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A Preliminaries

In this section, we introduce the notion of cumulant generating function, which characterizes different
tail behaviors of random variables.

Definition 1. The cumulant generating function (CGF) of a random variable X is defined as
Ax(N) 2 log E[eMX—EX)], 27)

Assuming A x (\) exists, it can be verified that Ax (0) = A’y (0) = 0, and that it is convex.
Definition 2. For a convex function 1 defined on the interval [0,b), where 0 < b < o0, its Legendre
dual V* is defined as
P (x) & sup Az —p(N)). (28)
A€0,b)
The following lemma characterizes a useful property of the Legendre dual and its inverse function.

Lemma 1. [15, Lemma 2.4] Assume that 1)(0) = ¢'(0) = 0. Then ¢*(x) defined above is a
non-negative convex and non-decreasing function on [0, 00) with 1*(0) = 0. Moreover, its inverse
function *~1(y) = inf{x > 0 : ¢*(x) > y} is concave, and can be written as

*—1 o Y + w(/\)
YT (y) = Aelr[%)f;b) (7)\ ), b>0. (29)

We consider the distributions with the following tail behaviors in the appendices:

a2)\2

* Sub-Gaussian: A random variable X is o-sub-Gaussian, if ¢)(\) = %

on Ax(A), for A € R. Then by Lemma 1,
U y) = V202
02?2

* Sub-Exponential: A random variable X is (¢2, b)-sub-Exponential, if 1)(\) = <—isan
upper bound on A x (), for 0 < [A| < } and b > 0. Using Lemma 1, we have

2
o 202y, ify < 35
¢ 1(2/):{ b JU=o

is an upper bound

by + 3, otherwise.
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 Sub-Gamma: A random variable X is F(02 ¢s)-sub-Gamma [74], if 1)(\) = 2(1)‘7%

an upper bound on Ax (1)), for 0 < [A] < = and ¢s > 0. Using Lemma 1, we have

“Hy) = 202y + coy.

Sub-Exponential condition is a slightly milder compared with sub-Gaussian condition. All the
definition above can be generalized by considering only the left (A < 0) or right (A > 0) tails, e.g.,
o-sub-Gaussian in the left tail as in Theorem 2.

B Generalization Error of Gibbs Algorithm

B.1 Theorem 1 Details

We start with the following two Lemmas:

Lemma 2. We define the following Jg(w,S) function as a proxy for the empirical risk, i.e.,
Je(w,8) £ 23" lw,Z;) + g(w) + h(S), where a € Rf, g : W — R, h : 2" = R,
and the function Jp(w, 1) = Epg[Jg(w, S)] as a proxy for the population risk. Then,

Epy. s [Jp(W,p) — Je(W,S)] = a - gen(Py s, Ps). (30

Proof.
Epy s[Jp(W, 1) — Je(W, S)]

= Epy o [Br (S Y UW.Z)] = & 3 6W. Z)]
i=1 i=1

+Epy [900) +Ep. [A(S)]]| = Eny s [907) + h(S)] G31)
=a-Epy s [Lp(W, 1) = LE(W, S)]
= a - gen(Py g, Ps). O

Lemma 3. Consider a learning algorithm Pyy|s, if we set the proxy function Jg(w,z") =
—log Py |s(w|s), then

Epy s[Jp(W, 1) — Je(W, )] = IskL(W; S). (32)

Proof.
I(W;S)+ L(W;S)

[ PWlS W|5)}

+Ep, oprs [log

=Epy s P (W) )}

Py s(W1[S
= Epy; [ 108 Pivis(WIS)| — Epyers |log Pus(W]S)] (33)
= Epy, s [~Epg [log Py s(W]9)] + log Py |s(W15)]
=Epy s [Jp(W, 1) — Jp(W, S)]. 0
Theorem 1. (restated) For (o, m(w), Lg(w, s))-Gibbs algorithm,
oL (w,s)

m(w)e
wis(wls) = T Vi) a >0,
)
its expected generalization error is given by

ISKL(W§ S)

gen(Pg g, Ps) =
gen(Piyys, Ps) =
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Proof. Considering Lemma 2 and Lemma 3, we just need to verify that Jg(w, s) = — log Pyy|s(w|s)
can be decomposed into Jg(w,s) = 23" | l(w, z;) + g(w) + h(s), for & > 0. Note that

Je(w,s) = —log Py g(w[s) = aLlgp(w,s) —logm(w) +log V (s, ), (34)

then we have:
Isx.(W; S) = Epy, s [Jp(W, Ps) — Je(W, S)] (3%
= a-gen(Pyy g, Ps). 0

Using Theorem 1, we can also derive the following lower bound on the expected generalization error
in terms of total variation distance. As a comparison, an upper bound on the generalization error of a
learning algorithm in terms of total variation distance is provided in [52].

Corollary 2. For (o, m(w), Lg(w, s))-Gibbs algorithm, the following lower bound on the general-
ization error of the Gibbs algorithm holds:
TV?*(Pw,s, Pw @ Ps)

gen( Py Ps) > - : (36)

where
TV (Pw.s, Pw ® Ps) & // ’PW,S(WS) — Py (w)Ps(s)|dwds 37

denotes total variation distance.

Proof. This can be proved immediately by combining Theorem 1 with the well-known Pinsker’s
inequality [49],

TV (Pw.s, Pw ® Ps) < +/2min(I(W;S), L(W;S)). (38)

Note that the lower bound in Corollary 2 is bounded in [0, £]. O

B.2 General Properties

In this section, we provide more discussions about other properties of the symmetrized KL divergence,
including data processing inequality, variational representation, chain rule, and their implications in
learning problems.

