
Appendix for KALE flow: A relaxed KL Gradient Flow for Probabilities with
Disjoint Support
The appendix is structured as follows: in Appendix A, we give additional details on the variational
formulation of the KL divergence as well as Wasserstein gradient flows. In Appendix B, C, we give the
proofs for all statements made about the static properties of the KALE, while in Appendix D to F we
give proofs for all statements made about the KALE flow and descent algorithm. Appendix G contains
some additional technical lemmas that are used throughout the appendix. Finally, in Appendix H, we
provide details on the experiments discussed in the main body, and the impact of noise injection on
KALE particle descent trajectories.

A Mathematical Background

In this section, we lay out in more depth the theoretical framework behind the tools used in this paper.
We first review the variational formulation of the KL, and more generally f -divergences. We discuss
how this variational formulation can be used beyond the context of statistical estimation of the KL,
which is the original context it was considered for [48]. We then provide additional details about
Wasserstein gradient flows, and the theoretical tools used to study them.

A.1 The use of the variational formulation of f -divergences

f -divergences, first described in [2], form a family of divergences between probability measures
parametrized by a convex, lower semi-continuous function f . The divergence Df between two
probabilities measures P and Q is defined as:

Df (P || Q) =

(R
f( dP

dQ )dQ if P ⌧ Q
+1 otherwise

Apart from the KL, which we will discuss later, other well known instances of f -divergences include
the �

2 divergence, the Hellinger divergence and the Total Variation. Requiring the function f to be
convex allows to use the theory of Fenchel duality to frame Df as the solution of an optimization
problem:
Proposition 6 ([3, Lemma 9.4.4]). For any P, Q 2 P(Rd), we have:

Df (P || Q) = sup
h2C

0
b
(Rd)

⇢Z

Rd

h(x)dP�
Z

f
?(h(x))dQ

�
(20)

Where f
? is the Fenchel convex conjugate [51] of the convex function f , defined as:

f
?(u) = sup

x2Rd

hu, xi � f(x)

The KL divergence is a particular instance of f -divergence using the pair (f, f?):

f(x) =

8
<

:

x(log x� 1) + 1 if x > 0
1 if x = 0
+1 if x < 0

, f
?(u) = e

u � 1

M-estimation procedures for KL(P || Q) The dual formulation in Eq. (20) is an optimization
problem with an objective depending on P and Q only through expectations. By relying on the theory
of M-estimation, [48] showed that it was possible to consistently approximate the population solution
of Eq. (20) using only samples {Y (i)}N

i=1 and {X(i)}N
i=1 of P and Q. In particular, they showed that

the solution of the sample-based, regularized problem:

sup
h2H

⇢
1 +

Z
hdbPN �

Z
e
hdbQN + 1� �N

2
I(h)

�
(21)

(where I(h) is a convex complexity penalty) will converge in probability to the solution of Eq. (20),
provided that �N decays to 0 as 1

p
N

and that the complexity of the function class H is small enough.
However, their setting is general and does not exploit the specificity of an RKHS H with a penalty
I(h) = khk2

H
. Consistency for the latter case (a case which is tightly linked to the definition of the

KALE), was proved by [6] using tools from RKHS theory.
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Why KALE differs from simple KL estimation The addition of the regularization term �N

2 I(h)
(where the KALE objective is retrieved using I(h) = khk2) to Eq. (21) makes the solution of
Eq. (20) non-infinite for the mutually singular empirical distributions bPN and bQN . However, the KL
population objective Eq. (20) is unregularized, reflecting the fact that the KL is infinite for mutually
singular population P and Q. It is the goal of Section 2 is to show that extending the regularization
technique introduced in an estimation setting to the KL population objective results in a relaxed
solution to the KL problem that is a valid divergence measure between P and Q. The KALE thus
leverages the biases of the KL estimates to remain well-defined for mutually singular distributions:
in the present context, the primary interest of KALE is not to estimate the KL, but to provide a
KL alternative for mutually singular distributions. This justifies the definition of the KALE with a
positive � given in Definition 1. Note that a sample-based approximation of KALE(P || Q) is now:

(1 + �)max
h2H

⇢
1 +

Z
hdbPN �

Z
e
hdbQN � �

2
khk2

�
(22)

We emphasize that unlike in Eq. (21), � is now kept fixed.

A.2 Wasserstein Gradient Flows

The Wasserstein Geometry The theory of Wasserstein-2 gradient flows considers the set of
probability measures on P2(X ) (where X is a separable Hilbert Space set to Rd in our case) with
finite 2nd order moments, endowed with the Wasserstein-2 metric, defined, given P0,P1 2 P2(Rd),
as:

W2(P0,P1) =

✓
inf

�2�(P0,P1)

Z
kx� yk2 d�(x, y)

◆ 1
2

(23)

�(P0,P1) denotes the sets of admissible transport plans between P0 and P1:

�(P0,P1) =
�
� 2 P(Rd ⇥ Rd); (⇡1)#� = P0, (⇡2)#� = P1

 

where ⇡1 : (x, y) 7�! x and ⇡
2(x, y) 7�! y are the canonical projections on Rd ⇥Rd. In the proofs,

we will often consider constant speed geodesics between two probabilities P0 and P1, defined as
paths (Pt)0t1 of the form:

Pt =
�
(1� t)⇡1 + t⇡

2
�
#
�

where � 2 �o(P0,P1) is an optimal coupling, in the sense that it minimizes the objective defining
the W2(P0,P1) distance in Eq. (23). Convexity along geodesics, or geodesic convexity is a property
of functionals in (P2(Rd),W2):
Definition 2 (Geodesic convexity, [3, Definition 9.1.1]). We say that a functional F is �M -
geodesically semiconvex for some M > 0 if for any P0,P1 and constant speed geodesic Pt, t 2 [0, 1]
between P0 and P1, the following holds:

F(Pt)  (1� t)F(P0) + tF(P1) +Mt (1� t)W2(P0,P1)
2
.

