
Supplementary Material
We provide details omitted in the main paper.

• section 7: more details of IDOL (cf. section 3 of the main paper).

• section 8: details of implementations and experimental setups, computation cost, more
results for refinement in IDOL (cf. section 4 of the main paper).

• section 9: broader impact and potential negative societal impacts of our work.

• section 10: limitations and future work.

7 Details of IDOL

7.1 Another view for the coarse-to-fine framework of IDOL

Another way to understand the coarse-to-fine framework we proposed is from the optimization
perspective. In Equation 3 of the main paper, we provide the overall objective of IDOL, which is
however intractable due to (a) no labeled target data to evaluate the domain sequence and (b) the
combinatory nature of searching for a domain sequence. We deal with (a) by Equation 7 of the main
paper. That is, we propose the cycle-consistency loss to measure the quality of the domain sequence,
which requires no labeled target data. Since Equation 7 is still hard to solve, we relax it by a greedy
approach. We find one domain at a time in sequence, starting from U1 (i.e., the one closest to the
source) to UM−1 (i.e., the one closest to the target). Each sub-problem is described in Equation 8
of the main paper. The relaxation may lead to sub-optimal solutions. Concretely, each sub-problem
is not aware of other already selected intermediate domains or other future intermediate domains
to be selected. To mitigate this issue, we propose to assign each data point a coarse domain score
(i.e., subsection 3.3 of the main paper), which serves as the initialization of each sub-problem.

7.2 Algorithms

Here we provide the summary of the IDOL algorithm. IDOL learns to sort the unindexed intermediate
data to a sequence, partitioned into several intermediate domains. An illustration is provided
in Figure 6. As shown in algorithm 1, there are three main steps in the overall procedure: first, we
construct the coarse domain sequence by learning to predict the domain score for each example
and sorting the examples according to the domain scores. Second, we refine the coarse indexes
with cycle-consistency as shown in algorithm 2. The refinement is decomposed into several steps,
gradually discovering the next intermediate domain in sequence. Each step is to refine the coarse
indexes with meta-reweighting [29, 55] and takes the closest examples to the current domain as the
next domain, as shown in algorithm 3. Finally, IDOL outputs a sequence of intermediate data points;
it can then be divided into several intermediate domains for gradual domain adaption.

Figure 6: Gradual domain adaption (GDA) without indexed intermediate domains. Our IDOL algorithm
sorts the unindexed intermediate data into a sequence, from the source domain to the target domain, then it can
be further partitioned into several intermediate domains for gradual domain adaption.

15

Algorithm 1: Intermediate DOmain Labeler (IDOL)
Input: Labeled source data S, unlabeled target data T , intermediate data U , and # of domains M − 1;

1 Coarse indexing (by progressive training for the domain discriminator): learn g(·;φ) with S, T ,U
and assign a score qi = g(xUi ;φ) to every xUi ∈ U (cf. subsection 3.3 in the main paper);

2 Construct: indexed sequence Icoarse = (x1, ...,x|U|) by sorting {qi = g(xUi ;φ)|∀xUi ∈ U};
3 Fine-grained indexes: learn Ifine-grained with refinement (algorithm 2);
4 Construct: domain sequence by chunking Ifine-grained into M − 1 domains;

Output: (U1, ...,UM−1).

Algorithm 2: Refinement of the coarse sequence
Input: Labeled source data S, # of domains M − 1, index sequence Icoarse = (x1, . . . ,x|Icoarse|).
Initialize: Pre-train the source model θ0 on S, S0 ← S, chunk size C = |Icoarse|

M−1
;

1 for m ∈ [0, 1, . . . ,M − 2] do
Initialize: data parameter q = [|Icoarse|

|Icoarse|, ,
|Icoarse|−1
|Icoarse| , . . . ,

0
|Icoarse|];

2 Obtain the next domain with Im+1 ←FindNextDomain(θm, Icoarse,Sm, q, C); //algorithm 3
3 Pseudo-label Im+1 to construct Sm+1 = {(xi, sharpen(f(xi,θm)))}xi∈Im+1 ;
4 θm+1 ← self-train θm on Sm+1;
5 Update Icoarse ← (xi|xi ∈ Icoarse,xi /∈ Im+1);

Output: Concatenate I1, . . . , IM−1 as the fine indexes Ifine-grained.