Data Processing Inequality: As shown in [59], symmetrized KL divergence is an f-divergence.
Thus, the data processing inequality holds, i.e., for Markov chain S <> W +» W',

Iskr,(S; W) > Iskr,(S; W'). (39)

Using the data processing inequality for mutual information, [17, 71] show that pre/post-processing
improves generalization, since these techniques give tighter mutual information-based generalization
error bounds. However, our Theorem 1 only holds for Gibbs algorithm, which cannot characterize the
generalization error for all conditional distributions Py induced by the post-processing Py |y
in the Markov chain. Thus, it is hard to conclude that the pre/post-processing will reduce the exact
generalization error for Gibbs algorithm by directly applying the data processing inequality.

Variational Representation: It is well-known that the mutual information has the following varia-
tional characterization

I(W;8) = glvf D(Pw|sl|Qw|Ps) = Qvivngs D(Pw,s/|Qw @ Qs), (40)

which implies that the product-of-marginal distribution minimizes the KL divergence for a given joint
distribution. One may think that the counterpart for lautum information would be infy,, D(Ps ®
Qw || Pw.s). but it is not true as shown in [49]. In general, the product-of-marginal distribution
does not minimize D(Qw ® Qs Pw,s), and lautum information satisfies the following variational
characterization

L(W;S) :glst(PW ® Ps||Pw|s ® Qs)- (41)

Thus, the product-of-marginal distribution Pg ® Py does not minimize the symmetrized KL diver-
gence Dskr,(Pw,s||Qw ® Qs).
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Chain Rule: As shown in [17], using the chain rule of mutual information, i.e., I(W;S) =
St I(W; Z;|Z'~") and the fact that [(W; Z;|Z°~) > I(W; Z;) for i.i.d. samples, the mu-
tual information based generalization bound can be tightened by considering the individual sample
mutual information I(W; Z;).

However, lautum information does not satisfy the same chain rule as mutual information in general,
and it is hard to characterize the generalization error of Gibbs algorithm using individual terms
Iskr,(W; Z;). To see this, we have the following example to show that the joint symmetrized KL in-
formation Igkr,(W; S) can be either larger or smaller than the sum of individual terms Iskr,(W; Z;).

Example 1. Consider the following joint distribution for binary random variables W, 7\, Z5 €

{0,1},

éa lf(zlazQ) :(070)7
PW7Z1,Zz (w7 215 Z2) = % —¢, ifw=1, and (Zlv 22) 7& (070)7 (42)
€, otherwise.

It can be verified that Z1 and Zs are mutually independent Bernoulli random variable with p = % and
the conditional distribution is symmetric in the sense that Py |z, z,(w|0,1) = Py |z, z,(w|1,0).

Case I: When € = 0.0001, we can compute the mutual information as
I(W; Z7) = I(W; Zy) =0.0943, I(W;Zy,Z5) =0.2014,

which satisfies the bound I(W; Z1,Z5) > I(W; Zy) + I(W; Z3) when Zy L Z5. However, for
lautum information

L(W; Zy) = L(W; Zy) = 0.3257, L(W;Zy,Z,) = 0.5315,
L(W; Z) + L(W; Zy) > L(W; Zy, Z3), and
ISKL(W; Zl) = ISKL(W; Zg) = 042007 ISKL(W; Zl, ZQ) = 07329,

Iskt, W3 Z1) + Isk, (W Z) > Iskr, (W' Z1, Zs).

Case II: When € = 0.01, it can be verified that

ISKL(W; Zl) = ISKL(W; Zg) = 01255, ISKL(W; Zl, ZQ) == 0.2741,
Iskt, (W5 Zh) + Iskr, (W Z2) < Iskr,(W; Z1, Z3).

Thus, individual sample symmetrized KL information cannot be used to characterize the behavior of
Iskr,(W; S) in general.

B.3 Example Details: Mean Estimation

B.3.1 Generalization Error

We first evaluate the generalization error of the learning algorithm in (13) directly. Note that the
output W can be written as

0'(2)0'2
W= 2u0+ ZZ + N, with o} = (43)

no + o2
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where N ~ N(0,0%1,) is independent from the training samples S = {Z;}" ;. Thus,

gen(Pw s, Ps)
=Epy s [Lp(W, ) — Lp(W, )]

~ 1 &
= Epy s [Er, [IW = ZI3) - = " IW - Zi|3]
i=1

@Emm®nRﬂV—Z—Zﬂw&—Zﬂ

—El2 }:Z+N (%~ 2)~ %+ 2) (% - 7))

© %E[Zj(zi - 2)|

_ 2daia% _ nggaéw (44)
o nog +o

where Z ~ N (1, 0%14) denotes an independent copy of the training sample, (a) follows due to the
fact that Z™ are i.i.d, and (b) follows from the fact that Z; — Z has zero mean, and it is only correlated

with Z;.
B.3.2 Symmetrized KL Divergence

The following lemma from [49] characterizes the mutual and lautum information for the Gaussian
channel.