Wasserstein Gradient Flows The set (P2(Rd),W2) is a metric space and not a Hilbert space.
Because of that, the notion of gradient (flow) of a functional F cannot easily be defined through
duality with the differential of F , and porting the notion of “gradient flow” to the space (P2(Rd),W2)
thus requires characterizing gradient flows trajectories in a Hilbertian-free way. Examples of such
characterizations include curves of maximal slope [3, Section 11.1.1], or identification with limit
curves of minimizing moment schemes. We refer to [55] for an introduction of gradient flows
Wasserstein spaces. The formal definition of Wasserstein-2 gradient flows as given in [3] is as
follows:
Definition 3 (Gradient Flows [3, Definition 11.1.1]). We say that an absolutely continuous map�
t 7�! Pt 2 P2(Rd)

�
is a solution of the Wasserstein-2 gradient flow equation:

@tPt + div (Ptvt) = 0, (24)

if (I ⇥ (�vt)) 2 @F(Pt), where @F(Pt) is the extended Fréchet subdifferential of F evaluated at
Pt.
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For common functionals such as the sum of (sufficiently smooth) potential, interaction and internal
energy terms,

F(P) =
Z

V (x)dP(x) +
Z

W (x� y)dP(x)dP(y) +
Z

f(p(x))dP(x)

(where P is assumed to be regular, of the form dP(x) = p(x)dx), [3] have identified solutions of the
very general Eq. (24) with solutions of the more familiar

@Pt � div
✓
Ptr

�F
�P (Pt)

◆
= 0, (25)

where �F

�P is the first variation of F , defined (when it exists) as the function v verifying:

lim
✏!0

F(P+ ✏d�)� F(P)
✏

=

Z
v(x)d�, � = P�Q

For any Q 2 P2(Rd). Note that this case includes the MMD (given regularity assumptions on the
kernel), as discussed in [4], but does not include the KALE, which is not a functional studied in
[3], and to our knowledge, a novel object of study in the Wasserstein gradient flow literature. In
Appendix D, we show that the identification between Eq. (24) and Eq. (25) still holds for the case of
KALE, by identifying elements of its (strong) extended Fréchet subdifferential. For completeness,
we recall the definition of a strong extended Fréchet subdifferential:
Definition 4 ((Strong) Extended Fréchet subdifferential, [3, Definition 10.3.1]). Let F : P2(Rd) 7�!
(�1,+1] be a proper, geodesically convex functional that is lower semicontinuous w.r.t W2.
We say that � 2 P2(Rd ⇥ Rd) belongs to the strong extended Fréchet subdifferential @F (P0) if�
⇡
1
�
#
� = P0, and for every P1 2 P2(Rd) and µ 2 �(�,P1):

F(P1)� F(P0) �
Z

X3

hx2, x3 � x1i dµ+ o(W2,µ(P0,P1))

where W
2
2,µ(P0,P1) =

R
kx1 � x3k2 dµ(x1, x2, x3).

B Proof of Theorem 1

Throughout this proof, we will consider the function K : H⇥ P(Rd) ! R given by:

K(h,P) = max

⇢
1 +

Z
hdP�

Z
e
hdQ� �

2
khk2

�
(26)

K has the same expression as the one of Lemma 1, with a supercharged signature to include the
dependency in P, which we will use in this proof. Note that the use of max (and not sup) in the
definition of K is made possible since (minus) the objective of K is continuous w.r.t H’s strong
topology, and convex: thus it is lower-semicontinuous [15, Corollary 3.9]. Following this, one can
use the extreme-value theorem to obtain the existence of a maximizer on any RKHS ball (which are
weakly compact), and apply a coercivity argument to conclude on the existence of a global maximizer
h
?. for any P, the existence of an

Proof of Lemma 1 The proof follows directly from [6, Lemma 8]. By Assumption 1, all integrabil-
ity requirements are satisfied (the two Bochner integrals in the next equation are well-defined because
of Assumption 1). Following this, the gradient of K is given by:

rhK(h,P) =
Z

k(x, ·)dP�
Z

k(x, ·)ehdQ� �h.

And its evaluation at 0 given in Lemma 1 follows.

Proof that the KALE is weakly continuous Let (Pn)n2N such that Pn weakly converges to P.
Let h? = argmaxh K(h,P) and h

?

n
= argmaxh K(h,Pn).

lim sup
n!1

K(h?

n
,Pn) = K(h?

,P) and lim inf
n!1

K(h?

n
,Pn) = K(h?

,P).
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The result on KALE follows since when � is kept fixed, K and KALE differ only by a multiplicative
factor. We focus on proving the first (lim sup) equality, the arguments for lim inf being identical.

First, by optimality of h?

n
w.r.t Pn, we have: K(h?

n
,Pn) � K(h?

,Pn), implying

lim sup
n!1

K(h?

n
,Pn) � lim sup

n!1

K(h?
,Pn).

Since Pn * P, the r.h.s verifies lim sup
n!1

K(h?
,Pn) = limn!1 K(h?

,Pn) = K(h?
,P), from

which we conclude lim sup
n!1

KALE(Pn,Q) � KALE(P || Q). To prove the converse, assume
that lim sup

n!1
KALE(Pn,Q) > KALE(P || Q). Then there exists ✏ > 0 and a subsequence

nk ! +1 with k ! +1 such that K(h?

nk
,Pnk

) � K(h?
,P) + ✏

2 . Let us now compare K(h?

nk
,P)

with K(h?
,P) :

K(h?

nk
,P) = K(h?

nk
,Pnk

) +

Z
h
?

nk
d(P� Pnk

) � K(h?
,P) + ✏

2
� 4

p
KMMD(P || Pnk

)

�

where for the last step, we used the Cauchy-Schwarz inequality and Lemma 5. Since the MMD
is weakly continuous for bounded kernels with Lipschitz embeddings [59, Theorem 3.2], we have
limk!1 MMD2(Pnk

|| P) = 0: there exists a k0 such that, for k > k0, K(h?

nk
,P) > K(h?

,P) + ✏

4 ,
which contradicts the optimality condition defining h

?. Hence, we must have

lim sup
n!1

KALE(Pn || Q) = KALE(P || Q).

The two steps of this proof can be repeated for any convergent subsequence of K(h?

n
,Pn), and as

a consequence, we also have: lim inf
n!1

KALE(Pn || Q) = KALE(P || Q), which proves the weak
continuity of KALE.

