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Abstract

One of the central puzzles in modern machine learning is the ability of heav-
ily overparametrized models to generalize well. Although the low-dimensional
structure of typical datasets is key to this behavior, most theoretical studies of
overparametrization focus on isotropic inputs. In this work, we instead consider
an analytically tractable model of structured data, where the input covariance is
built from independent blocks allowing us to tune the saliency of low-dimensional
structures and their alignment with respect to the target function.
Using methods from statistical physics, we derive a precise asymptotic expression
for the train and test error achieved by random feature models trained to classify
such data, which is valid for any convex loss function. We study in detail how
the data structure affects the double descent curve, and show that in the over-
parametrized regime, its impact is greater for logistic loss than for mean-squared
loss: the easier the task, the wider the gap in performance at the advantage of the
logistic loss. Our insights are confirmed by numerical experiments on MNIST and
CIFAR10.

1 Introduction

Classical wisdom teaches us that a learning model should have just the right number of parameters
to learn from a dataset without overfitting it. However, recent years have seen the emergence
of massively over-parametrized models which manage to generalize well on high-dimensional
tasks [1, 2], somehow avoiding both the curse of dimensionality and the pitfall of overfitting. This
generalization capacity in the over-parametrized regime continues to puzzle rigorous understanding,
in particular for deep neural networks [3, 4, 5], despite their remarkable achievements over the past
decade [6, 7, 8, 9]. Various works have given evidence of a double descent curve [5, 10, 11, 12, 13],
whereby the test error first decreases as the number of parameters increases, then peaks, then decreases
again monotonically. The overfitting peak occurs at the interpolation threshold where training error
vanishes, a well-studied phenomenon in the statistical physics literature [14, 15, 16, 17, 18].
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(b) Strong and weak features model of data

Figure 1: Left: Random feature model considered here, which can be viewed as a two-layer networks
where only the second layer is trained. Middle and Right: Strong and weak features model considered
here. Input space is decomposed into two subspaces with different variance in the anisotropic setting:
a salient one with strong variance �x,1 and a weak one with smaller variance �x,2. The labels are
given by a linear teacher y = sign(� · x/

p
D) and flipped with a certain probability �. We can

adjust the alignment of data subspaces with the teacher. The task is easy when ��,1 > ��,2, and hard
in the opposite case.

Although the underlying structure of data plays a major role in the generalization ability of over-
parametrized models [19], it has been little studied from a theoretical point of view. The first aspect
of data structure is the distribution of the inputs: MNIST and CIFAR10 have the same number of
classes and images, yet generalization is harder for CIFAR10 because the images are more complex
than handwritten numbers. The second aspect is the rule between inputs and outputs: a random
labelling of CIFAR10 can be learned by a neural network but offers no possibility of generalization
[3]. Characterizing the structure of real-world data involves studying the interplay between these
two aspects. In this direction, simple and interpretable models of structured data can prove useful to
understand what underlies the behavior of generalization.

In this work, we present a simple model of learning and its analytical solution which simultaneously
enables us to:

(i) study the effect of overparametrization for a given task;

(ii) analyze both regression and classification tasks;

(iii) control the structure of the inputs and their relationship with the labels.

To satisfy (i), we need to disentangle the input dimension from the number of parameters in the
learning model, which is impossible for the linear models often studied in litterature. We instead
consider a random feature model [20], which was shown to exhibit double descent by [21]. To satisfy
(ii), we follow the lines of [22] and use an approach from statistical physics, enabling to generalize
the result of [21] to any convex loss function. Finally, to satisfy (iii), we introduce a block model in
which the input space is subdivided into various subspaces with different variances (saliencies) and
different correlation (alignments) with the labels (see Fig. 1). This model was recently studied for
linear regression under the name of strong and weak features model [23].

Our analytical solution uses the replica method from statistical physics [24]. Albeit non-rigorous
in a strict mathematical sense, this method is considered exact in theoretical physics and has been
influential to statistical learning theory since the 80s, see [25] and [26] for recent reviews. Several of
their conjectures have been proven exact in the last decade [27, 28, 29, 30], including in settings very
close to the considered model as discussed further at the end of Section 3 [31, 32].

