)− f (θT) + T · 2β
(
kR2
∞ + β−2ε2 + σ2)

and so returning a random point θ among those witnessed during the algorithm we have

E
[
‖∇f (θ)‖2∞

]
≤ 2β (f (θ0)− f (θT))

T
+ 2

(
β2kR2

∞ + ε2 + β2σ2)
By AM-QM,

E
[
‖∇f (θ)‖∞

]
≤
√

E
[
‖∇f (θ)‖2∞

]
which enables us to conclude that after sufficiently many iterations we are guaranteed to find a point such that

‖∇f (θ)‖∞ = O
(
βR∞

√
k + βσ + ε

)
.

Miscellaneous Proofs.
Lemma 5. Let σ > 0 and let gθ be a stochastic gradient satisfying standard conditions:

E[gθ|θ] = ∇f(θ)],

and
E[‖gθ −∇f(θ)‖2] ≤ σ2 .

Then for any vector a ∈ RN and any subset S of coordinates:∥∥(∇f (θ) + a)S
∥∥2 ≤ E

[∥∥(gθ + a)S
∥∥2 ∣∣∣∣θ] ≤ ∥∥(∇f (θ) + a)S

∥∥2 + σ2 .

Proof. We expand the norm under the expected value as:

E
[∥∥(gθ + a)S

∥∥2 ∣∣∣∣θ] = E
[∥∥(∇f (θ) + a)S + (gθ −∇f (θ))S

∥∥2 ∣∣∣∣θ]
= E

[∥∥(∇f (θ) + a)S
∥∥2 +

∥∥(gθ −∇f (θ))S
∥∥2 + 2

〈
(∇f (θ) + a)S , (gθ −∇f (θ))S

〉 ∣∣∣∣θ]
=
∥∥(∇f (θ) + a)S

∥∥2 + E
[∥∥(gθ −∇f (θ))S

∥∥2 ∣∣∣∣θ]
+ E

[
2
〈
(∇f (θ) + a)S , (gθ −∇f (θ))S

〉 ∣∣∣∣θ]
≤
∥∥(∇f (θ) + a)S

∥∥2 + σ2 .

From the the chain of equalities above, we can trivially lower bound the expectation by
∥∥(∇f (θ) + a)S

∥∥2 ,
which gives us what we needed.

A crucial step in the proof of Theorem 1 requires upper bounding the `2 distance to the closest global optimizer by
the difference in function value. In general, it is known that this is implied by the Polyak-Łojasiewicz condition,
and so it automatically holds for the stronger concentrated Polyak-Łojasiewicz condition. We reproduce the
proof from [34] for completeness.

Lemma 6. (From Polyak-Łojasiewicz to quadratic growth) Let f : RN → R be a function satisfying the
Polyak-Łojasiewicz inequality

‖∇f (θ)‖2 ≥ α

2
(f (θ)− f∗) .

Then there exists a global minimizer θ∗ of f such that

f (θ)− f∗ ≥ α

8
‖θ − θ∗‖2 .

Proof. Let g (θ) =
√
f (θ)− f∗ for which we have

∇g (θ) =
1

2
√
f (θ)− f∗

∇f (θ) .

27

Using the PL condition we have

‖∇g (θ)‖2 =
1

4 (f (θ)− f∗) · ‖∇f (θ)‖2 ≥ 1

4 (f (θ)− f∗) ·
α

2
· (f (θ)− f∗) =

α

8
.

Now starting at some θ0, we consider the dynamic θ̇ = −∇g (θ). We see that this always decreases function
value until it reaches some θT for which ∇g (θT) = 0 and hence by the PL inequality, θT is a minimizer i.e.
f (θT) = f∗. Now we can write

g (θT) = g (θ0) +

∫ T

0

〈
∇g (θt) , θ̇t

〉
dt = g (θ0) +

∫ T

0

〈∇g (θt) ,−∇g (θt)〉 dt

= g (θ0)−
∫ T

0

‖∇g (θt)‖2 dt .

Thus

g (θ0)− g (θT) =

∫ T

0

‖∇g (θt)‖2 dt ≥
√
α

8
·
∫ T

0

‖∇g (θt)‖ dt =

√
α

8
·
∫ T

0

∥∥∥θ̇t∥∥∥ dt ,
where we used our lower bound on the norm of ∇g (θ). Finally, we use the fact that the last integral lower
bounds the total movement of θ as it moves from θ0 to θT . Thus∫ T

0

∥∥∥θ̇t∥∥∥ dt ≥ ‖θ0 − θT ‖ ,
so

g (θ0)− g (θT) ≥
√
α

8
‖θ0 − θT ‖ ,

which enables us to conclude that
f (θ0)− f∗ ≥ α

8
‖θ0 − θT ‖2 ,

where θT is some global minimizer of f . This concludes the proof.