Algorithm 3: Finding the next domain with cycle-consistency (FindNextDomain)

Input: θm, (pseudo-)labeled data Sm = {(xi, yi)}|Sm|i=1 , intermediate index sequence I = (x1, ...,x|I|),
initial data parameters q ∈ R|I| (qi is corresponded to xi in I), loss function `, learning rate ηθ, ηq ,
and chunk size C.

1 while stop do
2 Detach θ(0) ← θm;
3 for t ∈ [1, . . . , T] do
4 Sample a mini-batch BU from I, q; //Forward adaption.
5 θ(t) ← θ(t−1) − ηθ∇θ(t−1)

∑
i∈BU

qi × `(f(xi;θ
(t−1)), sharpen(f(xi;θm)));

6 Detach θ′ ← θ(T)(q);
7 for t ∈ [T, . . . , 2T − 1] do
8 Sample a mini-batch BSm from S; //Backward adaption.
9 θ(t+1) ← θ(t) − ηθ∇θ(t)

1
|BSm |

∑
i∈BSm

`(f(xi;θ
(t)), sharpen(f(xi;θ

′)));

10 Sample a mini-batch BSm from Sm; //Update data parameters with cycle-consistency.
11 Update q ← q − ηq∇q 1

|BSm |
∑

i∈BSm
`(f(xi;θ

(2T)(q)), yi);
12 qi ← max{0, qi},∀qi ∈ q;

13 I ← sort I by q (descending order);
Output: the next domain I[: C].

8 Implementation Details

8.1 Experimental setup

Dataset, model, and optimizer. The Rotated MNIST and Portraits datasets are resized to 28× 28
and 32× 32, respectively, without data augmentation. In the CIAFR10-STL experiments, images are
resized to 32× 32. We use the standard normalization and data augmentation with random horizontal
flipping and random cropping as in [23].

For the Rotated MNIST and Portraits datasets, we adopt the same network used in [35]. The network
consists of 3 convolutional layers, each with the kernel size of 5, stride 2, and 32 channel size.
We use ReLU activations for all hidden layers. After the convolutional layers, it follows with a
dropout layer with 0.5 dropping rate, a batch-norm layer, and the Softmax classifier. We use the
Adam optimizer [32] with the learning rate 0.001, batch size 32, and weight decay 0.02. We use this

16

Table 3: IDOL with refinement on different coarse domain scores.

Coarse scores Indexed? Adaptation Refined? Rotated MNIST Portraits

Classifier confidence

7 GDA

7 45.5±3.5 79.3±1.7
3 62.5±2.1 83.6±1.6

Manifold distance 7 72.4±3.1 81.9±0.8
3 82.4±2.3 85.2±0.9

Domain discriminator 7 82.1±2.7 82.3±0.9
3 86.2±2.2 85.1±1.3

Progressive domain discriminator 7 85.7±2.7 82.3±0.9
3 87.5±2.0 85.5±1.0

optimizer and train for 20 epochs for the Rotated MNIST and Portraits datasets as the default if not
specified, including training the source model, self-training adaption on each domain, our domain
discriminator, and progressive training for each step.

For the CIFAR10-STL experiments, we train a ResNet-20 for 200 epochs for the source model and 80
epochs for both the domain discriminator and progressive training for each step with Adam optimizer
with learning rate 0.00001, batch size 128, and weight decay 0.0001.

We use the same network for our domain discriminator but replace the classifier with a Sigmoid
binary classifier.
GDA. For GDA, we focus on gradual self-training studied in [35]. We follow the common practice
to filter out low confidence pseudo-labeled data for self-training on every domain. That is, in
applying Equation 1 of the main paper for self-training, we only use data with high prediction
confidences. We keep top 90% confident examples for the Rotated MNIST and Portraits datasets
and top 20% confident examples for the CIFAR10-STL experiments due to the fact that most of the
unlabeled data are noisy and could be out-of-distribution. Each domain is trained for 20 epochs for
the Rotated MNIST and Portraits datasets. We train 80 epochs for the CIFAR10-STL experiments.
IDOL. For hyperparameters specific to IDOL, we tune with the target validation set. We did not
change hyperparameters in GDA for fair comparison. We set K = 2M rounds for progressive
training. For algorithm 3, we set T = 10 and train for in total 30 epochs for all datasets, with batch
size 128. The learning rates are set as ηθ = ηq = 0.001.

8.2 Computation cost

We run our experiments on one GeForce RTX 2080 Ti GPU with Intel i9-9960X CPUs. In algorithm 3,
updating the data parameter q requires it to backward on gradients of θ, which approximately takes
three-time of the computation time of a standard forward-backward pass [55].