Proof that KALE is a probability divergence that metrizes the weak convergence of probability
distributions We first prove positivity and definiteness of KALE, making it a probability divergence.
Positivity of KALE comes from the fact that K(h?

,P) � K(0,P) = 0. To prove definiteness of
KALE, assume KALE(P || Q) = 0. Recall that KALE(P || Q) = 0 () h

? = 0, since
K(0,P) = 0 and the objective is strongly convex. The optimality criterion for 0H can be characterized
by differentiating K(h,P). Using Lemma 1, and the optimality of 0, we have:

0 = rhK(0,P) �
=

Z
k(x, ·)dP�

Z
k(x, ·)dQ = fP,Q,

where fP,Q denotes the MMD witness function between P and Q, i.e. MMD(P || Q)2 = kfP,Qk2.
When k is universal, fP,Q = 0 is only possible when P = Q, which proves the first implication of the
equivalence. The reverse implication is proven by noticing that

P = Q =) rhK(0,P) = 0.

Metrizing weak convergence From the weak continuity of KALE associated with the definiteness
of KALE proven above, we have Pn * Q =) KALE(Pn || Q) ! 0. For the converse, assume that
MMD(Pn || Q) doesn’t converge to 0. Therefore, there exists a subsequence nk with nk ! +1
when k ! +1 and such that MMD(Pnk

|| Q) > c > 0 for some c > 0. Fix ✏ > 0. We have that:

1

(1 + �)
KALE(Pnk

|| Q) � K(✏⇥ fPnn
,Q) =

D
rhK(0,Pnk

), ✏fPn
k
,Q
E
+O(✏2kfPn

k
,Qk)

= ✏kfPn
k
,Qk+O(✏2kfPn

k
,Qk2).

Now, recall that kfPn
k
,Qk = MMD(Pnk

|| Q) � c > 0, implying that for sufficiently low ✏, we will
have: KALE(Pnk

|| Q) > (1+�)c✏
2 , 8k � nk. Thus, KALE(Pn || Q) does not tend to 0. Hence, by

contradiction MMD(Pn || Q) converges to 0 which implies that Pn converges weakly to Q since the
MMD metrizes weak convergence. This concludes the proof of Theorem 1.
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C Proof of Proposition 1

C.1 Proof of (i)

To prove that KALE converges to the MMD as � increases, we will show the following inequalities:
1

2
MMD2(P || Q)�O

✓
1

�

◆
 KALE(P || Q)  1

2
MMD2(P || Q) +O

✓
1

�

◆

To prove the right inequality, we recall that K(h,P) 
R
hdP�

R
hdQ� �

2 khk2, which holds by
convexity of the exponential. The right-hand side is maximized for h? = fP,Q

�
and equals MMD2(P||Q)

2� .
Consequently, we have: KALE(P || Q)  1+�

2� MMD2(P || Q).

To prove the left inequality, we use Lemma 5 which allows to control the discrepancy between the
KALE and the MMD. Indeed, we have: h(x) = hh, k(x, ·)i 

p
K khk = 4K

�
. The following

Taylor-Lagrange inequality holds, uniformly for all x:

e
h(x)  1 + h(x) +

e
4K
� 16K2

2�2
,

which gives a lower bound of K(h?
,P):

(1 + �)K(h,P) � (1 + �)

 Z
hdP�

Z
hdQ� �

2
khk2 � 8K2

e
4K
�

�2

!
.

Remark that the r.h.s is maximized for h1 = fP,Q/�. Because h
? maximizes the l.h.s, we have:

(1 + �)K(h?
,P) � (1 + �)K(h1,P) �

1 + �

2�
MMD2(P || Q)� 8K2

e
4K
� (1 + �)

�2
.

The two initial inequalities are verified, and taking them to the limit � ! 1 concludes the proof.

C.2 Proof of (ii)

(ii) was proved in [6] as part of (Theorem 7). For completeness, we recall the elements of the proof.
Let us highlight the dependency of h? = argmaxh K(h,P) in � (see Eq. (26)) by noting it h?

�
(=h

?),
for � � 0. Because we assume that log dP

dQ 2 H, we have:

h
?

0 = log
dP
dQ , KL(P || Q) = 1 +

Z
h
?

0dP�
Z

e
h
?

0 dQ.

Thus, we have
���
KALE(P || Q)

(1 + �)
� KL(P || Q)

��� =
���1 +

Z
h
?

�
dP�

Z
e
h
?

�dQ� �

2
kh?

�
k2
H
� KL(P || Q)

���

=
���
Z

(h?

�
� h

?

0) dP�
Z

e
h0(1� e

(h?

�
�h

?

0))dQ+
�

2
kh?

�
k2
���


���
Z

(h?

�
� h

?

0) dP
���+
���
Z

e
h0(1� e

(h?

�
�h

?

0))dQ
���+
���
�

2
kh?

�
k2
���

To bound the last term, we note that
kh?

�
k  kh?

0k . (27)
Otherwise, by optimality of h?

0, we have: Z
h
?

�
dP�

Z
e
h
?

�dQ 
Z

h
?

0dP�
Z

e
h
?

0 dQ

=)
Z

h
?

�
dP�

Z
e
h
?

�dQ� �

2
kh?k2

H

Z

h
?

0dP�
Z

e
h
?

0 dQ� �

2
kh?

0k
2
H
,

contradicting the optimality of h?

�
. As a consequence, we have that lim�!0

�

2 kh
?

�
k2( �

2 kh
?

0k2) = 0.
To bound the first two terms, we use [6] (Lemma 11), ensuring that:

lim
�!0

kh?

�
� h

?

0k = 0. (28)

As a consequence:
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• For all x 2 Rd, lim�!0 h
?

�
(x)� h

?

0(x) = 0.
• h

?

�
is a bounded function.

We conclude that the first two terms tend to 0 as � ! 0 by the dominated convergence theorem. We
thus have: lim�!0

���KALE(P || Q)� KL(P || Q)
��� = 0.