B Additional Experiments

B.1 CIFAR-100 Experiments

We tested the IHT pruning algorithm on the CIFAR-100 dataset [36]. We used the WideResNet-28-10 architecture
[59], which to our knowledge gives state-of-the-art performance on this dataset. Models were trained for a fixed
200 epochs, using Stochastic Gradient Descent (SGD) with momentum, and a stepwise decreasing learning
rate scheduler. For our main experiment, after a warm-up period of ten epochs, we alternated sparse and dense
phases of 20 epochs until epoch 170, at which point we allowed the sparse model to train to convergence for 30
more epochs. In addition, we found a small benefit to resetting momentum to 0 at each transition from sparse to
dense, and we have done so throughout the trials. These experiments were replicated starting from three different
seeds, and we report average results and their standard deviations, and they are shown in table 5 in rows labeled
"AC/DC-20".

We further explored the possibility of using even smaller dense phases to further reduce training FLOPs. These
trials, presented in 5 show the results of reducing the sparse phase from 20 to 14 or even 7 epochs while keeping
the length of dense phases the same, but increasing the number of total epochs to roughly match overall FLOPs
(thus increasing the number of sparse and dense phases); overall we train the AC/DC-14 runs for 225 epochs
and AC/DC-7 runs for 240 epochs (vs 200 for AC/DC-20). Our experiments show that it is possible to obtain
competitive accuracy results with shorter dense phases, and, at higher sparsities, a further FLOP reduction -
however, reducing the dense phase too much may lead to some accuracy degradation at higher sparsities. These
results suggest that a further reduction in FLOPs is possible by adjusting the length of the dense phase and the
overall epochs. We emphasize that (i) these gains are only theoretical until hardware is available that can take
advantage of sparsity in training and (ii) these results, although promising, are highly preliminary; additionally,
each trial was only run once due to timing constraints.

We compare our results with Gradual Magnitude Pruning [62]. To our knowledge, we are the first to release
CIFAR-100 pruning results for this network architecture, and GMP was chosen as a baseline due to its generally
strong performance against a range of other approaches [21]. We obtain the GMP baseline by training on
WideResNet architecture at full density for 50 epochs, then gradually increase the sparsity over the next 100
before allowing the model to converge for the final 50, matching the 200 training epochs of AC/DC. We further
validated this baseline by training dense WideResNet-28-10 models for 200 epochs and then gradually pruning
over 50 and finetuning over 50 more, for a total of 300 epochs, which gave similar performance at the cost of
greater FLOPs and training time.

The results are shown in Table 5. We see that AC/DC pruning significantly outperforms Gradual Magnitude
Pruning at all sparsity levels tested, and further that AC/DC models pruned at 50% and 75% even outperform
the dense baseline, while the models pruned at 90% at least match it.

28

Table 5: CIFAR-100 Sparsity results on WideResNet

Method Top-1
Acc. (%) Sparsity GFLOPs

Inference
EFLOPs

Train

Dense 79.0± 0.25 0% 11.9 0.36

AC/DC-20 79.6± 0.17 49.98% 0.50× 0.72×
AC/DC-14 79.99 49.98% 0.50× 0.75×
AC/DC-7 79.92 49.98% 0.49× 0.73×

GMP 79.2± 0.17 49.98% 0.46× 1.64×
AC/DC-20 80.0± 0.17 74.96% 0.29× 0.6×
AC/DC-14 79.5 74.96% 0.29× 0.59×
AC/DC-7 79.7 74.96% 0.29× 0.54×

GMP 78.9± 0.14 74.96% 0.26× 1.52×
AC/DC-20 79.1± 0.07 89.96% 0.14× 0.51×
AC/DC-14 79.0 89.96% 0.14× 0.47×
AC/DC-7 78.4 89.96% 0.14× 0.39×

GMP 77.7± 0.23 89.96% 0.08× 1.44×
AC/DC-20 78.2± 0.12 94.95% 0.08× 0.47×
AC/DC-14 78.5 94.95% 0.08× 0.41×
AC/DC-7 77.8 94.95% 0.08× 0.33×

GMP 76.6± 0.07 94.95% 0.07× 1.41×

0 20 40 60 80 100 120 140 160 180 200
Epoch

20

40

60

80

Va
lid

at
io

n
Ac

c.
 (%

)

50 % Sparsity
75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Sparsity pattern and test accuracy

50 90 130 170
Epoch

0

10

20

30

40

M
as

k
di

ffe
re

nc
e

(%
) 95 %

90 %
75 %
50 %

(b) Relative change in consecutive masks

Figure 4: Validation accuracy and sparsity during training, together with differences in consecutive
masks for WideResNet on CIFAR-100 using AC/DC.

B.2 ResNet50 on ImageNet

Performance of dense models. The AC/DC method has an advantage over other pruning methods of obtaining
both sparse and dense models. The performance of the dense baseline can be recovered after fine-tuning the
resulting AC/DC dense model, for a small number of epochs. Namely, we start from the best dense baseline,
which is usually obtained after 85 epochs, and replace the final compression phase of 15 epochs with regular
dense training; we use the same learning rate scheduler and keep all other training hyper-parameters the same.
For 80% sparsity we recover the dense baseline accuracy completely, while for 90% we are slightly below the
baseline by 0.3%. We note that for 90% sparsity, when the first and last layers are dense, our fine-tuned dense
model recovers the baseline accuracy fully. The results for the dense models, together with the baseline accuracy,
are presented in Table 6, where (?) denotes that the first and last layers of the network are dense.

