
Appendix

A Broader Impact

We work on generalization in deep learning, a fundamental learning theory problem, which does not
have an obvious negative societal impact. Nevertheless, in many applications of societal interest,
such as medical data analysis [35] or drug discovery [50], predicting the generalization could be very
important, where our work can potentially benefit related applications. Understanding and measuring
the generalization are also important directions for machine learning fairness [11] and AI Safety [2].

B Additional Experiment Results

B.1 Summary of Margins

Definition
Margin ⇢f (�(x), y)

SN-Margin [4] ⇢f (�(x), y)/SC(f � �)
GN-Margin [24] ⇢̃f (�(x), y) = ⇢f (�(x), y)/(kr�⇢f (�(x), y)k2 + ✏)

TV-GN-Margin [24] ⇢̃f (�(x), y)/
p

Varx⇠µ(||�(x)||2)
kV-Margin (Ours) ⇢f (�(x), y)/Ec⇠p[Varmc(�#µc) · Lip(⇢f (·, c))]
kV-GN-Margin (Ours) ⇢̃f (�(x), y)/Ec⇠p[Varmc(�#µc) · Lip(⇢̃f (·, c))]

Table 3: Definitions of margins. The SC stands for the spectral complexity defined in [4]. We
use the empirical estimation of k-variance and Lipschitz constant defined in section 5 to calculate
kV-Margin and kV-GN-Margin.

B.2 Variance of Empirical Estimation

In Table 1, we show the average scores over 4 random sampled subsets. We now show the standard
deviation in Table 4. Overall, the standard deviation of the estimation is fairly small, consistent to the
observation in Theorem 7.

CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR
VGG NiN FCN bn FCN NiN NiN VGG NiN

Margin† 0.25 0.84 0.16 0.13 0.01 0.04 0.06 0.59
SN-Margin† [4] 0.07 0.06 0.01 0.03 0.00 0.01 0.01 0.00
GN-Margin 1st [24] 0.18 0.17 0.27 0.15 0.06 0.02 0.10 0.52
GN-Margin 8th [24] 0.03 1.44 0.09 0.04 0.01 0.00 0.05 0.14
TV-GN-Margin 1st [24] 0.26 0.78 0.49 0.62 0.03 0.05 0.03 1.29
TV-GN-Margin 8th [24] 0.31 0.35 0.18 0.19 0.01 0.14 0.09 0.73
kV-Margin† 1st 0.40 1.57 0.55 0.45 0.07 0.03 0.23 2.78
kV-Margin† 8th 0.64 0.89 0.24 0.21 0.02 0.03 0.07 0.84
kV-GN-Margin† 1st 0.15 0.56 0.47 0.72 0.02 0.04 0.06 1.70
kV-GN-Margin† 8th 0.81 0.93 0.16 0.33 0.03 0.01 0.04 0.44

Table 4: Standard deviation of CMI score on PGDL tasks.

B.3 The effect of k in k-Variance

We next show the ablation study with respect to m (data size) in Table 5. In particular, we draw
mc ⇥ #classes samples where mc = 50, 100, and 200. Note that if the class distribution p is
not uniform, mc could be different for each class. The scores are computed with one subset for
computational efficiency. Since the sample size per class of Flowers and Pets datasets are smaller
than 50, the ablation study is not applicable.
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CIFAR SVHN CINIC CINIC Fashion CIFAR
VGG NiN FCN bn FCN VGG NiN

kV-Margin 1st (50) 7.23 30.21 37.21 17.65 1.74 14.39
kV-Margin 1st (100) 5.83 29.11 36.45 17.51 1.89 13.89
kV-Margin 1st (200) 4.81 29.79 36.23 17.01 2.37 12.63
kV-Margin 8th (50) 31.66 28.10 5.82 15.13 0.36 1.54
kV-Margin 8th (100) 29.72 27.20 6.01 15.10 0.37 1.43
kV-Margin 8th (200) 28.14 27.72 5.84 15.27 0.19 3.11
kV-GN-Margin 1st (50) 19.58 45.42 31.29 15.39 0.55 23.59
kV-GN-Margin 1st (100) 18.17 45.24 30.78 15.66 0.56 21.85
kV-GN-Margin 1st (200) 17.81 44.93 30.30 15.64 0.78 20.80
kV-GN-Margin 8th (50) 40.75 44.71 6.83 15.64 0.36 9.36
kV-GN-Margin 8th (100) 41.09 46.28 6.71 15.99 0.31 8.14
kV-GN-Margin 8th (200) 41.05 47.57 6.63 15.96 0.25 8.66

Table 5: The role of data size in estimating k-variance The number between brackets denotes the
average class size mc.

