
A Appendix for Learning Signal-Agnostic Manifolds of Neural Fields1

Please visit our project website at https://yilundu.github.io/gem/ for additional qualitative2

visualizations of test-time reconstruction of audio and audiovisual samples, traversals along the3

underlying manifold of GEM on CelebA-HQ as well as interpolations between audio samples. We4

further illustrate additional image in-painting results, as well as audio completion results. Finally, we5

visualize several audio and audiovisual generations.6

In Section A.1 below, we provide details on training settings, as well as the underlying baseline7

model architectures utilized for each modality. We conclude with details on reproducing our work in8

Section A.2.9

A.1 Experimental Details10

Training Details For each separate training modality, all models and baselines are trained for one11

day, using one 32GB Volta machine. GEM is trained with the Adam optimizer [3], using a training12

batch size of 128 and a learning rate of 1e-4. Each individual datapoint is fit by fitting the value of13

1024 sampled points in the sample (1024 for each modality in the multi-modal setting). We normalize14

the values of a signals to be between -1 and 1. When computing LIso, a scalar constant of α = 100 is15

employed to scale distances in the underlying manifold to that of distances of signals in sample space.16

When enforcing LLLE, a total of 10 neighbors are considered to compute the loss across modalities.17

We utilize equal loss weight across LRec, LIso, LLLE, and found that the relative magnitudes of each18

loss had little impact on the overall performance.19

Model Details We provide the architectures of the hypernetwork ψ and implicit function φ utilized20

by GEM across separate modalities in Table 2 and Table 3, respectively. Additionally, we provide21

the architectures used in each domain for our baselines: StyleGAN2 in Table 13 each domain in22

Table 13 and VAE in Table 8. Note that for the VAE, the ReLU nonlinearity is used, with each23

separate convolution having stride 2.24

We obtained the hyperparameters for implicit functions and hypernetworks based off of [5]. Early in25

the implementation of the project, we explored a variety of additional architectural choices; however,26

we ultimately found that neither changing the number of layers in the hypernetworks, nor changing27

the number of underlying hidden units in networks, significantly impacted the performance of GEM.28

We will add these details to the appendix of the paper.29

A.2 Reproducibility30

We next describe details necessary to reproduce each of other underlying empirical results.31

Hyperparameter Settings for Baselines We employ the default hyperparameters, as used in the32

original papers for StyleGAN2 [2] and FDN [1], to obtain state-of-the-art performance on their33

respective tasks. Due to computational constraints, we were unfortunately unable to do a complete34

hyperparameter search for each method over all tasks considered. Despite this, we were able to run35

the models on toy datasets and found that these default hyperparameters performed the best. We36

utilized the author’s original codebases for experiments.37

Variance Across Seeds Results in the main tables of the paper are run across a single evaluated38

seed. Below in Table 1, we rerun test reconstruction results on CelebA-HQ across different models39

utilizing a total of 3 separate seeds. We find minimal variance across separate runs, and still find the40

GEM performs significantly outperforms baselines.41

Modality Model MSE ↓ PSNR ↑

Images

VAE 0.0327 ± 0.0035 15.16 ± 0.06
FDN 0.0062 ± 0.0003 22.57 ± 0.02
StyleGANv2 0.0044 ± 0.0001 24.03 ± 0.01
GEM 0.0025 ± 0.0001 26.53 ± 0.01

Table 1: Test CelebA-HQ reconstruction results of different methods evaluated across 3 different seeds. We
further report standard deviation between different runs.
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Datasets We provide source locations to download each of the datasets we used in the paper.42

The CelebA-HQ dataset can be downloaded at https://github.com/tkarras/progressive_43

growing_of_gans/blob/master/dataset_tool.py and is released under the Creative Com-44

mons license. The NSynth dataset may be downloaded at https://magenta.tensorflow.45

org/datasets/nsynth and is released under the Creative Commons license. The ShapeNet46

dataset can be downloaded at https://github.com/czq142857/IM-NET and is released un-47

der the MIT License, and finally the Sub-URMP dataset we used may be downloaded at https:48

//www.cs.rochester.edu/~cxu22/d/vagan/.49
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Dense→ 512

Dense→ 512
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Table 2: The architecture of the hypernetwork uti-
lized by GEM.

Pos Embed (512)

Dense→ 512

Dense→ 512

Dense→ 512

Dense→ Output Dim

Table 3: The architecture of the implicit function
φ used to agnostically encode each modality. We
utilize the Fourier embedding from [4] to embed
coordinates.
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Table 4: The encoder
and decoder of the VAE
utilized for CelebA-HQ.
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Table 5: The encoder
and decoder of the VAE
utilized for NSynth

3x3 Conv2d, 32
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Reshape(2, 2)
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Table 6: The architecture
of encoder and decoder
of the VAE utilized for
audiovisual dataset on
images. Latent encod-
ings from image and au-
dio modalities are added
together.

3x3 Conv2d, 32

3x3 Conv2d, 64

3x3 Conv2d, 128

3x3 Conv2d, 256

3x3 Conv2d, 512

z← Encode

Reshape(4, 1)

3x3 Conv2d Transpose, 512

3x3 Conv2d Transpose, 256

3x3 Conv2d Transpose, 128

3x3 Conv2d Transpose, 64

3x3 Conv2d Transpose, 32

3x3 Conv2d Transpose, 1
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Table 7: The architecture
of encoder and decoder
of the VAE utilized for
audiovisual dataset on
audio. Latent encodings
from image and audio
modalities are added to-
gether.

Table 8: The architecture of the VAE utilized across datasets.
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Table 9: The genera-
tor architecture of Style-
GAN2 for CelebA-HQ.
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Table 10: The genera-
tor architecture of Style-
GAN2 for NSynth
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Table 11: The genera-
tor architecture of Style-
GAN2 for audiovisual
domain for images.

Constant Input (512, 8, 2)

StyleConv 512

StyleConv 512

StyleConv 512

StyleConv 512

StyleConv 256

3x3 Conv2d, 1

Crop

Table 12: The genera-
tor architecture of Style-
GAN2 for audiovisual
domain for audio.

Table 13: The architecture of the StyleGAN generator utilized across datasets.
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