Table 6: AC/DC Dense ResNet50

Target
Sparsity

Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 76.84 -
80% 73.82± 0.02 76.83± 0.07
90% 73.25± 0.16 76.56± 0.1
90%? 73.66 76.85

Table 7: AC/DC Dense MobileNetV1

Sparsity Accuracy
Dense (%)

Accuracy
Finetuned (%)

0% 71.78 -
75% 68.55± 0.2 71.63± 0.1
90% 67.47± 0.13 70.86± 0.08
90%? 67.65 70.97

29

0 10 20 30 40 50 60 70 80 90 100
Epoch

20
30
40
50
60
70

Va
lid

at
io

n
Ac

c.
 (%

)
80 % Sparsity
90 % Sparsity
95 % Sparsity
98 % Sparsity
Compressed
Decompressed

(a) Sparsity pattern and test accuracy

20 30 40 50 60 70 85
Epoch

0

5

10

15

M
as

k
di

ffe
re

nc
e

(%
) 80 %

90 %
95 %
98 %

(b) Relative change in consecutive masks

Figure 5: Validation accuracy and sparsity during training, together with differences in consecutive
masks for ResNet50 on ImageNet using AC/DC.

(a) Test FLOPs after each sparse phase (b) Test FLOPs after each dense phase

Figure 6: Dynamics of sparse and dense inference FLOPs for ImageNet on ResNet50, as a percentage
of the dense baseline FLOPs

Moreover, an interesting property of AC/DC is that the resulting dense networks have a small percentage of
zero-valued weights, as shown in Table 8. This is most likely caused by “dead” neurons or convolutional filters
resulted after each compression phase; the corresponding weights do not get re-activated during the dense stages,
as they can no longer receive gradients. This can be easily seen particularly for high sparsity (95% and 98%)
where a non-trivial percentage of the weights remain inactive.

Dynamics of masks and FLOPs during training. The mask dynamics, measured by the relative change
between two consecutive compression masks, have an important influence on the AC/DC training process.
Namely, more changes between consecutive compression masks typically imply more exploration of the weights’
space, and faster recovery from sub-optimal pruning decision, which in turn results in more accurate sparse
models. As can be seen in Figure 5b, the relative mask difference between consecutive compression phases
decreases during training, but it is critical to be maintained at a non-trivial level. For completeness, we also
included the evolution of the validation accuracy during AC/DC training, for all sparsity levels (please see
Figure 5a); at 98% sparsity in particular, it is easiest to see that dense phases enable the exploration of better
pruning masks, which ensure that the sparse model improves continuously during training.

Despite the dynamics of the compression masks, we noticed that the sparsity distribution does not change
significantly. This can be observed from the number of inference FLOPs per sample, at the end of each
compression phase, in Figure 6a. Interestingly, as training progresses, AC/DC also induces structured sparsity,
as more neurons and convolutional filters get pruned. This was previously discussed in more detail (see Table 8),
but can also be deduced from the decreasing inference FLOPs at the end of each dense phase, as shown in
Figure 6b.

Table 8: Accuracy, sparsity, inference FLOPs and percentage of inactive weights for the resulting
AC/DC dense models on ResNet50 (before fine-tuning, one seed).

Target
Sparsity

Top-1
Accuracy (%)

Inference
FLOPs

Inactive
Weights (%)

80 73.8 0.98× 3.2
90 73.1 0.93× 10.5
95 72.9 0.85× 22.0
98 70.8 0.67× 49.8

30

Table 9: AC/DC with uniform vs global magnitude pruning on ResNet50 (one seed), where (?)
denotes that the first and last layers are dense.

Sparsity
Distribution

Target
Sparsity(%)

Global
Sparsity(%)

Top-1
Accuracy (%)

FLOPs
Inference

global 90 89.8 75.14 0.18×
global? 90 82.6 75.64 0.21×

uniform? 90 82.6 75.04 0.13×
global 95 94.8 73.15 0.11×
global? 95 87.2 74.16 0.13×

uniform? 95 87.2 73.28 0.08×

AC/DC with uniform pruning. As discussed, for example, in [52], global magnitude pruning usually performs
better than its uniform counterpart. Interestingly, with global magnitude pruning later layers (which also tend to
be the largest) are pruned the most. Moreover, we did not encounter convergence issues caused by entire layers
being pruned, as hypothesized in some previous work [16, 32]. However, one concern related to global magnitude
pruning is a potential FLOP inefficiency of the resulting models; in theory, this would be a consequence of
the earlier layers being pruned the least. For this reason, we performed additional experiments with AC/DC at
uniform sparsity, with the first and last layers dense (as commonly used in the literature [16, 32]). Our results
show that there are no significant differences compared to AC/DC with global magnitude pruning. However,
keeping the first and last layers dense significantly improves the results with global magnitude pruning. These
observations emphasize that AC/DC is an easy-to-use method which works reliably well with different pruning
criteria. For complete results, please see Table 9.