Lemma 4. [49, Theorem 14] Consider the following model
Y = AX + Ng, (45)

where X € R denotes the input random vector with zero mean (not necessarily Gaussian),
A € R¥X4x denotes the linear transformation undergone by the input, Y € R is the output
vector, and Ng € R is a Gaussian noise vector independent of X. The input and the noise
covariance matrices are given by X and 3 n,. Then, we have

1

I(X;Y) = atr(EJ_\,éAEAT) — D(Py||Pn,), (46)
1

L(X;Y) = 5tr(zjvéAz:AT) + D(Py || Pyy)- (47)

In our example, the output W can be written as

n

2 n 2
W—QM‘%Z :%Z 2w+ "IN e

where N ~ N(0,091;). Setting P, ~ N(g—zuo + T%fu, 0%2l;) and ¥ = 0%1,,4 in Lemma 4
. 0
gives

tr(SyLAZAT) = tr( ZAAT) (49)
01

and noticing that AAT = Z—UEI 4 completes the proof.

B.4 ISMI Bound
In this subsection, we evaluate the following individual sample mutual information (ISMI) bound

from [19, Theorem 2] for the example discussed in Section 2.2 with i.i.d. samples generated from
Gaussian distribution Py ~ N (u,0%1,).
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Lemma 5. [19, Theorem 2]  Suppose ((W, 7) satisfies Ay Z)()‘) < i (A) for X € [0,b4),
and AZ(W,Z)(A) < P (=A) for A € (b—,0] under Py 3 = Pz @ Py, where 0 < by < oo and
—00 < b_ < 0. Then,

1 n

gen(Pivs, Ps) < — ;wi_l(I(W; Z)), (50)
1 n

—gen(Py g, Ps) < - 21/}":1(1(1/[/; Zi)). (51)

We need to compute the mutual information between each individual sample and the output hypothesis

I(W; Z;), and the CGF of £(W, Z), where W, Z are independent copies of W and Z with the same
marginal distribution, respectively.

Since W and Z; are Gaussian, I(WW; Z;) can be computed exactly using covariance matrix:

0_2
Cov|[Zi, W] = U‘Z% 1a WF%”% La , (52)
U—;a%Id ( s a% + a%)]d

then, we have

4
d 291 52 + g2
I(W; Z;) = *log(nff)az;#
2 EPRey ot
d o202
~ S1og (1 oz )
TG (n—1)o%02 + ot
d olo?
] (1 0°2 ) 53
g et (n—1)o20% + nodo? + ot (>3)
fori =1,---,n,n > 2. In addition, since
o? no? not
W N (Do + " ("o + 03 1), (54)
o) g g
it can be shown that (W, Z) = 1Z — W||2 is a scaled non-central chi-square distribution with d
4

degrees 02f freedom, where the scaling factor o7 = (% +1)0% + 02 and its non-centrality parameter
A 2
N= sz o — 2.

Note that the expectation of chi-square distribution with non-centrality parameter n and d degrees
of freedom is d + 7 and its moment generating function is exp(—22)(1 — 2X)~%/2. Therefore, the

T—2x
CGF of {(W, Z) is given by

nA d 2
Ay 2 (N) = =(dof + A+ ———5 — 5 log(1 — 207 N), (55)
‘w2 1—202\ 2
for A € (—o0, #) Since gen(PW‘S, Pz) > 0, we only need to consider the case A < 0. It can be
4
shown that:
d 202n\?
_ 2 2 [
AZ(W,Z)(A) = —dO’e)\ — 5 log(l — 20’@)\) + m
d 202n\?
= —(—u —log(1 — L 56
p (T loall =)+ 75 oy 0
where u £ 202 ). Further note that
2
—u —log(l—wu) < %, u <0, (57)
2029\?
oL <207\ A <. (58)
‘
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We have the following upper bound on the CGF of ¢ (VNV7 Z ):
Ay (N) < (dof 4+ 2027)A%, A <0, (59)
which means that ¢ (W, Z ) is y/do} + 207n-sub-Gaussian for A < 0. Combining the results in (53),
Lemma 5 gives the following bound

d?o} + 2do?n log(1 + oo’

gen(Py s, Ps) < \/ )- (60)

(n—1)ogo% +nogo? + ot
If 02 = 7 is a constant, i.e., « = O(n), then as n — o0, 07 = O(L) and 0} = O(1), and the

above bound is O (%)

C Expected Generalization Error Upper Bound

C.1 Proof of Theorem 2

We prove a slightly more general form of Theorem 2 as follows:

Theorem 4. Suppose that the training samples S = {Z;}_, are i.i.d generated from the distribution
Py and the loss function £(w, Z) satisfies Ay, z)(X) < (=), for X € (=b,0) and 0 < b under

data-generating distribution Py for all w € W. Let us assume 3 Cg € R:{ such that ?((vag)) > Cg,
and we further assume:

1
J0< Kk < o0, st w*_l(g) - %

=0. 61)

Then, the following upper bound holds for the expected generalization error of (o, m(w), Lg(w, $))-
Gibbs algorithm:

1+C
0 < gen(Pyy s, Ps) < % (62)
Proof. 1t is shown in [19, Proposition 2] that the following generalization error bound holds,
P ./ I(W; S
gen(Py s, Ps) < v 1( ( - )). 63)
By Theorem 1 and the assumption on C'g;, we have
i a I(W;S)+L(W;S 1+Cr)I(W; S
(P, Ps) = LOViS) T LOViS) | (Lt CR)I(W:S), o
o o
Therefore,
1 (W, I(W;
o n

Consider the function F'(u) £ ¢* 71 (%) — W, which is concave and satisfies F'(0) = 0 by
Lemma 1. If there exists 0 < x < oo, such that F'(x) = 0, then F'(I(WW;S)) > 0 implies that

0<I(W;8) <k.