D Proof of Proposition 2

As explained in the introduction, the Wasserstein gradient flow of the KALE does not have a known
expression, other than the abstract one given by Definition 3, applied to the KALE. Relying on the
formalism introduced in [3], we first show that KALE’s gradient flow admits the “traditional” form:

@tPt � div
✓
Ptr

�KALE
�P

◆
= 0

We start by giving an expression of the first variation of the KALE. This proof is the first in the
appendix that involves an implicit function theorem argument, which we justify at length. For brevity,
the same justifications will be skipped in other proofs relying on small variations around the same
implicit function theorem argument.
Lemma 2 (Differentiability of KALE).
Let Q 2 P2(Rd), and � > 0. Then, the function P 2 P2(Rd) 7�! KALE(P || Q) is Gâteaux
differentiable w.r.t. P and admits the following first variation:

�KALE(P || Q)

�P = (1 + �)h?
, h

? = argmax
h2H

K(h,P).

Proof. Informally, computing the first variation of KALE w.r.t P can be done using a chain rule
argument:

�KALE
�P =

�KALE(h?(P),P)
�P =

@KALE
@P +

@KALE
@h

���
h?

@h
?

@P =
@KALE

@P
where the second term is 0 given that h? is defined as maxh2H K(h,P). To make this discussion
rigorous, we need to make sure that “@h

?

@P ” (formally, the Gâteaux derivative of the map P 7�! h
?(P))

exists.

We recall that given two topologically convex vector spaces X and Y , and a function f : X ! Y ,
the Gâteaux derivative of f at x in the direction � 2 X is defined as:

Df(x;�) = lim
t!0

f(x+ t�)� f(x)

t
.

A complete argument for the differentiability of both K and P 7�! h
?(P) would require augmenting

the domains of functionals of interest from P2(Rd) (which is not a vector space) by the vector
space of signed radon measures M(Rd). We circumvent this additional step by simply considering
“admissible” directions �, such that

R
d� = 0. Noting h

?

t
= argmaxh K(h,P+ t�), we know given

Lemma 1 that h?

t
verifies:

F�(h
?

t
, t)

�
= rhK(h?

t
,P) =

Z
k(x, ·)d(P(x) + t�(x))�

Z
k(x, ·) exp (h?

t
(x)) dQ(x)� �h

?

t
= 0.

Thus, h?

t
is defined implicitly through K’s optimality at h?

t
. To study the differentiability of the

mapping t 7�! h
?

t
, it is natural to rely on an implicit function theorem argument on F : (H⇥ R) !

H. Similarly to implicit function theorems on euclidean spaces, we will need to invert DhF�(h, t),
the (Fréchet) differential of F w.r.t h. This differential is given by:

DhF�(h, t) = �
Z

k(x, ·)⌦ k(x, ·)eh(x)dQ(x)

| {z }
�
=L(h)

��I,
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which is an invertible operator on H, given that L(h) is self-adjoint and positive for all h. We can
now apply an implicit function theorem on Banach spaces [32] (Theorem 5.9): For all �, there exists
a neighborhood of 0, V(0), such that the mapping t 2 V(0) 7�! h

?

t
is differentiable. The derivative

of h?

t
at 0 is then the Gâteaux derivative of h?(P) in the direction �:

DPh
?(P;�) =

Z
(L(h?) + �I)�1

k(x, ·)d�.

To conclude on KALE’s first variation, we can rigorously write, using the chain rule of Gâteaux
derivatives,

DPKALE(P || Q;�) = (1 + �)

8
<

:

Z
h
?(P)(x)d�(x) + hrhK(h?(P),P)| {z }

=0

, Dh
?(P;�)iH

9
=

;

= (1 + �)

Z
h
?(P)d�

which concludes the proof.

We now show that the KALE admits strong Fréchet subgradients, and that they are equal to the
gradient of KALE’s first variation.
Lemma 3. A coupling � of the form (I ⇥ v)#P0 belongs to the extended (strong) Fréchet sub-
differential of KALE at P = P0 if and only if v = r �KALE

�P = (1 + �)rh
?

0 P0-a.e, where
(1 + �)h?

0 = (1 + �) argmaxh K(h,P0) is the first variation of KALE at P = P0.

Proof. Using an analogue of [3, Equation 10.3.13] for the extended strong Fréchet subdifferential,
we have that:

� = (I ⇥ v)#P0 2 @KALE(P0 || Q) ()

KALE(P1 || Q)� KALE(P0 || Q) �
Z

(y � x)>v(x)d�̃(x, y) + o(C2(�̃))

for any P1 2 P2(Rd), �̃ 2 �(P0,P1). Note that without loss of generality, we switched the coupling
µ 2 �((I ⇥ v)#P0,P1) present in Definition 4 with a coupling �̃ 2 �(P0,P1), a switch that is made
possible because of the specific form of � considered above, which is the one needed in Definition 3.
Our goal is to show that (I ⇥ v)#P0 2 @KALE(P0 || Q) () v = (1 + �)rh

?

0.
We first show the reverse implication, e.g. (I ⇥ (1 + �)rh

?

0)#P0 2 @KALE(P0 || Q). To do so, we
consider the following interpolation scheme between P0 and P1:

Pt =
�
t⇡

2 + (1� t)⇡1
�
#
�̃.

And note for each Pt, h?

t
= argmaxh K(h,Pt). Noting g(t) = KALE(Pt || Q), we have:

g
0(t) = (1 + �)

Z
(y � x)> rh

?

t
(ty + (1� t)x)d�̃(x, y), g

00(t) = (1 + �)((I) + (II))

where
(I) =

Z
(y � x)> (Hh

?

t
(ty + (1� t)x)(y � x)) d�̃(x, y)

(II) =

Z
(y � x)>

✓
r dh?

t

dt
(ty + (1� t)x)

◆
d�̃(x, y)

(and we exchanged the t-derivative and r in (II)). From Assumption 2 we have that kHhk 
khk

p
K2d  4

p
KK2d

�
, implying (I)  4

p
KK2d

�
C

2
2 (�̃). Using an implicit function theorem argu-

ment, we have:
dh?

t

dt
= �(L(h?

t
) + �I)�1(y � x)>r1kty+(1�t)x,

implying

(II) =

Z *
dX

i=1

(yi � xi)@ikty+(1�t)x,

dX

i=1

(yi � xi)(L(h?

t
) + �I)�1

@ikty+(1�t)x

+
d�̃(x, y)

 K1d

�
C

2
2 (�̃)
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where the last line was obtained using the Cauchy-Schwarz inequality on H, RKHS norm homo-
geneity, the 1

�
-bound on k(L+ �I)�1k, and then the Cauchy-Schwarz inequality on Rd. Using now

Taylor’s inequality upper bounding the second derivative of g between t = 0 and t = 1, we have that:

g(1)� g(0) �
Z

(y � x)>rh
?