Direct comparison with Top-KAST. As previously highlighted, Top-KAST is the closest to us, in terms of
validation accuracy, out of existing sparse training methods. However, for the results reported, the authors kept
the first convolutional and final fully-connected layers dense. To obtain a fair comparison, we used AC/DC on
the same sparse distribution, and for 90% sparsity over the pruned layers (82.57% overall network sparsity),
our results improved significantly. Namely, the best sparse model reached 75.64% validation accuracy (0.6%
increase from the results in Table 1), while the accuracy of the best dense model was 76.85% after fine-tuning.
For more details, we also provide in Table 10 the results for Top-KAST when all layers are pruned, as they were
provided to us by the authors. Notice that AC/DC surpasses even Top-KAST with dense back-propagation.

It is important to note, however, that because of its flexibility in choosing the gradients density, Top-KAST can
theoretically obtain significantly better training speed-ups than AC/DC, the latter being constrained by its dense
training phases. This allows Top-KAST to improve the accuracy of the models by increasing the number of
training epochs, while still enabling (theoretical) training speed-up. We present in Table 11 another comparison
between AC/DC and Top-KAST, when the training time for the latter is increased 2 or 5 times; for all results
(which were provided to us by the authors), the first and last layers for Top-KAST are dense. When comparing
with AC/DC with all layers pruned, Top-KAST obtains better results at 98% and 95% sparsity, with increased
training epochs. However, when using the same sparse distribution as Top-KAST (not pruning the first and last
layers), the results for AC/DC at 95% and 98% sparsity are significantly better than Top-KAST with increased
steps. For all the results reported on AC/DC the number of training steps was fixed at 100 epochs.

We note that the results obtained with AC/DC can be improved as well with increased number of training epochs.
As an example, when using the same sparsity schedule extended over 150 epochs, the best sparse model obtained
with AC/DC on 90% sparsity reached 75.99% accuracy, using fewer training FLOPs compared to the original
dense baseline trained on 100 epochs (namely 87%). Furthermore, when we fine-tune the dense model by
replacing the final 15 epochs compression phase with dense training, we obtain a dense model with 76.95%
accuracy, higher than the original dense baseline.

B.3 MobileNet on ImageNet

Performance of dense models. Similar to ResNet50, we observed that dense models obtained with AC/DC
are able to recover the baseline accuracy after additional fine-tuning. We performed fine-tuning identically to
the ResNet50 experiments and observe that AC/DC models obtained with a 75% target sparsity recovered the
baseline accuracy, while for 90% the gap is just below 1%. We present results for the (fine-tuned) dense models
in Table 7, where (?) indicates that the first layer and depth-wise convolutions were never pruned.

Masks dynamics. Similar to ResNet50, the change between consecutive AC/DC compression masks plays an
important role in obtaining accurate sparse models on MobileNet. As shown in Figure 7b, the compression masks
stabilize as training progresses. For completeness, we also illustrate the evolution of the validation accuracy
during AC/DC training on MobileNet, at 75% and 90% sparsity, in Figure 7a.

31

Table 10: Comparison with Top-KAST when pruning all layers (ResNet50)

Method Sparsity (%) Backward
Sparsity (%)

Sparse Top-1
Accuracy (%)

AC/DC 80 80 / 0 76.3± 0.1
Top-KAST 80 0 75.64
Top-KAST 80 50 74.78
Top-KAST 80 80 72.19

AC/DC 90 90 / 0 75.03± 0.1
Top-KAST 90 0 74.42
Top-KAST 90 50 74.09
Top-KAST 90 80 73.07

Table 11: Comparison with Top-KAST with increased training steps (ResNet50). (?) indicates that
the first and last layers are dense for AC/DC, while this is the case for all Top-KAST results.

Method Sparsity
(%)

Backward
Sparsity (%)

Sparse Top-1
Accuracy (%)

Train
FLOPs (%)

Inference
FLOPs (%)

AC/DC 80 80 / 0 76.3± 0.1 0.65× 0.29×
Top-KAST1× 80 0 75.59 0.48× 0.23×
Top-KAST1× 80 60 74.59 0.29× 0.23×
Top-KAST2× 80 0 76.11 0.97× 0.23×
Top-KAST2× 80 60 75.29 0.58× 0.23×

AC/DC 90 90 / 0 75.03± 0.1 0.58× 0.18×
AC/DC? 90 90 / 0 75.64 0.6× 0.21×

AC/DC? unif. 90 90/0 75.04 0.55× 0.13×
Top-KAST1× 90 0 74.65 0.42× 0.13×
Top-KAST1× 90 80 73.03 0.16× 0.13×
Top-KAST2× 90 0 75.35 0.84× 0.13×
Top-KAST2× 90 80 74.16 0.32× 0.13×