We estimated the time consumption on the Portraits dataset experiments. For coarse scores, the
confidence is simply by applying the classifier to the input data. Calculating the manifold distance
via [50] takes about 20 seconds with Intel i9-9960X CPU. The domain discriminator (both w/ or w/o
progressive training) and the fine stage involve GPU computation. Using a GeForce RTX 2080 Ti
GPU, training a domain discriminator takes about 4 seconds. Progressive training takes about M
times longer, where M is the number of intermediate domains (which is 7 here). This is because it
trains the domain discriminator for M rounds. For the refinement stage proposed in cf. subsection 3.4
based on meta-learning, Discovering one intermediate domain takes about 44 seconds and we perform
it for M rounds.

8.3 More results on refinement

We provide the full experiments (cf. Table 1 in the main paper) of IDOL refinement on different
coarse domain scores in Table 3. We observe the refinement consistently helps on the coarse domain
scores, and the quality of the coarse domain scores is important to the final performance.

Next, we design the following experiment to investigate the variations of different trials and the
effects of the number of intermediate samples. We apply IDOL (with progressive discriminator
and refinement) for 10 runs with different random seeds, and record the intermediate domain index
(from source = 0 to the target =M) to which each sample is assigned. For instance, if a sample is
assigned to the second intermediate domain, we record 2 for this sample. After 10 runs, each sample
will end up with 10 indices, and we calculate the variance. If a sample is always assigned to the
same intermediate domain, the variance will be zero for this sample. We repeat the experiments with

17

Table 4: Variances of domain assignments.

Intermediate data Rotated MNIST Portraits
100% 1.12 0.147
50% 1.33 0.150
25% 1.35 0.136

100%/50%/25% of intermediate data (dropped randomly). The averaged variance over all samples
for both the Rotated MNIST dataset (M = 19) and Portraits dataset (M = 7). As shown in Table 4,
the domain sequences formed in different trials are pretty consistent since the variances are small.
Rotated MNIST has a higher variance than Portraits probably because the number of intermediate
domains is larger. Besides, the amount of the intermediate data does not significantly affect the
consistency among trials.

9 Broader Impact

Unsupervised domain adaption aims to address the distribution shift from the labeled training data to
the unlabeled target data. Our work focuses on leveraging extra unlabeled data to help unsupervised
domain adaption. We only assume that the unlabeled data are generated from underlying distributions
that can be viewed as structured shifts from the source to the target domain. To the best of our
knowledge, our algorithm would not cause negative effects on data privacy, fairness, security, or other
societal impacts.

10 Limitations and Future Work

Nearly all the domain adaptation algorithms need to make assumptions on the underlying data
distributions. For our algorithm IDOL, we generally require the additional unlabeled data to
distribute in between the source and the target domains, which is the standard setup of gradual domain
adaptation (cf. section 2 of the main paper). GDA will be less effective if the additional unlabeled data
besides the source and target domains do not gradually bridge the two domains or contain outliers. If
there are unlabeled data close to the source or target domains but are not distributed in between of
them (e.g., if the source/target are digits with 60/0-degree rotation, then digits with 70-degree are one
of such cases), IDOL may still include those data into the intermediate domains and could potentially
degrade the overall performance. In subsection 4.5 of the main paper, we further show that, even if
the additional unlabeled data contain outliers or does not smoothly bridge the two domains, IDOL
can still effectively leverage the data to improve the performance on the target domain.

Our current scope of the experiments is mainly limited by the availability of benchmark datasets
for gradual domain adaptation. This is mainly because GDA is a relatively new setting. Most of
the existing datasets for domain adaptation are designed for the conventional unsupervised domain
adaptation, in which only the source and target domain data are provided. Given (1) the superior
performance of gradual domain adaptation by leveraging the additional unlabeled data and (2) the
fact that real-world data change gradually more often than abruptly, we believe it will be useful
to develop more datasets for gradual domain adaptation. For instance, datasets in autonomous
driving that involve shifts in time and geo-locations could be an option. Other examples include
sensor measurements drift over time, evolving road conditions in self-driving cars, and neural signals
received by brain-machine interfaces, as pointed out in the introduction of [35].

18

	Details of IDOL
	Another view for the coarse-to-fine framework of IDOL
	Algorithms

	Implementation Details
	Experimental setup
	Computation cost
	More results on refinement

	Broader Impact
	Limitations and Future Work