Contributions Our main analytical contribution, presented in Section 3, is the expression of
the train and test errors of a random feature model trained on data generated by the strong and
weak features model. Our analysis is valid in the high-dimensional limit both for regression and
classification tasks, although we focus here on the latter. We confirm that the asymptotic prediction
matches simulations at finite size (see Fig. 2 and 4).

We leverage this result to present a thorough analytical study of how the data structure and the loss
function interplay to shape the generalization error, and in particular how they affect the double
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descent curve (Section 4). We highlight behavioral differences between square loss and logistic loss,
in particular the fact that logistic loss generalizes better for easy tasks (see Fig. 3). We validate our
insights via controlled experiments on the MNIST and CIFAR10 datasets described in the Section 5.

Reproducibility The code to reproduce our experiments is available at https://github.com/
sdascoli/data-structure.

2 Related Work

Although most theoretical studies of generalization focus on structureless data, a few exceptions
exist. The strong and weak features model has recently been studied in the context of least-squares
regression, both empirically [33] and theoretically [34, 35, 23]. Several intriguing observations
emerge in strongly anisotropic setup: (i) several overfitting peaks can be seen [33, 36]; (ii) the
optimal ridge regularization parameter � can become negative [35, 37], as it becomes helpful to
encourage the weights to have very different magnitudes; (iii) extra features acting as pure noise can
play a beneficial role by inducing some implicit regularization [23].

The strong and weak features model also includes the setup studied in [38], called the spiked
covariates model. The latter involves a small block of size D

⌘ (⌘ < 1) and a large “junk” block with
no correlation with the labels. The question is then: can kernel methods learn to discard the junk
features, hence “beat the curse of dimensionality” in the way neural networks do? The answer was
shown to depend on the strength of the junk features: when the variance of these features is small,
they are not problematic, and the kernel method ignores them, effectively learning a task of effective
dimensionality D

⌘ ⌧ D.

More general models for the structure of data were considered in other works. In the special case of
random Fourier Feature regression, [39] derived the train and test error for a general input distribution.
[40] achieved a similar result in the non-parametric setting of kernel regression, which can be viewed
as the limiting case of random feature regression when the number of random features P goes to
infinity.

The few works studying classification analytically have mostly focused on linear models, trained
on linearly separable data [41, 42, 43, 44] or gaussian mixtures [45, 46]. One of the challenges
in classification (in comparison to regression) is the large set of available loss functions [47, 48].
In the context of random feature models, [22] uses tools from statistical mechanics to derive the
generalization loss of random features model for any loss function with i.i.d. Gaussian input. More
recently, [32] shows that this framework could extend to more complex data distributions and learned
feature maps provided that key population covariances are estimated by Monte Carlo methods. Our
paper crucially builds on these contributions, by deriving a fully analytical analysis for a simple
interpretable model of data structure, while also analyzing the effect of label flipping.

We also note that a few recent works investigate the roles of the loss and the structure in data in more
realistic setups where theoretically robust results are harder to obtain. Several works have studied the
low intrinsic dimensionality of real-world data distributions and how it impacts sample complexity
for supervised tasks [49, 50, 19, 51]. The impact of the loss function is also an active research
area: [52, 53] show that square loss can perform equally or better than the ubiquitous cross-entropy
loss in realistic multi-class classification problems, if one rescales the weight of the correct class to
emphasize its importance.

3 A solvable model of data structure

In this work, we focus on the random features model1 introduced in [20]. Using tools from statistical
physics, we derive the generalization error of a teacher-student task on the strong and weak features
model of structured data.