AC/DC 95 95 / 0 73.14± 0.2 0.53× 0.11×
AC/DC? 95 95 / 0 74.16 0.54× 0.13×

AC/DC? (unif) 95 95 / 0 73.28 0.5× 0.08×
Top-KAST1× 95 0 71.83 0.39× 0.08×
Top-KAST1× 95 90 70.42 0.1× 0.08×
Top-KAST2× 95 0 73.29 0.77× 0.08×
Top-KAST2× 95 90 72.42 0.19× 0.08×
Top-KAST5× 95 0 74.27 1.94× 0.08×
Top-KAST5× 95 90 73.17 0.48× 0.08×

AC/DC 98 98 / 0 68.44± 0.09 0.46× 0.06×
AC/DC? 98 98 / 0 71.27 0.47× 0.08×

Top-KAST1× 98 90 67.06 0.08× 0.05×
Top-KAST1× 98 95 66.46 0.06× 0.05×
Top-KAST2× 98 90 68.99 0.15× 0.05×
Top-KAST2× 98 85 68.87 0.12× 0.05×

32

0 10 20 30 40 50 60 70 80 90 100
Epoch

20

30

40

50

60

70

Va
lid

at
io

n
Ac

c.
 (%

)
75 % Sparsity
90 % Sparsity
Compressed
Decompressed

(a) Sparsity pattern and test accuracy

20 30 40 50 60 70 85
Epoch

5

10

15

20

M
as

k
di

ffe
re

nc
e

(%
) 75 %

90 %

(b) Relative change in consecutive masks

Figure 7: Validation accuracy and sparsity during training, together with differences in consecutive
masks for ImageNet with MobileNetV1 using AC/DC.

Table 12: Comparison between AC/DC and RigL on MobileNet, where (?) denotes that the first and
depth-wise convolutions were kept dense.

Method Sparsity (%) Top-1
Accuracy (%)

Inference
FLOPs

Train
FLOPs

AC/DC 75 70.3 0.34× 0.64×
AC/DC? 75 70.41 0.36× 0.66×

RigL? (ERK) 75 68.39 0.52× 0.52×
RigL?2×(ERK) 75 70.49 0.52× 1.05×
RigL?5×(ERK) 75 71.9 0.52× 2.63×

AC/DC 90 66.08 0.18× 0.56×
AC/DC? 90 66.56 0.21× 0.58×

RigL?(ERK) 90 63.58 0.27× 0.29×
RigL?2×(ERK) 90 65.92 0.27× 0.59×
RigL?5×(ERK) 90 68.1 0.27× 1.47×

Comparison with RigL. We note that the results obtained by RigL [16] improve significantly when increasing
the number of training steps 2 or 5 times. Moreover, for all results reported with RigL on MobileNet the first
convolutional layer and all depth-wise convolutions are dense, whereas we do not impose such restrictions on
our sparse model. Our results can further be improved by using the same sparsity distribution; namely, for 90%
sparsity over the pruned parameters (88.57% overall sparsity), the best sparse model obtained with AC/DC
achieved 66.56% accuracy (0.5% improvement), while the best dense improved from 67.64% to 70.97% after
fine-tuning. In Table 12 we present results for AC/DC and RigL at 75% and 90% sparsity, when the latter is
trained over the same number of epochs, or with 2x or 5x the number of passes through the training data. We
conclude that AC/DC has very similar validation accuracy to RigL2×. For 75% sparsity, AC/DC achieves similar
performance with significantly fewer training and inference FLOPs than RigL. At 90% sparsity, AC/DC and
RigL2× are close in terms of both validation accuracy and training FLOPs; however, the validation accuracy of
AC/DC can be improved by almost 0.5% when the first and depth-wise convolutional layers are kept dense. We
note that RigL5× has significantly higher validation accuracy, and for 75% sparsity it even matches the baseline;
however, this variant of RigL also uses 2.6× and 1.5× the dense baseline training FLOPs for 75% and 90%
sparsities, respectively, which makes it impractical due to its high computational training cost.

B.4 Inference Speedups

We now examine the potential for real-world speedup of models produced through our framework. For this, we
use the CPU-based inference framework of [12], which supports efficient inference over unstructured sparse
models, and is free to use for non-commercial purposes. Specifically, we export our Pytorch-trained models to
the ONNX intermediate format, preserving weight sparsity, and then execute inference on a subset of samples,
at various batch sizes, measuring time per batch. We execute on an Intel i9-7980XE CPU with 16 cores and
2.60GHz core frequency. We simulate two scenarios: the first is real-time inference, i.e. samples are processed
one at a time, in a resource-constrained environment, using only 4 cores. The second is batch inference, for
which we pick batch size 64, in a cloud environment, for which we use all 16 cores. We measure average time
per batch for the sparse models against dense baselines, for which we use both the Deepsparse engine, and the
ONNX runtime (ONNXRT). We present the average over 10 runs. The variance is extremely low, so we omit it
for readability.