B.4 Spectral Approximation to Lipschitz Constant

In section 5, we use the supermum of the norm of the jacobian on the training set as an approximation
to Lipschitz constant, which is a simple lower bound of Lipschitz constant for ReLU networks [27].
It is well known that the spectral complexity, the multiplication of spectral norm of weights, is an
upper bound on the Lipschitz constant of ReLU networks [36]. We replace the cLip in kV-Margin
with the spectral complexity of the network and show the results in Table 6. The norm of the jacobian
yields much better results than spectral complexity, which aligns with the observations in [14, 25].

CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR
VGG NiN FCN bn FCN NiN NiN VGG NiN

Spectral 1st 3.20 1.19 0.31 2.68 0.24 2.43 0.58 7.06
Spectral 8th 1.08 2.26 0.69 0.91 0.08 0.99 1.99 4.72
Jacobian Norm 1st 5.34 26.78 37.00 16.93 6.26 2.11 1.82 15.75
Jacobian Norm 8th 30.42 26.75 6.05 15.19 0.78 1.60 0.33 2.26

Table 6: k-vairance normalized margins with spectral complexity. We show the score of kV-
Margin with different approximations to Lipschitz constant. Empirically, gradient norm of data points
yields better results.

B.5 Experiment Details

PGDL Dataset The models and datasets are accessible with Keras API [9] (integrated with Tensor-
Flow [1]): https://github.com/google-research/google-research/tree/master/pgdl
(Apache 2.0 License). We use the official evaluation code of PGDL competition [26]. All the
scores can be computed with one TITAN X (Pascal) GPUs. The intuition behind the sample size
min(200⇥#classes, data_size) is that we want the average sample size for each class is 200. Note
that if the class distribution p is not uniform, the sample size for each class could be different.
However, the sample size per class of Flowers and Pets datasets are smaller than 200⇥#classes, we
constrain the sample size to be dataset size at most. We follow the setting in [40] to calculate the
mixup accuracy with label-wise mixup.

Other Experiments The experiments in section 5.2 are run with the code from [60]: https:
//github.com/pluskid/fitting-random-labels (MIT License). We trained the models with
the exact same code and visualize the margins with our own implementation via PyTorch [45]. For
the experiments in section 5.3, we only change the data loader part of the code. The models of
MNIST and SVHN are trained for 10 and 20 epochs, respectively. To visualize the t-SNE in section
6, we use the default parameter in scikit-learn [46] (sklearn.manifold.TSNE) with the output from the
4th residual block of the network.
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C Proofs

C.1 Estimating the Lipschitz Constant of the GN-Margin

cLip(⇢̃f (·, c)) = max
x2Sc

�����r�
⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏

�����
2

= max
x2Sc

kr�⇢f (�(x), y)k2
kr�⇢f (�(x), y)k2 + ✏

⇡ 1 (4)

Proof of equation 4 We first expand the derivative as follows:

cLip(⇢̃f (·, c)) = max
x2X

�����r�
⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏
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2

.

Note that ⇢f is piecewise linear as f is ReLU networks. For points where ⇢f is differentiable i.e that
do not lie on the boundary between linear regions, the second order derivative is zero. In particular,
we have r�kr�⇢f (�(x), y)k2 = 0. Therefore, excluding from X non differentiable points of ⇢f ,
the empirical Lipschitz estimation (lower bound) can be written as

cLip(⇢̃f (·, c)) = max
x2X

�����
r�⇢f (�(x), c)(kr�⇢f (�(x), y)k2 + ✏)

(kr�⇢f (�(x), y)k2 + ✏)2

�����
2

= max
x2X

�����
r�⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏

�����
2

= max
x2X

kr�⇢f (�(x), c)k2
kr�⇢f (�(x), y)k2 + ✏

 1,

We can see that cLip is tightly upper bounded by 1 when ✏ is a very small value.

Discussion of Lower and Upper Bounds on the Lipschitz constant Note that the approximation
of the lipchitz constant will result in additional error in the generalization bound as follows:
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While for an upper bound on the lipschitz constant the third term is negative and can be ignored in
the generalization bound. For a lower bound this error term Lip(⇢f (·, c))� cLip(⇢f (·, c)) results in
additional positive error term. Bounding this error term is beyond the scope of this work and we
leave it for a future work.