Since ¢*~1(-) is non-decreasing, we have

gen(Pyy s, Ps) < v (

E) _ (1+C’E)’f_ 0

n «

In the following, we specify the different forms of ¢ () function in Theorem 4 to capture different
tail behaviors of the loss function. We first consider the o-sub-Gaussian assumption.

Theorem 2. (restated) Suppose that the training samples S = {Z;}_ are i.i.d generated from the
distribution Pz, and the non-negative loss function {(w, Z) is o-sub-Gaussian on the left-tail under

distribution Py for all w € W. We further assume Cg < f((&,vg)) for some C'g > 0. Then, for the

(o, m(w), Lg(w, s))-Gibbs algorithm, we have
20%a

0 <gen(Pyq,Ps) < ————.
_gen( WS> S) = (1+CE)’I’L
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Proof. If the loss function is o-sub-Gaussian on the left-tail we have ¢*~1(y) = \/202y. Using
Theorem 4 we have
Kk (1+Cg)k

2022 By, (66)
and the solution is xk = Liﬁ Therefore,
_ (1+Cr)k 202
P& o, Ps) < = . O
gen( W‘S’ S) — Q n(1+CE)

C.2 Other Tail Distributions

In this section, we consider the sub-Exponential and sub-Gamma assumptions for the loss function
and it is shown that the rates of convergence in these two cases are the same as that of the sub-Gaussian
assumption, i.e., O(1/n).

We first consider the sub-Exponential case.

Corollary 3. Suppose that the training samples S = {Z;}1_, are i.i.d generated from the distribution
Py, and the non-negative loss function {(w, Z) is (02, b)-sub- Exponennal on the left-tail under

distribution Py for all w € W. We further assume Cg < %W 5 for some C'g > 0. Then, for the

(o, 7(w), Lg(w, s))-Gibbs algorithm, we have

202 l.f7’L> 201(W;S) .
bl 0-2 ’
gen(Pyy s, Ps) < Z(HCE) . 21(W:3) (67)
zb(( (1+CE) ab)+1>’ if[fez] <n< p=
Proof. 1f the loss function is sub-Exponential on the left-tail we have
w*fl(y) — V 20’3%, lfy < va
by + 35, otherwise.
If @ G—z , by Theorem 4, we have
14+ Cg)I(W; S I(W;S
( + E) ( ) )S 20_3 ( ? )’ (68)
@ n
then the following upper bound holds,
202a2
w; S _— 69
K )< (14 Cg)2n’ (©9)
which gives
202
gen(Py g, Pg) < —4——. 70
If I(WS) > %,wehave
IW;S)(1+C bI(W; S 2
« n 2b
then the following upper bound holds when n > 7 +C ,
2
(W3 8) < e (72)

= 2b(n(1 + Cg) — ab)’

which gives

(’bl\’)

ab
gen(Pyy g, Ps) < 7b((n(1 ) —ab) + 1).
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Note that all the sub-Exponential loss functions are also sub-Exponential on the left-tail under the
same distribution (the converse statement is not true).

The authors in [48, 58] also consider the sub-Exponential assumption for general learning algorithms
and provide PAC-Bayesian upper bounds. The result in Corollary 3 is an upper bound on the expected
generalization error for Gibbs algorithm under sub-Exponential assumption, which establishes the
O(1/n) convergence rate.

Next, we provide an upper bound under sub-Gamma assumption.

Corollary 4. Suppose that the training samples S = {Z;}_, are i.i.d generated from the distribution

P, and the non-negative loss function {(w, Z) is T'(03, ¢s)-sub-Gamma on the left-tail under

distribution Py for all w € W. We further assume Cg < ?((VVI[;:;) for some C'g > 0. Then, for the

(o, m(w), Lg(w, s))-Gibbs algorithm, if n > rCyy we have

202« ac
gen(P s, Ps) < s 1 . : 73
gen(Pyys, Ps) < (1+CE)n—acs( * (1+CE)”*@CS) "

Proof. By considering ¢*~1(y) = \/202y + cy in Theorem 4, we have

(1+Cg)I(W;5) < QUEI(W;S) +CSI(W;S). (74)

(0% n n

Then the following upper bound holds when n > %,

I(W;8) < ( )22na§, (75)

a
(14 Cg)n — acs
which gives

202a(1 + Cg)n
(14 Cp)n— acs)2.

ﬁ(PVO{/LSaPS) <

The sub-Gamma assumption is also considered in [1, 26] and PAC-Bayesian upper bounds are
provided. Our Corollary 4 provides an upper bound on the expected generalization error for Gibbs
algorithm under sub-Gamma assumption, which establishes the O(1/n) convergence rate.

D PAC-Bayesian Upper Bound

Since the (o, m(w), Lp(w, Pg))-Gibbs distribution only depends on the population risk L p(w, Ps)
and is independent of the samples .S, we can denote it as P;!V’ LP The following lemma provides an
operational interpretation of the symmetrized KL divergence between the Gibbs posterior P€V| g and
the prior distribution PS‘V’L/P.