33

Table 13: Time per batch (milliseconds) using a sparse inference engine [12].
Model/Setup Real-Time Inference, 4 cores Batch 64 Inference, 16 cores

ResNet50 ONNXRT v1.6 14.773 329.734
ResNet50 Dense 15.081 285.958

ResNet50 90% Pruned 9.46 124.193
ResNet50 90% Unif. Pruned 8.495 116.897

MobileNetV1 ONNXRT v1.6 2.552 80.748
MobileNetV1 Dense 2.513 55.845

MobileNetV1 Pruned 75% 1.96 40.976
MobileNetV1 Pruned 90% 1.468 34.909

Table 14: Sample agreement between ResNet50 sparse and dense models

Method Sparsity Sparse Top-1
Accuracy (%)

Dense Top-1
Accuracy (%)

Sparse-Dense
Agreement (%)

Sparse-Dense
Cross-entropy

AC/DC 80% 76.3± 0.1 76.8± 0.07 89.8± 0.3 0.85± 0.005
SparseVD 80% 75.3 75.2 98.6 -

GMP 80% 76.4 76.9 86.0 1.03

AC/DC 90% 75.0± 0.1 76.6± 0.09 86.8± 1.5 1.02± 0.004
SparseVD 90% 73.8 73.6 98.3 -

GMP 90% 74.7 76.9 83.5 1.29

We now briefly discuss the results. First, notice that the dense baselines offer similar performance for real-time
inference, but that the Deepsparse engine has a slight edge at batch 64. We will therefore compare against its
timings below. The results show a speedup of 1.6x for the 90% global-pruned ResNet50 model, and 1.8x for
the uniformly pruned one: the uniformly-pruned model is slightly faster, which correlates with its lower FLOP
count due to the uniform pruning pattern. This pattern is preserved in MobileNetV1 experiments, although
the speedups are relatively lower, since the architecture is more compact. We note that the speedups are more
significant for batched inference, where the engine has more potential for parallelization, and our setup uses
more cores.

B.5 Sparse-Dense Output Comparison

To the best of our knowledge, our results are the first ones to show that both a dense and a sparse model can be
trained jointly. Although other sparse training techniques such as RigL or Top-KAST can train sparse models
faster, none of them offer the additional benefit of an accurate dense model.

One method that does generate sparse-dense model couples is Sparse Variational Dropout (SparseVD) [46];
there, after training a dense model with variational inference, a large proportion of the weights can be pruned
in a single step, without affecting the accuracy of the dense model. (We note however that Sparse Variational
Dropout doubles the FLOP cost of training, due to the variational parameters.) However, our investigation of the
SparseVD models trained by [21] shows that the sparse and dense models agree in over 98% of their predictions
as measured on the ImageNet validation set, and are of no better quality than the sparse model - if anything, they
are slightly worse. Please see Table 14 for complete results.

In comparison, AC/DC with finetuning produces dense models of validation accuracy that is comparable to that
of a dense model trained without any compression, and that therefore do differ from their sparse co-trained
counterparts. To understand the relative sizes of these differences, we used GMP pruning as the baseline. In
particular, we compared the similarity of a fully trained dense model with GMP trained over 100 epochs. We
note AC/DC and GMP show comparable accuracy for both their sparse and dense models in this scenario;
however, the total training epochs are substantially lower for producing these models with AC/DC.

We use two metrics to investigate the difference in sparse-dense model pairs: the proportion of validation
examples on which the top prediction agreed between the two models, and the average cross-entropy of the
predictions across all validation examples. In both metrics, Table 14 shows that model similarity is higher for
80% sparsity than 90%, and higher for AC/DC than GMP training: in particular, sparse/dense cross-entropy is
about 20% lower for AC/DC, and the number of top-prediction disagreements is about 25% lower for AC/DC at
90% sparsity, and 37% lower for AC/DC at 80% sparsity.

34

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

100

Ac
c.

(%
)-

ra
nd

om
 la

be
ls

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Accuracy on the mis-labelled data

10 30 50 70 90 110 130 150 170 190
Epoch

20

40

60

80

Ac
c.

(%
)-

tru
e

la
be

ls

90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) Accuracy on the mis-labelled data (w.r.t. the true
labels)

Figure 8: Accuracy during training with AC/DC at 90% and 95% target sparsity, for 1000 randomly
labelled CIFAR10 images. No data augmentation was applied to the training samples.

B.6 Memorization Experiments on CIFAR10

In what follows, we study the similarities between the sparse and dense models learned with AC/DC, on the
particular setup of memorizing random labels. Specifically, we select 1000 i.i.d. training samples from the
CIFAR10 dataset and randomly change their labels. We train a ResNet20 model using AC/DC, at various target
sparsity levels, ranging from 50% to 95%. We use SGD with momentum, weight decay, and initial learning rate
0.1 which is decayed by a factor of 10 every 60 epochs, starting with epoch 65.

Using data augmentation dramatically affects the memorization of randomly-labelled training samples, and thus
we differentiate between the two possible cases. Namely, the regular baseline can easily memorize (in the sense
of reaching perfect accuracy) the randomly-labelled samples, when no data augmentation is used; in comparison,
with data augmentation memorization is more difficult, and the accuracy on randomly-labelled samples for
the baseline is just above 60%. In addition to the accuracy on the perturbed samples with respect to their new
random labels, we also track the accuracy with respect to the “true” or correct labels. This differentiation offers
a better understanding regarding where memorization fails and a glimpse into the robustness properties of neural
networks in general, and of AC/DC, in particular.