C.2 Proof of the Margin Bound

Proof of Theorem 2. Recall the margin definition:
⇢f (�(x), y) = fy(�(x))�max

y0 6=y
fy0(�(x))

Let µc(x) = P(x|y = c), and let p(y) = P(Y = y) = ⇡y. Given f 2 F and � 2 � = {� : X !
Z, ||�(x)||  R}, we are interested in bounding the class-average zero-one loss of a hypothesis f ��:

Rµ(f � �) =
KX

c=1

⇡kRµc(f � �) =
KX

c=1

⇡kEx⇠µc [ ⇢f (�(x),c)0],
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where we will bound the error of each class c 2 Y separately. To do so, the margin loss defined by
L� by L�(u) = u0 + (1� u

� ) 0<u� would be handy.

Note that :
Rµ(f � �)  E(x,y)L�(⇢f (�(x), y)),

(see for example Lemma A.4 in [4] for a proof of this claim.)

By McDiarmid Inequality, we have with probability at least 1� �,

Rµ(f � �)  E(x,y)L�(⇢f (�(x), y)) 
KX

c=1

⇡cÊS⇠µm
c
L�(⇢f (�(x), c)) + D(f � �, µ) +

r
log(1/�)

2m
.

(5)

where
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1
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Note that the sup here is taken only on the classifier function class and not on the classifier and the
feature map together. For a given class c and feature map � define:

Gc =
�
h|h(z) = L⇢ � ⇢f (z, c) : f 2 F , z 2 Z

 
.

Using the fact that sup(a+ b)  sup a+ sup b, we have:

D(f � �, µ) 
KX
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⇡cESc⇠µc sup
f2F

⇣
Eµc [L�(⇢f (�(x), c)))]� ÊSc⇠µm

c
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⌘

=
KX

c=1
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"
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⇣
Eµc [h(�(x))]� ÊS⇠µm

c
[h(�(x))]

⌘#
, (6)

where the last equality follows from the definition of the function class Gc

We are left now with bouding each class dependent deviation. We drop the index c from Sc in what
follows in order to avoid cumbersome notations. Considering an independent sample of same size S̃

from µc we have:

ES⇠µm
c

"
sup
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⇣
Eµc [h(�(x))]� ÊS⇠µm
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⌘#
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#
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(7)

Note that h(z) = L�(⇢f (z, c)) is lipchitz with lipchitz constant 1
� Lip(⇢f (., c)), since L� is lipchitz

with lipchitz constant 1
� and by assumption the margin ⇢f (z, c) is lipchitz in its first argument. By the

dual of the Wasserstein 1 distance we have:

W1(�#pS ,�#pS̃) = sup
h,Lip(h)1

ÊS [h(�(x)]� ÊS̃ [h(�(x))]

Since Gc are subset of lipchitz of functions with lipchitz constant Lip(⇢f (.,c))
� , it follows that:

sup
h2Gc

ÊS [h(�(x)]� ÊS̃ [h(�(x)) 
Lip(⇢f (., c))

�
W1(�#pS ,�#pS̃) (8)

It follows from (7) and (8), that:

ES⇠µm
c

"
sup
h2Gc

⇣
Eµc [h(�(x))]� ÊS⇠µm

c
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⌘#
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c
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=
Lip(⇢f (., c))

�
Varmc(�#µc). (9)
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Finally Plugging (9) in (6) we obtain finally:

D(f � �, µ) 
PK

c=1 ⇡cLip(⇢f (., c))Varmc(�#µc)

�
(10)

Using (10) and noting that,
L�(⇢f (�(x), c))  ⇢f (�(x),c)�

we finally have by (5), the following generalization bound, that holds with probability 1� �:
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Lemma 12. The margin ⇢f (., y) is lipchitz in its first argument if Fj are lipchitz with constant L.

Proof. Assume fc(z) = maxy0 6=y fy0(z) and fc0(z0) = maxy0 6=y fy0(z0). Ties are broken by taking
the largest index among the ones achieving the max.