Lemma 6. Let us denote the (o, m(w),Lg(w,s))-Gibbs algorithm as Py, g and the

(o, 7(w), Lp(w, Ps/))-Gibbs algorithm as PI?V’LP. Then, the following equality holds for these
two Gibbs distributions with the same inverse temperature and prior distribution

oL’
D P o || Py F
e [Lp(W, Per) — L(W, )] — 3 Libs=sl A7) (76)

NV o

where E P&V\S:S’P‘(;L%’) W) =Epg . [f(W)]-E

e LFOD))

w
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Proof.

a o, L
Dskr (P 5= 1Py ")

P o Pg o
= Epa log WlS,— — E o, L' log LSI_
W|S=s Pa,LP P, P Pa,LP
w w
(a) —a(Lg(W,s)—Lp(W,Pg/
Y E o [log(e=®(LE(W.s)=Lp(W,Ps))
A(Pﬁv\s:s’Pw’LP)[ 8 )}
=alE wr |Lp(W,Ps) — Lg(W,s)|, 77
A(P‘%\szsfprP)[ p( s) — Lp(W,s)) (77
where (a) follows by the fact that partition functions V (s, ) do not depend on W'. [

Theorem 3. (restated) Suppose that the training samples S = {Z;}_, are i.i.d generated from the
distribution Py, and the non-negative loss function {(w, Z) is o-sub-Gaussian under data-generating
distribution Py for all w € W. If we use the (o, m(w), Lp(w, Ps/))-Gibbs distribution as the
PAC-Bayesian prior, where Ps: is an arbitrary chosen (and known) distribution, the following upper
bound holds for the generalization error of (a, m(w), Lg(w, s))-Gibbs algorithm with probability at
least1 — 26,0 < § < % under distribution Ps,

202 9
‘EP‘?V\st[LP(W Ps) — Le(W, 3)]‘ Sm te
o2a
9 )— T ( 2%°D(P, | P 7
2 Ty (V2 Pz 7)+e)
a,L'p .
where € £ { M, and Cp(s) < D(PW }’PW;?;S) for some Cp(s) > 0.
D(Pyys,|[Pi ")

Proof. Using Lemma 6, we have

Dskr.(Piy sl Py ") = a(Brg, . [Lp(W, P2)] = Epg _ [Lp(W,5)])
— (B o, [L(W, P2)] = E iy, [L(W, 5))
w w
< alBry,_ [Lp(W, P2)] ~Epg _ [Le(W,s)
T (B oy [Lp(W, Pz)] —E oy, [Le(W,s)]
<a ‘EP“}V‘S:S[LP(VV; Py)] — Erg o . [Lp(W, PZ)}‘
+alErg,_ [Lo(W, P2)] ~ Erg, _ [Le(W,s))
+ « EPQ,L/P [LP(I/V, PZ’)] — EPQ,L% [LP(VK Pz)]’
+a|E oy [Lp(W,P2)] = E oy [Le(W,s)], (78)
w w

and we just need to bound the four terms in the above inequality.

The first and the third term in (78) can be bounded using the Donsker-Varadhan variational character-
ization of KL divergence, note that for all A € R,

D(Pz/||Pz) > Ep,, [M(w, Z")] — log Ep, [e*(*4)]
Ao

2 )
where the last step follows from the sub-Gaussian assumption. Since the above inequality holds for
all A € R, the discriminant must be non-positive, which implies

|LP(’UJ,PZI) — Lp(’w7pz)| < \/20’2D(IDZI||Pz)7 forall w e W. (80)

> )\(LP(’LU,PZ’) _LP(waPZ)) -

(79
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We use the PAC-Bayesian bound in [29, Proposition 3] to bound the second and the fourth term in
(78). For any posterior distribution Qyy| 5, and prior distribution Qv , if £(w, Z) is o-sub-Gaussian
under Py for all w € W, the following bound holds with probability 1 — 4,

202 (D(Qw|s=slQw) + log(1/9))

’EQW\S:S [LP(VV’ PZ)} - EQW\S:S [LE(VVa 3)” < \/

. (81)
n
If we choose Pg/‘ 5 as the posterior distribution and PI?V’LIP as the prior distribution, we have
202 (D(Pgy o, 1P ") + log(1/9))
‘EP“}VIS:S [Lp(W, Pz)] —Epg . [Le(W, S)]‘ < - (82)
holds with probability 1 — . If we set Qw|s—s = Qw = P‘f‘v’L%, we have
20 (log(1/9))
\EP;,L;D [Lo(W. Pa)] = By (L (W) </ =220, (83)
Combining the bounds in (80), (82) and (83) with (78), we have
20% (D(Pyy 5, I Py jeF ) +log(1/6)
- a,L |S=s W|S
Dskr (Pl Py <o ) (84)

222 Q89D o /32D )

Then, using the assumption that (1 + Cp(s)) D (P, s | Py LP) < Dgkr( W|SH W|S ), we have

202 (D( o sl Py )+log(1/5))

20 (10g(1/9)) _

(1+ Cp(s)D(Py s, | P3"") < o

20’2D(PZ/||P2). (85)

Denote o £ AT05(y then we have

20?02 (log(1/6))

D(Pfy o, |17 — \/ - \/804'202D(PZ'||PZ)

20202 (D( o sl Py )+log(1/5))

n

< (86)

5= HP&,’LIF’) < \/w + \/80/202D(PZ/ | Pz), then the above
inequality holds. Otherwise, we could take square over both sides in (86), and denote
q y q

If we have 0 < D(P%

202a/% log(1/9)

, B2 \/Sa’QozD(PZ/HPZ),
n

A=C+

A 2
where C' 2 2o , then we have

D2(Ps_ | Pi"®) — 2D(Piy s, | Pp" " )(A + B) + B> + 2(A—~ C)B < 0. (87)