0(x)d�̃(x, y) +O(C2
2 (�̃)).

Since O(C2
2 (�̃)) = o(C2(�̃)), it follows that (I ⇥ (1 + �)rh

?

0)#P0 2 @KALE(P0 || Q).
To prove the reverse implication, assume v(

�
= (1 + �)ṽ) 6= (1 + �)rh

?

0. Fix u > 0, and choose an
“adversarial” P1,u defined as P1,u = (x 7�! x+u(1+�)(ṽ(x)�rh

?

0(x)))#P0, with an associated
coupling �̃ = (x ⇥ (x 7�! x + (1 + �)u(ṽ(x) � rh

?

0(x)))#P0. We then have, using a Taylor
inequality lower bounding the second derivative of g:

g(1)� g(0)�
Z

(y � x)>(1 + �)ṽ(x)d�̃(x, y) 
Z

(y � x)>(1 + �)(rh
?

0(x)� ṽ(x))d�̃(x, y)

+O(C2
2 (�̃))

 �u(1 + �)

Z
kṽ(x)�rh

?

0(x))k
2 dP0(x)

+O(C2
2 (�̃)).

In the limit P1,u * P0, e.g. u ! 0), the right-hand side scales in u, which is the same scaling
as C2(�̃) = (

R
kx1 � x2k2 d�̃(x1, x2))1/2 = u(1 + �)(

R
kṽ(x)�rh

?

0(x)k
2
dP0(x))1/2. Thus, it

follows that the inequality:

g(1)� g(0)�
Z

(y � x)>(1 + �)ṽ(x)d�̃(x, y) � o(C2(�̃))

cannot be verified unless ṽ = rh
?

0, P0a-e.

We are now ready to make the following claim:
Proposition 7 (KALE’s gradient flow). The Wasserstein-2 KALE’s gradient flow of KALE on P2(Rd)
follows:

@tPt � div
✓
Ptr

�KALE
@P

◆
= 0

Proof. This is a direct application of [3, Definition 11.1.1] using the expression of KALE’s strong
subdifferential of the form (i⇥ v)# P.

Now that we identified the expression of the KALE gradient flow, we will show that the KALE
gradient flow admits a unique solution. To prove that the KALE gradient flow admits a unique
solution is to prove that KALE is �M -semiconvex, for some M > 0.

Lemma 4. P 7�! KALE(P || Q) is �K1d+4
p
KK2d

�
-geodesically convex.

Proof. Let Pa,Pb 2 P2(Rd), and consider an admissible coupling � 2 �(Pa,Pb) with associated
transport costs (for various p) Cp(�) = (

R
kx� ykp d�(x, y))

1
p . We consider (Pt)0t1 (where

Pt =
�
t⇡

2 + (1� t)⇡1
�
#
�) a constant-speed geodesic between Pa and Pb. To prove the geodesic

convexity of the KALE, we follow a similar approach as in [18] (Lemma B.2). In particular, we
show that t 7�! g(t) = KALE(Pt || Q) has an MC

2
2 (�)-Lipschitz derivative, with some M to be

determined. Using a similar implicit function theorem argument as in the proof of Lemma 2, we
have:

g
0(t) =

Z
(x� y)>rh

?

t
(ty + (1� t)x)d�(x, y).

Given t1, t2, we thus have:
|g0(t1)� g

0(t2)|  (I) + (II),
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where:

(I) =

����
Z

(x� y)>
�
rh

?

t1
(t1y + (1� t1)x)�rh

?

t1
(t2y + (1� t2)x)

�
d�(x, y)

����


��h?

t1

��pK2d(t2 � t1)

Z
kx� yk2 d�(x, y)  4

p
KK2d

�
(t1 � t2)C

2
2 (�)

and:

(II) =

Z
(x� y)>

�
rh

?

t1
(t2y + (1� t2)x)�rh

?

t2
(t2y + (1� t2)x)

�
d�(x, y)

=

Z dX

i=1

(xi � yi)

⌧
h
?

t1
� h

?

t2
,
@kt2y+(1�t2)x

@xi

�
d�(x, y)

(i)

Z ��h?

t1
� h

?

t2

��
dX

i=1

|xi � yi|
����
@kt2y+(1�t2)x

@xi

���� d�(x, y)

(ii)

p

K1d

��h?

t1
� h

?

t2

��
Z p

kx� yk
2
d�(x, y)

(iii)
 (t2 � t1)K1dC

2
2 (Pa,Pb)

�

where (i) follows from Cauchy-Schwarz on H, (ii) uses Cauchy-Schwarz on Rd and (iii) relies on
Lemma 8 and Jensen inequality. We thus conclude that g0(t) is MC

2
2 (�)-Lipschitz, with M =

K1d+4
p
KK2d

�
, and thus that KALE is �M -geodesically semiconvex

The geodesic convexity of the KALE allows to conclude the proof of Proposition 2: indeed, since
the KALE is geodesically semiconvex in P, and admits strong extended Fréchet subdifferentials, we
conclude that the KALE gradient flow solutions exist and are unique, as guaranteed by [3, Theorem
11.2.1].

E Proof of Proposition 3

We recall the following definitions: given a positive measure P, and a function f 2 C1(Rd), the
weighted Sobolev semi-norm of f is given by:

kfk
Ḣ(P) =

✓Z
krfk2 dP

◆ 1
2

.

Note the important role of the weighted Sobolev semi-norm in the energy dissipation formula of
KALE’s gradient flow:

dKALE(Pt || Q)

dt
= �

Z
(1 + �)2 krh

?k2 dPt = �(1 + �)2 kh?k2
Ḣ(Pt)

. (29)

By duality, one can define the (possibly infinite) negative weighted negative Sobolev distance [4]
between µ and ⌫:

kµ� ⌫k
Ḣ�1(P) = sup

kfk
Ḣ(P)1

�����

Z
fd(µ� ⌫)

�����.