No data augmentation. As previously mentioned, in this case the baseline model can perfectly memorize the
perturbed data, with respect to their random labels. Interestingly, prior to the initial learning rate decay, most
(≥ 70%) perturbed samples are still correctly classified with respect to their “true” labels, and memorization
happens very quickly after the learning rate is decreased. In the case of AC/DC with low target sparsity (50% and
75%), memorization has a very similar behavior to the dense baseline. However, for higher sparsity levels (90%
and 95%) we can see a clear difference between the sparse and dense models. Namely, during each compression
phase most perturbed samples are correctly classified with respect to their true labels, whereas in decompression
phases their random labels are memorized. This phenomenon is illustrated in Figure 8.

Data augmentation. In this case, memorization of the perturbed samples is more difficult, and it happens later
on during training, usually after the second learning rate decrease for the baseline model. Interestingly, in the
case of AC/DC we can see (Figure 9) a clear inverse relationship between the amount of memorization and the
target sparsity. Although low sparsity enables more memorization, most perturbed samples are still correctly
classified with respect to their true labels. For higher sparsity levels (90% and 95%), most perturbed samples are
correctly classified with respect to their true labels (almost 90%) and very few are memorized. Furthermore, the
dense model resulted from AC/DC training is more robust than the original baseline, as it still learns the correct
labels of the perturbed samples, despite being presented with random ones.

C Computational Details

C.1 Hardware Details

Experiments were run on NVIDIA RTX 2080 GPUs for image classification tasks, and NVIDIA RTX 3090
GPUs for language modelling. Each ImageNet run took approximately 2 days for ResNet50 and one day for
MobileNet, while each Transformer-XL experiment took approximately 2 days.

C.2 FLOPs Computation

When computing FLOPs, we take into account the number of zero-valued weights for linear and convolutional
layers. To compute the FLOPs required for a backward pass over a sample, we use the same convention as RigL
[16]; namely, if F denotes the inference FLOPs per sample, the number of backward FLOPs is estimated as
B = 2 ·F , as we need F FLOPs to backpropagate the error, and additional F to compute the gradients w.r.t. the

35

10 30 50 70 90 110 130 150 170 190
Epoch

10

15

20

25

30

35

40

45

Ac
c.

(%
)-

ra
nd

om
 la

be
ls 50 % Sparsity

75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(a) Accuracy on the mis-labelled data

10 30 50 70 90 110 130 150 170 190
Epoch

50

55

60

65

70

75

80

85

90

Ac
c.

(%
)-

tru
e

la
be

ls

50 % Sparsity
75 % Sparsity
90 % Sparsity
95 % Sparsity
Compressed
Decompressed

(b) Accuracy on the mis-labelled data (w.r.t. the true
labels)

Figure 9: Accuracy during training with AC/DC at 50%, 75%, 90% and 95% target sparsity, for 1000
randomly labelled CIFAR10 images. Here, all samples were trained using data augmentation.

weights. For ImageNet experiments, we ignore the FLOPs required for Batch Normalization, pooling, ReLU or
Cross Entropy, similarly to other methods [16, 52, 37]; however, these layers have a negligible impact on the
total FLOPs number (at most 0.01× the dense number).

For compression and decompression phases C and D, we consider FC and FD the compression and decompres-
sion inference FLOPs per sample, respectively. We use F to denote the inference FLOPs per sample for the
baseline network. During each compression phase, the training FLOPs per sample can be estimated as 3 · FC .
For decompression phases, we noticed that a small fraction of weights remain zero, and therefore FD < F .
When doing a backward pass we have additional FD from back-propagating the error, and F extra FLOPs for
the gradients with respect to all parameters. Therefore, we estimate the training FLOPs per sample during a
decompression phase as 2 · FD + F . We measure the number of FLOPs on a random input sample, at the end of
each training epoch and use this value to estimate the total training FLOPs for that particular epoch. To obtain
the final number of FLOPs, we compute the inference FLOPs on a random input sample, estimate the backward
FLOPs, compute the estimated training FLOPs over all training epochs as described above, and scale by the
number of training samples.

C.3 Choice of Hyper-parameters

Length of compression/decompression phases. AC/DC alternates between compression and decompression
phases to co-train sparse and dense models. It is important to note, however, that the length of these phases,
together with the warm-up and fine-tuning phases, could have a significant impact on the quality of the resulting
models. Before settling on the sparsity pattern we used for all our ImageNet experiments (see Figure 5a and
Figure 7a), we experimented with different lengths for the sparse/dense phases, but found that ultimately the
pattern used in the paper had the best trade-off between training FLOPs and validation accuracy.