Solving the above inequality gives:

0 < D(Ps_,|IP"") < /A2 + 2BC + A+ B. (88)
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As x+y <+x+ 1/ for positive x, y and A > C, we have
D(Ps_ | Pfy"") < 2A+ B+ V2BC < 2A+ B+ V2AB < (V2A+ VB, (89)

Now using (89) in (82) and applying the inequality /= +y < \/x + ,/y, we have:
[Erg . [Lp(W, ) = Li(W,s))

W|S=s

< \/202(\/ﬂ +V/B)2 + 2021og(1/6)

n

S\/402A+\/2023+\/20210g(1/5)
n n n
2002 n 202 (log(1/9))

=W+ Cr@)n "
2 e ( S 202D(PZ'“PZ)> |

As both (82) and (83) hold with probability at least 1 — §, the above inequality holds with probability
at least 1 — 26 by the union bound [67]. ]

E Asymptotic Behavior of Generalization Error for Gibbs Algorithm

E.1 Large Inverse Temperature Details

Proposition 1. (restated) In the single-well case, if the Hessian matrix H*(S) is not singular, then
the generalization error of the (0o, m(w), Lg(w, s))-Gibbs algorithm is

gen(Piy s, Ps) = Eay [%WTH*(S)W]
+Epg [(W*(S) —EW*(S)]) T (H*(S)W*(S) - E[H* ()W ()|,
where EAW,S [f(W7 S)] £ EPW®PS [f(W, S)] - IEPW,S [f(m S)]

Proof. 1t is shown in [12, 33] that if the following Hessian matrix
H*(S) =V} Lg(w,S)|,

is not singular, then as @ — oo

wes) (90)

1
Piys = N(W*(S), —H"(S) ™) 1)
in distribution. Then, the mean of the marginal distribution Py, equals to the mean of W*(5), i.e.,
Epy [W] = Eps [W*(S)]. (92)
To apply Theorem 1, we evaluate the symmetrized KL information using the Gaussian approximation:
I(W;8)+ L(W;5S)
=Epy,s [log PI(/XV|S] —Epy g ps[log P{?Vls}
« * * *
= Epys [ = SOV = W () TH(S)(W = W*(8))]
« * * *
+ Epyars [5 (W = W () TH(S)(W - W*(S))]
e e
=Epy,eps [ngH*(S)W] - ]EPW,S [inH*(S)W]

a
2
a * * * T * T * T
~Erearys |5 (HH S W SWHS) T - ww (s)T —wisw))]. 03

+Epsory | 5 (0(H (W (S)WH(S)T = WW*($)T = w*($)w7)))]
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Note that Ep,, [W] = Ep, [W*(S)] and Ep,,  [W] = W*(S), we have

e I(W;S)+ L(W;S
gen(Py| g, 1) = (W 5) + LW, 5)

=Ep,ops [EWTH*(S)W] —Epy s [%WTH*(S)W]

+Ep, [ (s (B (9) (I (S)W(S)T W (SIEW(5)]T)))]
—Ep [ (B ($) W (SWH(S)T — W (W (5)7))]
—Epyer: [%WTH*(S)W] —Ep, [%WTH*(S)W]

+EPS

(W(8) = E[W*(S)]) T (H*(S)W*(S) - ]E[H*(S)W*(S)])} - O
Proposition 2. (restated) If we assume that w(W) is a uniform distribution over W, and the Hessian
matrices H(S) are not singular for all w € {1,--- , M}, then the generalization error of the
(00, m(w), Lg(w, s))-Gibbs algorithm in the multiple-well case can be bounded as

M
o 1 1 )
P75, P) < 7 3 B s [5WI HISIW

u=1

+Ep. (W (S) — EW ()T Hu(W;(S) - E[WJ(S)DH :

Proof. In this multiple-well case, it is shown in [12] that the Gibbs algorithm can be approximated
by the following Gaussian mixture distribution

le% 1 al * * 1 * —1
Py — m uz::lﬂ-(Wu(S))N(Wu(S)v aHu(S) ) (94)

aslong as H}(S) £ V2 Lg(w,S)| is not singular for all w € {1,--- , M}.

w= W (S)

However, there is no closed form for the symmetrized KL information for Gaussian mixtures. Thus,
we use Theorem 1 to construct an upper bound of the generalization error.

Consider the latent random variable U € {1,---, M} which denotes the index of the Gaussian
component of P{j{,l s+ Then, conditioning on U and S, W is a Gaussian random variable. Moreover,

since (W) is a uniform prior, U is a discrete uniform distribution Py (U = u) = +-,and U L S.

Note that for mutual information, we have M
I(S;WU) = I(S$;WU) + I(S;U) = I(S; W, U) = I(S; W) + I(S;UIW) > I(S; W), (95)
and for lautum information

Lw:s) € Lw,us8) Y LW S) + LW: S|U) = LOW; S|U), (96)

where (a) is due to the data processing inequality for any f-divergence, and () follows by the fact
that the chain rule of lautum information holds when U L S as shown in [49].