As proven in [50], the weighted negative Sobolev distance linearizes the Wasserstein distance, and
one can formally write:

W2(µ, µ+ dµ) = kdµk
Ḣ�1(P) + o(dµ).

Moreover, for all f 2 C1(Rd), and µ 2 M(Rd), one has:
Z

fdµ  kfk
Ḣ(P) kµkḢ�1(P) . (30)
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To prove Proposition 3, we use the �-strong concavity of K(h,P) w.r.t. h :

KALE(P || Q) = (1 + �)K(h?
,P)  (1 + �)(K(0,P) + hh?

,rhK(0,P)i � �

2
kh?k2)

 (1 + �) hh?
, µP � µQi = (1 + �)

Z
h
?(x)dP�

Z
h
?(x)dQ

 (1 + �) khk
Ḣ(P) kP�Qk

Ḣ�1(P)  (1 + �)C khk
Ḣ(P) .

Here we successively applied Eq. (30) and the hypothesis kP�Qk
Ḣ(P)  C. Recalling Eq. (29),

one has:

dKALE(Pt,Q)

dt
 �KALE(Pt || Q)2

C2
=) d(1/KALE(Pt,Q))

dt
� 1

C
,

from which the desired inequality follows.

Proof of Proposition 5 We rely on the proof technique used in [4, E.1]. From Lemma 7, we get
that assumptions A, D of [4] hold with L =

p
KK2d and �

2 = K2d. Moreover, we know from
Lemma 5 that h? is 4K

�
-Lipschitz. From these smoothness conditions, all steps in [4, E.1], follow

until:

KALE(Pn+1 || Q)� KALE(Pn || Q)  ��

✓
1� 3

2
�

p
KK2d

◆
D�n

(Pn) + �

p
K2d�n kh?kD�n

(Pn)
1
2 .

Now, given that kh?k2  2KALE(Pn,Q)
�

and that 8K2d�
2
n

�2 KALE(Pn,Q)  D�n
(Pn) we have:

KALE(Pn+1 || Q)� KALE(Pn || Q)  ��

✓
1� 3

2
�

p
KK2d

◆
D�n

(Pn) + �

r
2

8
D�n

(Pn)

 ��

2

⇣
1� 3�

p
KK2d

⌘
D�n

(Pn)

(iv)
 �4�

⇣
1� 3�

p
KK2d

⌘
K2d

�2
�
2
n

KALE(P || Q)

(v)
 ���2

n
KALE(Pn || Q),

where (iv) uses the noise schedule assumption and in (v) we noted � = 4�
�
1� 3�

p
KK2d

�
K2d
�2 ,

and the result follows as in [4].

F Proof of Proposition 4

We recall the update equations defining the trajectories (Y (i)
n )nnmax and (Ȳ (i)

n )nnmax :

Y
(i)
n+1 = Y

(i)
n

� �(1 + �)rbh?

n
(Y (i)

n
),

Ȳ
(i)
n+1 = Ȳ

(i)
n

� �(1 + �)rh
?

n
(Ȳ (i)

n
).

(31)

We denote cn =

s
1
N

NP
i=1

E
���Ȳ (i)

n � Y
(i)
n

���
2
. Note that

EW2(P
N

n
, bPN

n
)2  1

N

NX

i=1

E
���Y (i)

n+1 � Ȳ
(i)
n+1

���
2
�
= c

2
n
.

The iterates cn satisfy the following recursion:
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cn+1 =

vuut 1

N

NX

i=1

E
���Y (i)

n+1 � Ȳ
(i)
n+1

���
2
�



vuut 1

N

NX

i=1

E
���Y (i)

n � Ȳ
(i)
n � �(1 + �)

⇣
rbh?

n
(Y (i)

n )�rh?
n
(Ȳ (i)

n )
⌘���

2
�

 cn +
�(1 + �)p

N

vuut
NX

i=1

E
���rbh?

n
(Y (i)

n )�rh?
n
(Ȳ (i)

n )
���
2
�

| {z }
�
=A

.

Using a triangular inequality, we now split (A) into terms that will be handled differently:

cn+1  cn + �(1 + �)

0

BBBBB@

1p
N

vuut
NX

i=1

E
���rbh?

n
(Y (i)

n )�rbh?
n
(Ȳ (i)

n )
���
2
�

| {z }
(i)

+
1p
N

vuut
NX

i=1

E
���rbh?

n
(Ȳ (i)

n )�rh̄?
n
(Ȳ (i)

n )
���
2
�

| {z }
(ii)

+
1p
N

vuut
NX

i=1

E
���rh̄?

n
(Ȳ (i)

n )�rh?
n
(Ȳ (i)

n )
���
2
�

| {z }
(iii)

1

CCCCCA

Where we introduced the notation h̄
?

n
= argmaxh K(h,PN

n
), the witness function that estimates the

true witness function h
?

n
using PN

n
, the empirical version of Pn, instead of Pn. Let us explain the

source of each of the terms in the last inequality:

• (i) comes from evaluating the velocity field bh?

n
at different points Y (i)

n and Ȳ
(i)
n ,

• (ii) comes from using biased samples {Y (i)
n }N

i=1 to compute bh?

n
, and unbiased samples

{Ȳ (i)
n }N

i=1 to compute h̄
?

n
.

• (iii) comes from the use of a finite number of unbiased samples to compute h̄
?

n
.

After controlling (i), (ii), (iii), as detailed below, we get the following upper bound:

cn+1  cn�(1 + �)

✓
1 +

4
p
KK2d +K2d

�

◆
+

�(1 + �)

�

s
KK2d(1 + e

8K
� )

N
.

We use [4, Lemma 26] to conclude:

cn =

s
2KK1d(1 + e

8K
� )

N
⇥ 1

4
p
KK1d +K2d

(e�(1+�)
4
p

KK1d+K2d
�

n � 1).