1Note that this model is akin to the so-called lazy learning regime of neural networks where the weights stay
close to their initial value [54]: assuming f✓0 =0, we have f✓(x) ⇡ r✓f✓(x)|✓=✓0 · (✓ � ✓0) [55]. In other
words, lazy learning amounts to a linear fitting problem with a random feature vector r✓f✓(x)|✓=✓0 .
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Random feature model The random features model can be viewed as a two-layer neural network
(see Fig. 1) whose first layer is a fixed random matrix containing P random feature vectors {Fi 2
RD}i=1...P acting on inputs xµ 2 RD:

ŷµ =
PX

i=1

wi�

✓
Fi · xµp

D

◆
, (1)

where �(·) is a pointwise activation function and wi 2 R are the second layer weights. Elements of
F are drawn i.i.d from N (0, 1).

The second layer weights, i.e. the elements of w 2 RP , are trained by minimizing an `2-regularized
loss on N training examples {xµ 2 RD}µ=1...N :

ŵ = argmin
w


✏t(w) +

�

2
kwk2

2

�
, ✏t(w) =

NX

µ=1

` (yµ, ŷµ) , (2)

where ` denotes the logistic loss `(y, ŷ) = log(1+e
�yŷ). The target labels are given by a probabilistic

teacher y ⇠ Pt(y|� · x) corresponding to the sign of a linear function possibly corrupted by label
flipping:

yµ = ⌘µ sign
✓

� · xµp
D

◆
, ⌘µ =

⇢
1 with probability 1 � �
�1 with probability �.

(3)

The generalization error is computed as the 0-1 loss,

✏g = Ex,y

⇥
sign(ŷ(x)),y(x)

⇤
. (4)

Strong and weak features model To impose structure on the input space, we introduce a block-
structured covariance matrix from which the elements of the inputs x 2 RD and the teacher � 2 RD

are sampled as:

x ⇠ N (0, ⌃x), � ⇠ N (0, ⌃�),

⌃x =

2

64
�x,1I�1D 0 0

0 �x,2I�2D 0

0 0
. . .

3

75 , ⌃� =

2

64
��,1I�1D 0 0

0 ��,2I�2D 0

0 0
. . .

3

75 .

Our result presented in the rest of Section 3 is valid for an arbitrary number of blocks. In Section 4
we will focus for interpretability on the special case where we only have two blocks of sizes �1D

and �2D, with �1 + �2 = 1. We will typically be interested in the strongly anisotropic setup where
the first subspace is much smaller (�1 ⌧ 1), but potentially has higher saliency rx = �x,1/�x,2 � 1
(see Fig. 1).

Main analytical result Using the replica method from statistical physics [24] and the Gaussian
Equivalence Theorem (GET) [56, 21, 30, 31], we derive the generalization and training errors in the
high-dimensional limit where D, N and P ! 1 with fixed ratios. The asymptotic generalization
and training errors are given by

lim
N!1

✏g =
1

⇡
cos�1

✓
Mp
⇢Q

◆
, (5)

lim
N!1

✏t = E⇠

Z

R
dy

h
Z0

⇣
y, ⇠M/

p
Q, ⇢ � M

2
/Q

⌘
`(y, ⌘(y,

p
Q⇠, V )

i
(6)

with the proximal operator ⌘(y, a, b) = arg min
x

(x � a)2/(2b) + `(x, y), the random variable

⇠ ⇠ N (0, 1), the functional Z0 (y, a, b) =
R
R dx N (x; a, b)Pt(y|x) and the scalars

⇢ =
X

i

�i��,i�x,i, M = 1

X

i

�x,ims,i, Q = 
2
1

X

i

�x,iqs,i + 
2
?qw, V = 

2
1

X

i

�x,ivs,i + 
2
?vw.
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The parameters 1, ? are related to the activation function: denoting r =
P

i �i�x,i and ⇠ ⇠ N (0, r),
one has

1 =
1

r
E⇠[⇠�(⇠)]], ? =

q
E⇠ [�(⇠)2] � r2

1. (7)

Besides these constants and the ones defining the data structure (�i, ��,i, �x,i), the key ingredients to
obtain asymptotic errors are the so-called order parameters ms, qs, qw, vs and vw. They correspond
to the high-dimensional limit of the following expectations and variances (denoted by V):

ms,i = lim
D!1

1

D
EP [si · �i] , qs,i = lim

D!1

1

D
EP [si · si] , qw = lim

P!1

1

P
EP [ŵ · ŵ] ,

vs,i = lim
D!1

1

D
VP [si · si] , vw = lim

P!1

1

P
VP [ŵ · ŵ] ,

where s = 1p
P

Fŵ 2 RD and si, �i 2 R�iD denote the orthogonal projections of s and � onto
subspace i 2 {1, 2} and P denotes the joint distribution of all random quantities in the problem (the
teacher weights, the random features and the training data).