Thus, we can upper bound I(S; W) and L(S; W) with I(S; W|U) and L(S; W|U), respectively,

gﬁ(PI(/)VO\SaM)
I(S;W)+ L(S;W)

= lim
a—00 [e%

< lim I(S;WU)+ L(S; W|U)
a—00 «Q

= Bu [Enyors [5W T H@I(S), SW]| ~Ev [Er, ., [3W T Hwi(5), 5)W]]

+ Eu B, (0 (5) — Bl () (H(ws(S), 8)wiy (8) — BH (wfy(S), Sy ()] O
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E.2 Regularity Conditions for MLE

In this section, we present the regularity conditions required by the asymptotic normality [64] of
maximum likelihood estimates.

Assumption 1. Regularity Conditions for MLE:
1. f(w) # f(zhw’) for w # w'.
2. W is an open subset of RY.
3. The function log f(z|w) is three times continuously differentiable with respect to w.
4. There exist functions F1(2) : Z = R, F5(2) : Z = Rand M(2) : Z — R, such that
Bz p(w) [M(Z)] < o0,

and the following inequalities hold for any w € W,

dlog f(z|w) 9”log f(2|w)

‘ awL < Fl(Z), awLawj < Fl(Z),
33 log f(z|w) .

it =Rl bVl IS Vs —1.2.... d.
lawﬁwjawk < (Z)a l7j7k ) Ly 7d

5. The following inequality holds for an arbitrary w € W,
dlog f(zw) log f (+]w)

6wi ij

0<EZ~f(z|w)|: }<oo7 i,j=1,2---,d.

E.3 Bayesian Learning Algorithm

In this section, we show that the symmetrized KL information can be used to characterize the
generalization error of Gibbs algorithm in a different asymptotic regime, i.e., inverse temperature
a = n, then a and n go to infinity simultaneously. In this regime, the Gibbs algorithm is equivalent
to the Bayesian posterior distribution instead of ERM.

Suppose that we have n i.i.d. training samples S = {Z;}?_, generated from the distribution Py
defined on Z, and we want to fit the training data with a parametric distribution family { f (z;|w)}",,
where w € VW C R? denotes the parameter and 7(w) denotes a pre-selected prior distribution. Here,
the true data-generating distribution may not belong to the parametric family, i.e., Pz # f(-|w) for
w € W. The following Bayesian posterior distribution

m(w) [T7 f(zi|w , N =
Pstwls) = "L IE) i ven = [a []Ghwde, o
is equivalent to the (n, 7(w), Lg(w, s))-Gibbs algorithm with log-loss £(w, z) = —log f(z|w).

Thus, Theorem | can be applied directly, and we just need to evaluate Isky,(W; .S).

We further assume that the parametric family {f(z|w), w € W} and prior m(w) satisfy all the
regularization conditions required for the Bernstein—von-Mises theorem [64] and the asymptotic
Normality of the maximum likelihood estimate (MLE), including Assumption | and the condition
that 7(w) is continuous and 7(w) > 0 for all w € W.

In the asymptotic regime n — oo, Bernstein—von-Mises theorem under model mismatch [38, 64]
states that we could approximate the Bayesian posterior distribution Py s in (97) by

1J(w*)_1), where Wy, £ arg maXZlog f(Z;|w), (98)

N (W, —
n wew 5

denotes the MLE and
J(w) £ Ez[ - Vi, log f(Zlw)] with w* £ argmin D(Pyz||f(-|w)).
wew
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The asymptotic Normality of the MLE states that the distribution of Wi, will converge to
1
N (w*, EJ(w*)_ll(w*)J(w*)_l) with Z(w) £ Ez [V, log f(Z|w)Va log f(Z|w) ']

as n — oo. Thus, the marginal distribution Py, can be approximated by a Gaussian distribution

regardless the choice of prior 7(w).

Then, the symmetrized KL information can be computed using Lemma 4. By Theorem 1, we have

Iskr(S; W) _ tr(Z(w*)J(w*)™1)
n n

gen(Py s, Pz) = 99)

When the true model is in the parametric family Pz = f(-|w*), we have Z(w*) = J(w*), which
gives the Fisher information matrix and gen( Py g, Pz) = %. This result suggests that the expected
generalization error of MLE and that of the Bayesian posterior distribution are the same under suitable
regularity conditions.

E.4 Behavior of Empirical Risk

As an aside, we show that the empirical risk is a decreasing function of the inverse temperature «. To
see this, we first note that the derivative of P{}‘V‘ 5 With respect to « is given by

dP§ o(w]s
Wlfa(l) = P{/IV\S(U)|8) <EP&/‘S[LE(’LU,S)] — LE(w,S)) . (100)

Then, we can compute the derivative of the empirical risk with respect to « as follows:

dEpy,s[LeW,S)] _ o dlEng‘S[LE(WS)}]

da =Epyl da

dP%, o(w|S
=Ep, / LE(w,S)WIdS()dw
L W a

—Ep, /W Py s(wls) (LE(w, S)Epg . [Le(w,S)] — L3 (w, S)) dw]

—Ep, [Epy [Le(w,S)] - Erg, [Lh(w, 9)]]

|s
= —Ep,[Varpg _[Lp(W, )] <0 (101)

WS

When a = 0, it can be shown that (0, 7(w), L g (w, s))-Gibbs algorithm has zero generalization error.
However, the empirical risk in this case could be large, since the training samples are not used at all.
As a — oo, the empirical risk is decreasing, but the generalization error could be large. Thus, the
inverse temperature « controls the trade-off between the empirical risk and the generalization error.