The result on EW2(P̄n,
bPn) follows by noting that EW2(P̄N

n
, bPN

n
) 

q
EW 2

2 (P̄N
n
, bPN

n
) by Jensen’s

inequality.

F.1 Control of the 3 error terms

Controlling (i) To control the first term, we rely on the RKHS derivative reproducing property
[67]: @h

@xi

= h@ikx, hi, Assumption 2, and on the uniform bound on kh?k (for all P, Q) given by
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(Lemma 5) :

���rbh?

n
(Y (i)

n
)�rbh?

n
(Ȳ (i)

n
)
���
2


dX

i=1

���@ik
Y

(i)
n

� @ik
Ȳ

(i)
n

���
2 ���ĥn

���
2
=

16KK2d

�2

���Y (i)
n

� Ȳ
(n)
i

���
2
.

Consequently, we have

(i) =
1p
N

vuut
NX

i=1

E
���rbh?

n
(Y (i)

n )�rbh?
n
(Ȳ (i)

n )
���
2
 4

p
KK2d

�
p
N

cn.

Controlling (ii) To control (ii), we rely on Lemma 8, that guarantees that KALE(P || Q) is
p
K1d

�
-Lipschitz in P and Q, when P(Rd) is endowed with the Wasserstein-2 metric:

���rbh?

n
(Ȳ (i)

n
)�rh̄

?

n
(Ȳ (i)

n
)
���
2
=

dX

j=1

⇣
@j
bh?

n
(Ȳ (i)

n
)� @j h̄

?

n
(Ȳ (i)

n
)
⌘2

 K1d

���ĥ?

n
� h̄

?

n

���
2
.

Consequently, using Lemma 8, we have:
���rbh?

n
(Ȳ (i)

n
)�rh̄

?

n
(Ȳ (i)

n
)
���
2
 K

2
1d

�2
W2(bPN

n
, P̄N

n
)2

=) (ii) =
1p
N

vuut
NX

i=1

E
���rbh?(Ȳ (i)

n )�rh?(Ȳ (i)
n )
���
2
 K1d

�
p
N

q
EW 2

2 (bPN
n
, P̄N

n
)  K1d

�
p
N

cn.

Controlling (iii) In (iii), the witness function h̄
?

n
is an empirical version of h?

n
. Repeating the first

lines of (ii), we have:
���rh̄

?

n
(x̄(i)

n
)�rh

?

n
(x̄(i)

n
)
���
2
 K1d

��h̄?

n
� h

?

n

��2 .

We could use the bound given in (ii) to get a bound on
��h̄?

n
� h

?

n

��, but the sample complexity of
the Wasserstein distances scales in O(n�1/d), which is much slower than our target rate 1/

p
N [65].

Instead, we rely on the concentration inequality given by Lemma 6, ensuring that E
��h̄?

n
� h

?

n

��2 
2K(1+e

8K
� )

N�2 . Following this, we have:

(iii) =
1p
N

vuut
NX

i=1

E
���rh̄?

n
(x̄(i)

n )�rh?(x̄(i)
n )
���
2
 1

�

s
2KK1d(1 + e

8K
� )

N
.

G Auxiliary Lemmas

Lemma 5 (Uniform smoothness of the KALE witness function). Under Assumption 1, and for all P,
Q, the following inequalities hold:

�

2
kh?k2  KALE(P || Q)  2

p
K kh?k ,

implying kh?k  4
p
K

�
. We also have the finer estimate kh?k  2MMD(P||Q)

�
.

Proof. The right inequality follows from the proof of Proposition 3. Indeed, we have:

KALE(P || Q)  hh?
, µP � µQi  kh?k (kµPk+ kµQk)  2

p
K kh?k .
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The left inequality can be noticed using KALE’s dual formulation Eq. (6)

KALE(P || Q) =

Z
(f?(log f? � 1) + 1) dQ

| {z }
�0

+
1

2�

����
Z

f
?(x)dQ(x)� µP

����
2

� 1

2�

����
Z

f
?(x)dQ(x)� µP

����
2

=
�

2
kh?k2 .

(32)

To get the finer estimate, we keep track of �

2 kh?k2
H

term. By convexity of exp, we have:

1 +

Z
hdP�

Z
e
hdQ� �

2
khk2

| {z }
K(h,P)


Z

hdP�
Z

hdQ� �

2
khk2 .

Recalling now that K(h?
,P) � K(0,P) = 0, we must have:

Z
h
?dP�

Z
h
?dQ� �

2
kh?k2 � 0

=) kh?k  2kfP,Qk
�

Where the last line used the Cauchy-Schwarz inequality.

Lemma 6. Under Assumption 1, and using the notations of Appendix F, we have:

E
��h̄?

n
� h

?

n

��2  2K(1 + e
8K
� )

N�2

Proof. We first notice, as explained in [6] (Proposition 12), that
��h̄?

n
� h

?

n

�� 
1
�

���r bL(h?

n
)�rL(h?

n
)
��� where L = 1 +

R
hdP �

R
e
hdQ is the KL objective, and bL(h) =

R
hdP̄N

n
�
R
e
hdbQN + 1 is its empirical equivalent. We then use [61] (Proposition A.1, notice

that their statement also holds for (Ek
R
rdPn �

R
rdPk2)1/2), to get:

E

���r bL(h?

n
)�rL(h?

n
)
���
2
E

����
Z

k(x, ·)dPn �
Z

k(x, ·)dP̄N

n

����
2

+ E
����
Z

k(x, ·)eh
?

ndQ�
Z

k(x, ·)eh
?

ndbQN

����
2

 K(1 + e
8K
� )

N
,

where we used the Cauchy-Schwarz inequality on H and Lemma 5 to bound the squared norm of
x 7�! k(x, ·)eh?(x).

Lemma 7. Under Assumption 2, The maps x 7�! kx(
�
= k(x, ·)) and x 7�! rkx are differentiable.