⇢f (z, y)� ⇢f (z
0
, y) = fy(z)�max

y0 6=y
fy0(z)� (fy(z

0)�max
y0 6=y

fy0(z0))

= fy(z)� fy(z
0) + fc0(z

0)� fc(z)

 L||z � z
0||+ fc0(z
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0||+ L||z � z

0||
= 2L||z � z

0||
where we used that all fy are lipchitz and the fact that fc(z) � fc0(z). On the other hand:

⇢f (z, y)� ⇢f (z
0
, y) = fy(z)� fy(z

0) + fc0(z
0)� fc(z)

� �L||z � z
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0)� fc(z)

� �L||z � z
0||� L||z � z

0||
= �2L||z � z

0||.
where we used that all fy are lipchitz and the fact that fc0(z0) � fc(z0). Combining this two
inequalities give the result.

Proof of Theorem 4. It is enough to show that:

Rµ(f � �)  E(x,y)[L�(⇢̃f (�(x), y))],

and the rest of the proof is the same as in Theorem 2. For any ⇠(x, y) > 0, and � > 0
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c
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Setting ⇠(x, y) = kr�⇢f (�(x), y)k2 + ✏, gives the result.
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C.3 Proof of the Estimation Error of k-Variance (Generalization Error of the Encoder)

Proof of Lemma 5. We would like to estimation to the k-variance with dVark(�#µ) =
1
n

Pn
j=1 W1(�#pSj ,�#pS̃j ) as a function of the nk independent samples from which it is computed,

each sample being a pair (xi, x̃i). To apply the McDiarmid’s Inequality, we have to examine the
stability of the empirical k-variance.

The Kantorovich–Rubinstein duality gives us the general formula of W1 distance:
W1(P,Q) = sup

Lip(f)1
EP [f ]� EQ[f ]

In our case, separately for each j, we can write
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j
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where we have used in the third inequality the fact that the sup is a contraction (suph A(h) �
suph B(h)  suph(A(h)�B(h))), and the definition of the Lipschitzity in the fourth inequality. By
symmetry and scaling the right hand side with 1

n , we have :
������
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We are now ready to apply the McDiarmid Inequality with nk samples, which yields:

P(Vark(�#µ)�dVark,n(�#µ) � t)  exp

 
�t

2
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2B2

!
.

Setting the probability to be less than � and solving for t, we can see that this probability is less than

� if and only if t �
q

2B2 log(1/�)
nk . Therefore, with probability at least 1� �,
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n
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r
2B2 log(1/�)
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.

Proof of Corollary 6. For each class c 2 Y , we obtain mc samples {(xi, yi)}ni=1. Therefore, to
compute dVark,n(�#µc), the largest k for a specific n is bmc/2nc. By Lemma 5 and applying union
bounds for each class (using confidence �/2K for each) and completes the proof.
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C.4 Proof of Empirical Variance

Proof of Theorem 7. We use the Efron Stein inequality:

Lemma 13 (Efron Stein Inequality). Let X := (X1, . . . , Xm) be an m-tuple of X -valued indepen-

dent random variables, and let X
0

i be independent copies of Xi with the same distribution. Suppose

g : Xm ! R is a map, and define X
(i) = (X1, . . . , Xi�1, X

0

i, Xi+1 . . . Xm). Then
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where we have used the definition of the Lipschitz norm. By symmetry, this yields (scaling by 1
n as

in the expression in the theorem)
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0j
1 k)2

i

k2n2

=
2(Ex,x0⇠µkx� x

0k2 + (Ex,x0⇠µkx� x
0k)2)

k2n2
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for each of the independent nk random variables (xj
i , y

j
i ), where we have used the fact that xj

i and
y
0j
i are i.i.d. We can substitute this into the Efron Stein inequality above to obtain

Var
h
dVark,n(µ)

i
 Ex,x0⇠µkx� x

0k2 + (Ex,x0⇠µkx� x
0k)2

kn

=
2Varµ(X) + (Ex,x0⇠µkx� x

0k)2
kn

 2Varµ(X) + Ex,x0⇠µkx� x
0k2

kn

 4Varµ(X)

kn

where used that the variance Varµ(X) = 1
2Ex,x0⇠µkx� x

0k2, and Jensen inequality.

C.5 Proof of Proposition 8

We will prove these two arguments separately with the following two propositions.
Proposition 14. For any �#µ 2 Prob(Rd), we have Varm(�#µ)  O(m�1/d) for d > 2.

Proof. The result is an application of Theorem 1 of [19].