Intuitively, ⇢ is the variance of the outputs of the teacher, Q is the variance of the outputs of the
student, and M is their covariance. The generalization error is given by the “angle” between the
teacher and the student, as expressed by Eq. 5. The order parameters allowing to obtain Q and M are
one of the outputs of the replica computation deferred to SM B. They are obtained by solving a set
of non-linear saddle-point equations (see Section B.5 of the SM). Our framework is valid for any
convex loss function, although the replica equations need to be evaluated numerically in the general
case. In the case of the square loss however, some simplifications arise, e.g. an explicit expression for
the training error can be obtained from the order parameters (see Section B.6 of the SM).

Steps and validity of the replica analysis The necessary steps of the derivation are detailed in
SM B. In particular, (i) we obtain an anistropic extension of the GET, (ii) conduct random matrix
analysis for block matrices and finally (iii) derive the analytical saddle-point equations which yield
the values of the order parameters. Our result generalizes the strategy of [22] from isotropic to
anisotropic data and additionally covers the effect of label flipping. Our result is also related to [32]
which establishes rigorously the replica prediction in related learning problems. A rigorous proof of
our replica results is within reach: it requires a small extension of [31] (to prove the anisotropic GET
derived in Section B.2 of the SM) combined with the recent results of [32]. Moreover, results in the
following section show perfect agreement with numerical experiments.

4 Effect of data structure and loss function on double descent

In this section, we investigate how the interplay between the data structure and the loss function
shapes the train and test error curves. In the main text, we only examine parameter-wise curves, where
we increase the number of parameters P at fixed number of data N . In SM. A, we also examine the
sample-wise dependency by plotting the train and test error in the entire (N, P ) phase space.

Modulating the teacher-data alignment We compare three cases illustrated on Fig. 1. The first is
the isotropic setup where rx = 1 (blue curves in Fig. 2). In the two next setups, the data is anisotropic
with a small subspace (�1 = 0.1) of large variance and a large subspace (�2 = 0.9) of small variance.
The ratio of the variances rx = �x,1/�x,2 is set to 10, and their values are chosen to keep the total
variance of the inputs unchanged: 1

D E[kxk2] = �1�x,1 + �2�x,2 = 1.

We study two cases for the outputs: (i) the aligned scenario where the strong features are highly
correlated with the labels (r� = ��,1/��,2 = 100, green curves in Fig. 2); (ii) the misaligned

scenario, where the strong features have low correlation with the labels (r� = 0.01, orange curves
in Fig. 2). In both cases, we choose the ��,i such that the total variance of the teacher scores is
unchanged: 1

D E[(� · x)2] = �1�x,1��,1 + �2�x,2��,2 = 1.

Validity at finite size We begin by comparing our analytical predictions with the outcomes of
numerical experiments, both for test loss (Fig. 2) and train loss (Fig. 4). The agreement is excellent
even for moderately large dimensions D = 100. Note that the replica method, which relies on solving
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(a) Square loss, true labels (b) Logistic loss, true labels

(c) Square loss, label flip probability � = 0.3 (d) Logistic loss, label flip probability � = 0.3

Figure 2: Anisotropic data strongly affects the double descent curves. Theoretical results (solid
curves) and numerical results (dots with vertical bars denoting standard deviation over 10 runs) agree
even at moderate size D = 100. We set � = Tanh, � = 10�3 and N/D = 1.

a set of scalar fixed point equations, is also computationally efficient. It allows here to probe ratios of
P/D and N/D far beyond what is tractable by the numerics (P , D and N only appear in the replica
equations through the values of the ratios N/P and P/D).