Moreover, we have
kkx � kyk 

p
K1d kx� yk

krkx �rkyk 
p
K2d kx� yk

Proof. We prove the differentiability and the Lispchitzness property for the map x 7�! kx; the
arguments can be straightforwardly adapted to the case of x 7�! rkx. To prove the differentiability,
we build upon [60, Lemma 4.34], that guarantees that x 7�! k(x, ·) admits partial derivatives for all i,
noted @i�(x). We finish the proof by construction: let D�(x) : Rd 7�! H our candidate differential,
defined as D�(x)(�) =

P
d

i=1 �i@i�(x) for all � 2 Rd. We show that D�(x) is the differential of �
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at x using a simple telescopic argument: let us note (x+�):i = (x1+�1, . . . , xi+�i, xi+1, . . . , xd)
for any i 2 {0, . . . , d} with (x+�):0 = x by convention. Then:

�(x+�)� �(x) =
1X

i=d

�(x+�):i � �((x+�):i�1)

Knowing that �((x+�):i)� �((x+�):(i�1)) = @i�((x+�):i�1)�i + o(|�i|), we have:

�(x+�)� �(x)�D�(x)(�) =
dX

i=1

(@i�((x+�):i�1)� @i�(x))�i + o(|�i|)

=) k�(x+�)� �(x)�D�(x)(�)k 
dX

i=1

|�i| k@i�((x+�):i�1)� @i�(x)k+ o(k�k1)

From [60, Lemma 4.34], we have: that:
k@i�((x+�):i�1)� @i�(x)k2 = A�B

where
A = @i@i+dk((x+�):i�1, (x+�):i�1)� @i@i+dk((x+�):i�1, x))

B = @i@i+dk((x+�):i�1, x)� @i@i+dk(x, x)
Since @i@i+dk(x, x0) is continuous, both A and B tend to 0 as k�k tends to 0. Thus, we have:

k�(x+�)� �(x)�D�(x)(�)k 
dX

i=1

o(|�i|) + o(k�k1) = o(k�k2)

by equivalency of k·k1 and k·k2 in Rd.

Lipschitzness is guaranteed by bounding the operator norm of D�(x):

D�(x) = sup
k�k=1

kD�(x)�k 
nX

i=1

|�i| k@i�(x)k 
q

k�k2
vuut

nX

i=1

k@i�(x)k2 =
p

K1d

Lemma 8. For any P0, P1 2 P2(Rd), with associated KALE witness functions h?

0, h
?

1, we have:

kh?

1 � h
?

0k
2  K1d

�2
W2(P0,P1)

2
.

Proof. The optimal functions h?

0 and h
?

1 are characterized by the following optimality condition:Z
k(x, ·)dP�

Z
k(x, ·)eh

?

dQ� �h
? = 0.

Let us now pose dPt = dP0 + td� with d� = dP1 � dP0, and its associated witness function h
?

t
.

Using an implicit function theorem argument [32] between t and h
?

t
, we can write, with notations of

Appendix D:
dh

?

t

dt
= (L(h?

t
) + �I)�1

Z
k(x, ·)(dP1 � dP0).

The operator L is the covariance operator of the measure Q̃ = e
h
?Q. This operator is compact given

that k is bounded by Assumption 1. Using the spectral theorem on Hilbert spaces, we know that there
exists a complete orthonormal system of eigenvectors of L, with associated eigenvalues {µi,t}i2N
for any t. The operator (L+ �I)�1 admits an identical eigendecomposition, with eigenvaluesn

1
�+µi,t

o

i2N
: thus, the operator norm of (L+ �I)�1 is upper-bounded by 1/�. We can thus extract

a bound on kh?

1 � h
?

0k
2:

kh?

1 � h
?

0k
2 =

����
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0
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t
) + �I)�1

✓Z
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◆
dt
����
2


Z 1

0

����(L(h
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t
) + �I)

Z
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����
2

dt


Z 1

0

1
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2

dt =
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2

.
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Now, let ⌫ 2 �(P1,P0). Then one has:
Z

k(x, ·) (dP0 � dP1) =

Z
(k(x, ·)� k(y, ·)) d⌫(x, y)

����
Z

k(x, ·) (dP0 � dP1)

����
2


Z

kk(x, ·)� k(y, ·)k2 d⌫(x, y)

 K1d

Z
kx� yk2 d⌫(x, y) = K1dW2(P0,P1)

2

Where we applied first Jensen’s inequality and Lemma 7.

H Details of Numerical Experiments and Impact of Noise Injection
In this section, we provide further details on the experiments in the main paper. The step size � used
for the KALE particle descent algorithm scales with � as min(0.1, �

10 ). For all experiments, we used
a Gaussian kernel k(x, y) = exp(�kx�yk

2

2�2 ). The kernel width � is described for each experiment
set.

“Three rings” experiments For this experiment, the number of particles in each distribution was
N = 300, and we used the Newton algorithm to compute the KALE. We used a kernel width � = 0.3.
We show in Fig. 4a the impact of noise injection with a constant noise schedule of �n = 0.3.

(a) “Three rings” (b) “Shape transfer”

Figure 4: Impact of noise injection on the KALE value during a KALE particle descent algorithm.

“Shape transfer” experiments For this experiment, we used artificial data from the same source as
[44]. We sub-sampled both shapes to N = 2000 points, and used a kernel width of � = 0.3, as well
as � = 0.001. Because the number of particles is higher in that case, we used a coordinate descent
algorithm to compute KALE, that has a complexity in O(N2). We show in Fig. 4b the impact of
noise injection with a constant noise schedule of �n = 0.05. For this experiment, we also show
empirically that while using a small amount of noise lowers the final KALE value when compared to
the unregularized KALE flow, a too large noise level �n = 0.1 results in a larger final KALE value.
We hypothesize that that noise schedule did not respect the assumptions made in Proposition 5.

“Mixture of Gaussians” experiments For this experiment, we used N = 240 particles for each
distribution, and a standard deviation of 0.25 for each target Gaussian. We used the Unadjusted
Langevin Algorithm [23] to simulate a KL gradient flow with step size 0.001, and the MMD particle
descent algorithm of [4] to simulate a MMD flow with step size 0.001. For both the MMD and the
KALE, we used the same Gaussian kernel with kernel width � = 0.35. We show the impact of noise
injection for the KALE flow with a constant noise schedule �n = 0.3 to regularize KALE flow with
� = 0.001, 0.1 and 10000.
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Figure 5: Impact of noise injection: Mixture of Gaussians experiments
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