Theorem 15 ((Fournier and Guillin [19])). Let µ 2 Prob(Rd) and let p > 0. Define Mq(µ) =R
Rd |x|qµ(dx) be the q-th moment for µ and assume Mq(µ)  1 for some q > p. There exists a

constant C depending only on p, d, q such that, for all m � 1, p 2 (0, d/2) and q 6= d/(d� p),

ES⇠µm [Wp(µS , µ)]  CM
p/q
q (m�p/d +m

�(q�p)/q).

By the triangle inequality and setting p = 1, we have
Varm(�#µ) = ES,S̃⇠µm [W1(�#µS ,�#µS̃)]  2ES⇠µm [W1(µ, µS)]

 2CM
1/q
q (m�1/d +m

�(q�1)/q).

Note that the term m
�(q�1)/q is small and can be removed. For instance, plugging q = 2, we can see

that the first term dominates the second term which completes the proof for the first argument.

We then demonstrate the case when the measure has low-dimensional structure.
Definition 16. (Low-dimensional Measures) Given a set S ✓ X , the ✏-covering number of S,

denoted as N✏(S), is the minimum n such that there exists n closed balls B1, · · · , Bn of diameter ✏

such that S ✓
S

1in Bi. For any S ✓ X , the ✏-fattening of S is S✏ := {y : D(y, S)  ✏}, where

D denotes the Euclidean distance.

Proposition 17. Suppose supp(�#µ) ✓ S✏ for some ✏ > 0, where S satisfies N✏0(S)  (3✏0)�d

for all ✏
0  1/27 and some d > 2. Then, for all m  (3✏)�d

, we have Varm(�#µ)  2C1m
�1/d

,

where C1 = 54 + 27/(3
d
2�1 � 1).

Proof. an application of Weed and Bach [55]’s Proposition 15 for p = 1.

Proposition 18 ((Weed and Bach [55])). Suppose supp(µ) ✓ S✏ for some ✏ > 0, where S satisfies

N✏0(S)  (3✏0)�d
for all ✏

0  1/27 and some d > 2p. Then, for all m  (3✏)�d
, we have

ES⇠µm [Wp
p (µ, µS)]  C1m

�p/d
,

where

C1 = 27p
✓
2 +

1

3
d
2�p � 1

◆
.

By the triangle inequality and setting p = 1, we have
Varm(�#µ) = ES,S̃⇠µm [W1(�#µS ,�#µS̃)]  2ES⇠µm [Wp

p (µ, µS)]  2C1m
�1/d

,

where C1 = 54 + 27/(3
d
2�1 � 1).
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C.6 Proof of Proposition 9

Proof. The results is an application of Weed and Bach [55]’s Proposition 13 for p = 1.

Proposition 19 (Weed and Bach [55]). If µ is (n,�)-clusterable, then for all m  n(2�)�2p
,

ES⇠µm [Wp
p (µ, µS)]  (9p + 3)

r
n

m
.

Similarly, by the triangle inequality, we have

Varm(�#µ) = ES,S̃⇠µm [W1(�#µS ,�#µS̃)]  2ES⇠µm [Wp
p (µ, µS)]  24

r
n

m
.

D Feature Separation and Margin

Proof of Lemma 10. Since fy and fy0 are L lipchitz, it follows that g(z) = fy(z) � fy0(z) is 2L
Lipchitz, and hence g

2L is Lip1.

W1(�#(µy),�#(µy0)) = sup
f2Lip1

Ex⇠pyf(�(x))� Ex⇠µy0 f(�(x))

� 1

2L

⇣
Ex⇠pyg(�(x))� Ex⇠µy0 g(�(x))

⌘

=
1

2L

⇣
Ex⇠py [fy(�(x))� fy0(�(x))] + Ex⇠µy0 [fy0(�(x))� fy(�(x))]

⌘

� 1

2L
(2�) (By Assumption on f )

=
�

L

Proof of Lemma 11. We follow the same notation of the proof above but we don’t make any assump-
tion on fy, fy0 except that they are LipL:

W1(�#(µy),�#(µy0)) = sup
f2Lip1

Ex⇠pyf(�(x))� Ex⇠µy0 f(�(x))

� 1

2L

⇣
Ex⇠pyg(�(x))� Ex⇠µy0 g(�(x))

⌘

=
1

2L

✓Z
[fy(z)� fy0(z))]d�#(µy)(z) +

Z
[fy0(z)� fy(z)]d�#(µy0)(z)

◆

=
1

2L

✓
� �

Z
[� � (fy(z)� fy0(z))]d�#(µy)(z) + � �

Z
[� � (fy0(z)� fy(z))]d�#(µy0)(z)

◆

� 1

2L

✓
2� �

Z
[� � (fy(z)� fy0(z))]+d�#(µy)(z)�

Z
[� � (fy0(z)� fy(z))]+d�#(µy0)(z)

◆

where the last inequality follows from the fact that for t 2 R, we have t  [t]+ = max(t, 0) Hence
we have:

W1(�#(µy),�#(µy0))

� 1

L

✓
� � 1

2

⇣
Eµy [� � fy(�(x)) + fy0(�(x))]+ + Eµy0 [� � fy0(�(x)) + fy(�(x))]+

⌘◆
.