Notably, we experimented on ResNet50, 90% sparsity, with increasing the training epochs to 130 and with
different lengths for the compression/decompression phases. For example, we found that alternating between
sparse/dense training every 10 epochs yielded slightly better results after 130 epochs: 75.34% for the sparse
model, 76.87% for the fine-tuned dense model; however, this also had higher training FLOPs requirements
(0.7× for the sparse model and 0.9× including the fine-tuned dense). We additionally experimented with longer
dense phases (10 epochs), compared to sparse phases (5 epochs); this also resulted in more accurate models:
75.45% accuracy for the sparse model and 76.78% – for the fine-tuned dense model. However, the training
FLOPs were substantially higher: 0.85× for the sparse model and 1.15× for the fine-tuned dense.

Due to computational limitations, and to ensure a fair comparison with the dense baseline and other pruning
methods, we decided on using a fixed number of 100 training epochs (the same used for the dense baseline).
In this setup, we experimented mainly with the lengths for the compression/decompression phases used in
Figure 5a and Figure 7a, but noticed that having a longer final decompression phase had a positive impact on the
fine-tuned dense model. For instance, when following a sparsity schedule as in Figure 1, the sparse model at
90% sparsity had a very similar performance to the reported results (75.18% accuracy, from one seed), while the
fine-tuned dense model was significantly below the dense baseline (76.05% validation accuracy). We believe
having a short warm-up period and a longer fine-tuning phase are both beneficial for the sparse model; in our
experiments, we only used warm-up phases of 10 epochs, but believe that shorter phases are worth exploring
as well. Furthermore, the mask difference between consecutive compression phases is an important guide for
choosing the sparsity schedule: as it was previously discussed, having a non-trivial difference between the masks
typically results in better sparse models. Illustrations of the pruning masks during training on ImageNet are
presented in Figure 5b and Figure 7b.

36

When choosing the sparsity schedule for the language models experiments on Transformers-XL, we followed
the same principles as for ImageNet. In fact, the sparsity schedule is very similar to the one used for ImageNet,
scaled by the number of training epochs (48 epochs or 100,000 steps for Transformers).

In the case of CIFAR100, we used for AC/DC the same number of 200 training epochs as for the dense baseline.
We experimented with sparse/dense phases of lengths 10 or 20, and found that generally switching every 20
epochs between sparse and dense training yielded the best results.

Training Hyper-parameters for ImageNet. We used the same hyper-parameters for all our ImageNet experi-
ments, on both ResNet50 and MobileNetV1. Namely, we trained using SGD with momentum and batch size 256.
We used a cosine learning rate scheduler, after an initial warm-up phase of 5 epochs, when the learning rate was
linearly increased to 0.256. The momentum value was 0.875 and weight decay was 0.00003051757813. These
hyper-parameters have the standard values used in the implementation of STR [37]. Furthermore, to improve
efficiency, we train and evaluate the models using mixed precision (FP16). For models trained with mixed
precision, the difference in accuracy between evaluating them with FP32 versus FP16 is negligible (<0.05%).
However, we noticed larger differences (around 0.2-0.3%) in accuracy when training AC/DC with FP16 versus
FP32.

Training Hyper-parameters for Transformer-XL. For our Transformer-XL experiments, we integrated into
our code-base the implementation provided by NVIDIA 2, which also follows closely the original implementation
in [10]. We used the same hyper-parameters for training the large Transformer-XL model with 18 layers on
WikiText-103, including the Lamb optimizer [57] with cosine learning rate scheduler. For these experiments, we
did not reset the statistics involving exponential moving average of gradients before entering a dense phase.

2https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/
LanguageModeling/Transformer-XL

37

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL

Checklist
1) For all authors...

1) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and
scope? [Yes] See Sections 3, 4

2) Did you describe the limitations of your work? [Yes] See Section 5
3) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 5
4) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2) If you are including theoretical results...

1) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1
2) Did you include complete proofs of all theoretical results? [Yes] See Supplemental Material

3) If you ran experiments...

1) Did you include the code, data, and instructions needed to reproduce the main experimental results (either
in the supplemental material or as a URL)? [Yes] We will include the code with the Supplemental Material

2) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
See Section 4

3) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)?
[Yes] We included standard deviations for experiments in Tables 1, 2, 3, and for CIFAR100 experiments

4) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? [Yes] We included a discussion in Section C.1

4) If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

1) If your work uses existing assets, did you cite the creators? [Yes] We cited the creators of all datasets and
architectures used

2) Did you mention the license of the assets? [N/A] We used publicly available models and datasets
3) Did you include any new assets either in the supplemental material or as a URL? [Yes] We will include the

code in the Supplemental material, which is based on an open-source repository for model compression.
4) Did you discuss whether and how consent was obtained from people whose data you’re using/curating?

[N/A] We only used publicly available data
5) Did you discuss whether the data you are using/curating contains personally identifiable information or

offensive content? [N/A] We used standard machine learning benchmarking datasets.

5) If you used crowdsourcing or conducted research with human subjects...

1) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
We did not use crowdsourcing or conducted research with human subjects

2) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals,
if applicable? [N/A]

3) Did you include the estimated hourly wage paid to participants and the total amount spent on participant
compensation? [N/A]

38