F Regularized Gibbs Algorithm

F.1 Proofs of Proposition 3 and Proposition 4

Proposition 3. (restated) For (o, m(w), Lg(w, s) + AR(w, s))-Gibbs algorithm, its expected gener-
alization error is given by

I W, S
B0 W35)  3g o ROV, 5)),

where IEAW,S [R(VV» S)] =Ep,eprs [R(VV, S)] - ]EPW,S [R(VVv S)]

gen(Pyy s, Ps) =

Proof. For (o, w(w), Lg(w, s) + AR(w, s))-Gibbs algorithm, we have
Iskr(W; S) = Epy, ¢ [log(Pyys)] — Epy o pg [log(Piy)5)]
= a (Epyers[LE(W,S)] = Epy. s [LE(W, S)))
+aX (Epyops [R(W, §)] = Epy, s [R(W, 5)])
= agen(Pyy g, Ps) + aAEa,, . [R(W, S)]. O
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Proposition 4. (restated) Suppose that we adopt the {5-regularizer R(w, s) = ||w — T(s)||3, where
T(-) is an arbitrary deterministic function T : Z™ — W. Then, the expected generalization error of
(o, m(w), Lg(w, s) + AR(w, s))-Gibbs algorithm is

Ik, (W3 S)
(07

gen( Py 5, Ps) = — Atr(Cov[W, T(9)]),

where Cov[W,T(S)] denotes the covariance matrix between W and T'(.S).

Proof. We just need to compute Ea ,, ;[R(W, S)] by considering R(w, s) = ||w — T'(s)|3,
]EPW®PS [R(Wa S)] - IEPW,s [R(VV, S)}
= IEPW®PS [HW - T(S)”g] - ]EPW,S [”W - T(S)H%}
= IEPW,s [WTT(S)] —Epyops [WTT(S)]
= tr(Cov(W, T(5))). O

F.2 Generalization Error Upper Bounds for Regularized Gibbs Algorithm

For general regularization function R(w, s), we can bound the Ex,, ([R(W, S)] term using the
mutual information-based generalization error bound in [19, 71].

Proposition 5. Suppose that the regularizer function R(w, s) satisfies Ap(w,s)(N) < ¥(A), for
A € (=b,b) and b > 0 under data-generating distribution Py for all w € W. Then the following
lower and upper bounds holds for (o, m(w), Lg(w, s) + AR(w, s))-Gibbs algorithm:

Ik, (W5 S) < Iskr, (W5 S)
[0

" — XN I(W; S)) < gen(Pys, Ps) < +MTHI(W58)) (102)

Proof. Using the decoupling lemma from [19, Theorem 1], we have:

[Eay.s[ROV,S)]| < ¢ H(I(W39)), (103)

which means that
=P I(W3S)) < Eay o [R(W, 9)] < ¢ H(I(W; 9)). (104)
The final results (102) follows directly from (104) and Proposition 3. O

Note that the bounded CGF assumption is on the regularizer function R(w, s). We could consider
different assumptions on () in Proposition 5 including sub-Gaussian, sub-Exponential and sub-
Gamma. We focus on sub-Gaussian assumption for regularizer function in the following result.

Corollary 5. Suppose that the regularizer function R(w, s) is o-sub-Gaussian under the distribution

Ps for all w € W. Then the following bounds holds for (o, m(w), Lg(w, s) + AR(w, s))-Gibbs
algorithm:

T (W3 5) A\/2021(W; S) < gen(Pfy, g, Ps) < T W3 5) M/202I(W;S)  (105)

! !
Proof. Considering v*~1(I(W; S)) = \/2021(W; S) in Proposition 5 completes the proof. O

By assuming o-sub-Gaussianity for both loss function and the regularizer, we provide a generalization
error upper bound for regularized Gibbs algorithm in the following proposition.

Proposition 6. Suppose that the training samples S = {Z;}'_, are i.i.d generated from the distribu-
tion Pz, and the non-negative loss function {(w, Z) and the regularizer function R(w, s) are o-sub-

Gaussian under data-generating distribution Py for all w € W. We further assume C'rp = ];((“//va))

for some Cg > 0. Then the following bounds holds for (o, m(w), Lg(w, s) + AR(w, s))-Gibbs
algorithm:

202 1 A if -+ ; 2 Vl E
gen( Py Ps) < (I+Cr) \ 7 NN i 0Asgn and  I(W ’S)S(1+CE)2( " /\) ’ (106)
w|S» — 2 ]
| (12<Tca) TlL + % , otherwise.
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Proof. Using Proposition 5 and [71, Theorem 1], we have

I 2521(W:S) I
Ikt W38) ) s 21(W; S) < min ( c (W’5)7 sk ( +/\\/202IWS)

« n o

If 2‘72[24/;5) < ISKLEXW;S) + A/2021(W; S), and using CgI(W;S) = L(W; S), then we have:

; 1
I(W;S)(1+ Ckg) A2 I S) 202I(W; S) (107)
(6% n
Solving (107) gives
20202 1 2
IW:) < —— | —=+2] . 108
( )_(1+CE)2<\/E+ ) (10%)

If W + A/2021(W; S) < 4/ 2021 W 202 IW3S) and using Cl(W; S) = L(W; S), then we have:

20202 1
IW:; )< ——=|—=-X] , 109
9= w5 (7 ) e
for0 < A < f Combining the (108) and (109) with [71, Theorem 1] completes the proof. O

In Proposition 6, if 0 < A < f and %W < ( ) hold, then the upper bound

1
f
=

would be tighter than the upper bound in Theorem 2 with C'g
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