Lemma 20 (Robust Feature Separation and Max-Gradient-Margin classifiers ). Let F be function

class satisfying assumption 1 and assumption 2 (ii) in [20] (piece-wise smoothness and growth and
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jump of the gradient) . Assume fy, fy0 2 LipL \ F and M bounded. Assume that f is such that for

all y :

fy(�(x)) > fy0(�(x)) + � + �n||rzfy(�(x))�rxfy0(�(x))||2, 8x 2 supp(µ̂y), 8y0 6= y

Then:

sup
µ,W1(µ,µ̂)�n

W1(�#µy,�#µy0) � �

L
� �nM � "n.

where "n = O(1/
p
n) µ̂ is defined as follows: µ̂(x, c) be such that µ̂(x|c = 1) = µ̂y(x) and

µ̂(x|c = �1) = µ̂y0(x), let µ̂(c = 1) = µ̂(c = �1) = 1
2 (similar definition holds for µ).

Proof. Without Loss of generality assume �(x) = x.

W1(µy, µy0) = sup
f2Lip1

Eµyf(x)� Eµy0 f(x)

= sup
f2Lip1

E(c,x)⇠µ2cf(x)

= � inf
f2Lip1

�2E(c,x)⇠µcf(x)

This form of W1 suggests studying the following robust risk, for technical reason we will use another
functional class F ⇢ Lip1 instead of Lip1:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)

Applying here theorem 1 (1) of Gao et al [20] see also example 12, for F of function satisfying
assumption 1 and assumption 2 in Gao et al in addition to being lipchitz we have:

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)  �2E(c,x)⇠µcf(x) + �n2Eµ̂||r(c,x)cf(x)||+ "n

Note that :
2E(c,x)⇠µcf(x) = Eµyf(x)� Eµy0 f(x)

and
r(c,x)cf(x) = (f(x), crxf(x))

and

||r(c,x)cf(x)|| =
p
f(x)2 + ||rxf(x)||2  |f(x)|+ ||rxf(x)||  M + ||rxf(x)||

where we used p
a+ b 

p
a+

p
b, and |f(x)|  M

Hence we have:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x) = inf
f2F

�2E(c,x)⇠µcf(x) + �n2Eµ̂||r(c,x)cf(x)||+ "n

 inf
f2F

�Eµyf + Eµy0 f + �nEpy (||rxf(x)||+ |f(x)|) + �nEµy0 (||rxf(x)||+ |f(x)|) + "n

 inf
f2F

�Eµy (f(x)� �n||rxf(x)||) + Eµy0 (f(x) + �n||rxf(x)||) + �nM + "n

Let g(x) = fy(x)�fy0 (x)

2L we have:

inf
f2F

�Eµy (f(x)� �n||rxf(x)||) + Eµy0 (f(x) + �n||rxf(x)||)

 �Eµy (g(x)� �n||rxg(x)||) + Eµy0 (g(x) + �n||rxg(x)||)
= �Eµy (g(x)� �n||rxg(x)||)� Eµy0 (�g(x)� �n||rxg(x)||)

 �2�

2L
=

��

L
.
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It follows that there exists a robust classifier between the two classes y, y0:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)  � �

L
+ �nM + "n

Note that:

� inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x) = sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x)

Hence:
sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

On the other hand we have:

sup
f2F

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) � sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

Note that F ⇢ Lip1

sup
f2Lip1

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) � sup
f2F

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

We can now swap the two sups and obtain:

sup
f2Lip1

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x)

= sup
µ,W1(µ,µ̂)�n

sup
f2Lip1

2E(c,x)⇠µcf(x) = sup
µ,W1(µ,µ̂)�n

W1(µy, µy0)

and finally we have:
sup

µ,W1(µ,µ̂)�n

W1(µy, µy0) � �

L
� �nM � "n.
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