Effect of data structure on generalization Looking at Fig. 2, a first immediate observation is that
strong teacher-data alignment makes the task easier: as number of parameters P increases the test
loss drops earlier and eventually reaches a lower asymptotic value, both for square loss and logistic
loss. In SM. A, we show that the same phenomenon occurs when varying the number of samples N

instead of the number of parameters P . These observations are in line with the results of [38] and
show that relevant salient features make the problem low-dimensional with an effective dimension
close to �1D. This setup is the most akin to real-world tasks in which the most salient features of
an image are often the most relevant to its recognition. In this sense, the impressive performance of
kernel methods such as the Convolutional NTK on real-world datasets [57] can be associated with
the anisotropy of the data: feature learning is not indispensable to beat the curse of dimensionality if
the irrelevant features are weakly salient to begin with [51].

Conversely, misalignment generally makes the task harder and increases the value of the test loss.
Note however that for square loss, an interesting crossover occurs in presence of noise (panel c): the
irrelevant features are detrimental from small P , but become helpful at large P , as can be seen from
the orange curve reaching a lower asymptotic value than the blue curve. We associate this to the
phenomenon discovered for linear regression in [23], whereby adding noisy features acts as a form of
implicit regularization.

Logistic is better than square loss Comparing the two loss functions, we observe two beneficial
effects of using logistic loss rather than square loss.

First, we observe that the overfitting peak characteristic of the double descent curve which appears at
P = D for square loss is absent for logistic loss in the noiseless setting (Fig. 2), and vastly reduced
in presence of noise (we use in both cases the same small amount of regularization for square and
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(a) Strong and weak features model (b) Real data

Figure 3: The easier the task, the wider the gap between logistic and square loss. (a) Strong and
weak feature model in the noiseless (� = 0) and noisy (� = 0.3) setups, where we make the task
easier from left to right by increasing the alignment between the data and the teacher. (b) Real data
(MNIST parity and CIFAR10 airplanes vs cars), where we make the task easier by decreasing the
exponent ↵ controlling the saliency of the top PCA components (see Sec. 5). In both cases, we
considered an over-parametrized RF model (P/D = 100) learning from a moderate amount of data
(N/D = 1), with � = Tanh and � = 10�4.

(a) Square loss (b) Logistic loss

Figure 4: Structure of data affects the position of the interpolation threshold for logistic loss.

We depicted the train loss curves in the noiseless setup of Fig. 2, where � = Tanh, � = 10�3,
N/D = 1.

logistic loss). This suggests that the logistic loss exerts some form of implicit regularization, reducing
the amount of overfitting.

Second, in the aligned and isotropic setups, the asymptotic test loss reached in the “kernel” regime
P/D ! 1 is lower with logistic loss, especially in the aligned setup. To better highlight this
phenomenon, we continuously vary the teacher-data alignment in Fig. 3(a) for an overparametrized
model. Logistic loss performs similarly or worse than square loss at very small alignment, but
outperforms square loss as soon as the alignment is sufficient. The gap between the two then grows
as we increase alignment. In other words, logistic loss is particularly powerful on tasks made easy by
the structure in the data.

The better ability of logistic loss to detect structure in the data is also reflected in the train loss curves
of Fig. 4. For square loss, the interpolation threshold, i.e. the point when the the train loss vanishes,
occurs at P = N . For logistic loss, there is no interpolation threshold strictly speaking since the train
loss cannot be zero. However, one can define an effective threshold as the point where the training
loss reaches the near-zero plateau. Notably, this effective threshold depends on the data structure:
it is lower for the aligned setup, where the data is easier to fit, and higher for the misaligned setup,
where the data is harder to fit.

Behavioral differences between losses Further understanding of the differences between logistic
and square loss can be gained thanks to the replica approach which gives access to the order parameter
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(a) Square loss (b) Logistic loss

Figure 5: Overparametrization causes the weights to diverge for logistic loss. We depicted the
order parameters Q and M , quantifying the variance of the outputs of the student and their covariance
with the outputs of the teacher, in the noiseless setup of Fig. 2. Insets: log-log plot, showing the
power-law asymptotic behaviors.

Q and M defined in Eq. 7, see Fig. 5. For recall, Q corresponds to the variance of the outputs of the
student ŷ and M to their covariance with the linear scores of the teacher.

For square loss, Q and M increase and reach a finite value (with a peak in Q at the interpolation
threshold), reflecting the fact that the linearized estimator Fw converges towards a fixed norm vector
more or less correlated with the teacher vector � depending on the depending on the data structure.
For logistic loss, M increases linearly with overparametrization and Q increases as a power law (see
logarithmic insets), reflecting the fact the the estimator endlessly grows in the direction of the teacher
vector [41] as the number of parameters increases. This growth appears to shield the peak observed
in Q for the squared loss explaining the very mild double descent observed in Fig. 2. Interestingly,
these quantities grow much faster in the aligned setup, where the estimator is more “confident” in its
predictions, which also hints at the better performance of the logistic loss when the structure of data
is favorable.

5 Numerical results

To examine the applicability of our results, we consider two realistic binary classification tasks: parity
of digits in the MNIST dataset and airplanes vs cars in the CIFAR10 dataset. In both cases, we
learn with an RF model in the same setup as described above. To control the alignment, we apply a
PCA transformation to the inputs (keeping the top D = 100 components and discarding the rest),
then apply the following component-wise rescaling: xi ! xi/ std(xi)↵, where std(xi) denotes the
standard deviation of feature xi over the whole training dataset, and the exponent ↵ allows us to tune
the saliency of the features:

• ↵ < 1 yields an aligned scenario, since the top PCA features are naturally the most relevant;
• ↵ = 1 yields the isotropic scenario, where all features have same variance;
• ↵ > 1 yields a misaligned scenario, since the strong features will become weak and the

weak features become strong.
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(a) Square loss, MNIST (b) Logistic loss, MNIST

(c) Square loss, CIFAR10 (d) Logistic loss, CIFAR10

Figure 6: Test error and train loss (inset) on realistic tasks. Top: MNIST dataset with labels given
by the digit parity. Bottom: CIFAR10 dataset with airplanes and cars. We synthetically reproduce
the isotropic, aligned and misaligned scenarios by applying a PCA transformation to the inputs and
tuning how salient the largest PCA features are compared to the smallest PCA features (see Sec. 5).
We set � = Tanh, � = 10�3 and N/D = 1.

The corresponding train and test error curves are shown in Fig. 6 (we set ↵ = 0 for the aligned scenario
and ↵ = 1.5 for the misaligned scenario). Remarkably, we recover many of the phenomenological
features described previously. The test error drops earlier and reaches a lower asymptotic value
in the aligned setup, and conversely reaches a higher value in the misaligned setup. We observe a
double descent curve for square loss, but the peak is suppressed for logistic loss. The location of
the interpolation threshold depends on the teacher-data alignment for logistic loss, whereas it does
not for square loss. Finally, logistic loss has a lower asymptotic error than square loss in the aligned
setup, signalling that it is favorable for “easy” data distributions.

To strengthen the latter observation, we vary continuously the difficulty of the task by adjusting the
exponent ↵ and show the results in Fig. 3(b) (increasing ↵ makes the task harder). As observed
analytically in Fig. 3(a), the gap between square loss and logistic loss increases as we decrease ↵.

6 Conclusion

In this work, we studied how the loss function interplays with the data structure to shape the
generalization curve of random feature models. Our results show strong behavioral differences
between quadratic and logistic loss, the latter performing particularly well for easy datasets where
most of the information comes from low-dimension projections of the inputs.

As a possible direction of future work, we conclude with the observation that our results, which
apply to random feature (or lazy learning) tasks, appear in contrast with those of [52], which suggest
that cross-entropy losses can be traded at no cost for quadratic losses in modern deep learning tasks,
which are known to have low intrinsic dimensionality [19]. This opens up an interesting direction
for future work: does feature learning help quadratic losses by better capturing the low-dimensional
structure of the inputs, as suggested by [51]? Or does the key difference reside in the multi-class
nature of practical classification problems [53]?
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