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Abstract

We study multi-agent reinforcement learning (MARL) in a stochastic network of
agents. The objective is to find localized policies that maximize the (discounted)
global reward. In general, scalability is a challenge in this setting because the size
of the global state/action space can be exponential in the number of agents. Scalable
algorithms are only known in cases where dependencies are static, fixed and local,
e.g., between neighbors in a fixed, time-invariant underlying graph. In this work,
we propose a Scalable Actor Critic framework that applies in settings where the
dependencies can be non-local and stochastic, and provide a finite-time error bound
that shows how the convergence rate depends on the speed of information spread
in the network. Additionally, as a byproduct of our analysis, we obtain novel
finite-time convergence results for a general stochastic approximation scheme and
for temporal difference learning with state aggregation, which apply beyond the
setting of MARL in networked systems.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has achieved impressive performance in a wide
array of applications including multi-player game play [42, 31], multi-robot systems [13], and
autonomous driving [25]. In comparison to single-agent reinforcement learning (RL), MARL poses
many challenges, chief of which is scalability [57]. Even if each agent’s local state/action spaces are
small, the size of the global state/action space can be large, potentially exponentially large in the
number of agents, which renders many RL algorithms such as Q-learning not applicable.

A promising approach for addressing the scalability challenge that has received attention in recent
years is to exploit application-specific structures, e.g., [18, 35, 38]. A particularly important example
of such a structure is a networked structure, e.g., applications in multi-agent networked systems
such as social networks [7, 27], communication networks [60, 51], queueing networks [34], and
smart transportation networks [59]. In these networked systems, it is often possible to exploit static,
local dependency structures [16, 17, 1, 32], e.g., the fact that agents only interact with a fixed set of
neighboring agents throughout the game. This sort of dependency structure often leads to scalable,
distributed algorithms for optimization and control [16, 1, 32], and has proven effective for designing
scalable and distributed MARL algorithms, e.g. [35, 38].
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However, many real-world networked systems have inherently time-varying, non-local dependencies.
For example, in the context of wireless networks, each node can send packets to other nodes within a
fixed transmission range. However, the interference range, in which other nodes can interfere the
transmission, can be larger than the transmission range [53]. As a result, due to potential collisions,
the local reward of each node not only depends on its own local state/action, but also depends on
the actions of other nodes within the interference range, which may be more than one-hop away. In
addition, a node may be able to observe other nodes’ local states before picking its local action [33].
Things become even more complex when mobility and stochastic network conditions are considered.
These lead to dependencies that are both stochastic and non-local. Although one can always fix and
localize the dependence model, this leads to considerably reduced performance. Beyond wireless
networks, similar stochastic and non-local dependencies exists in epidemics [30], social networks
[7, 27], and smart transportation networks [59].

A challenging open question in MARL is to understand how to obtain algorithms that are scalable in
settings where the dependencies are stochastic and non-local. Prior work considers exclusively static
and local dependencies, e.g., [35, 38]. It is clear that hardness results apply when the dependencies
are too general [24]. Further, results in the static, local setting to this point rely on the concept of
exponential decay [35, 16], meaning the agents’ impact on each other decays exponentially in their
graph distance. This property relies on the fact that the dependencies are purely local and static, and
it is not clear whether it can still be exploited when the interactions are more general. This motivates
an important open question: Is it possible to design scalable algorithms for stochastic, non-local
networked MARL?

Contributions. In this paper, we introduce a class of stochastic, non-local dependency structures
where every agent is allowed to depend on a random subset of agents. In this context, we propose
and analyze a Scalable Actor Critic (SAC) algorithm that provably learns a near-optimal local policy
in a scalable manner (Theorem 2.5). This result represents the first provably scalable method for
stochastic networked MARL. Key to our approach is that the class of dependencies we consider leads
to a µ-decay property (Definition 2.1). This property generalizes the exponential decay property
underlying recent results such as [35, 16], which does not apply to stochastic non-local dependencies,
and enables the design of an efficient and scalable algorithm for settings with stochastic, non-local
dependencies. Our analysis of the algorithm reveals an important trade-off: as deeper interactions
appear more frequently, the “information” can spread more quickly from one part of the network to
another, which leads to the efficiency of the proposed method to degrade. This is to be expected,
as when the agents are allowed to interact globally, the problem becomes a single-agent tabular
Q-learning problem with an exponentially large state space, which is known to be intractable since
the sample complexity is polynomial in the size of the state/action space [12, 24].

The key technical result underlying our analysis of the Scalable Actor Critic algorithm is a finite-time
analysis of a general stochastic approximation scheme featuring infinite-norm contraction and state
aggregation (Theorem 3.1). We apply this result to networked MARL using the local neighborhood of
each agent to provide state aggregation (SA). This result also applies beyond MARL. Specifically, we
show that it yields finite-time bounds on Temporal Difference (TD)/Q learning with state aggregation
(Theorem 3.2). To the best of our knowledge the resulting bound is the first finite-time bound on
asynchronous Q-learning with state aggregation. Additionally, it yields a novel analysis for TD-
learning with state aggregation (the first error bound in the infinity norm) that sheds new insight
into how the error depends on the quality of state abstraction. These two results are important
contributions in their own right. Due to space constraints, we discuss asynchronous Q-learning with
state aggregation in Appendix D.4.

Related literature. The prior work that is most related to our paper is [38], which also studies
MARL in a networked setting. The key difference is that we allow the dependency structure among
agents to be non-local and stochastic, while [38] requires the dependency structure to be local and
static. The generality of setting means techniques from [38] do not apply and adds considerable
complexity to the proof in two aspects. First, instead of analyzing the algorithm directly like [38],
we derive a finite-time error bound for TD learning with state aggregation (Section 3.1 and 3.2), and
then establish its connection with the algorithm (Section 2.3). Second, we need a more general decay
property (Definition 2.1) than the exponential one used in [38]. Defining and establishing this general
decay property for the non-local and stochastic setting is highly non-trivial (Section 2.1).
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More broadly, MARL has received considerable attention in recent years, see [57] for a survey. The
line of work most relevant to the current paper focuses on cooperative MARL. In the cooperative
setting, each agent can decide its local actions but share a common global state with other agents.
The objective is to maximize a global reward by working cooperatively. Notable examples of this
approach include [6, 10] and the references therein. In contrast, we study a situation where each
agent has its own state that it acts upon. Despite the differences, like our situation, cooperative
MARL problems still face scalability issues since the joint-action space is exponentially large. A
variety of methods have been proposed to deal with this, including independent learners [8, 29],
where each agent employs a single-agent RL policy. Function approximation is another approach
that can significantly reduce the space/computational complexity. One can use linear functions
[58] or neural networks [28] in the approximation. A limitation of these approaches is the lack of
theoretical guarantees on the approximation error. In contrast, our technique not only reduces the
space/computational complexity significantly, but also has theoretical guarantees on the performance
loss in settings with stochastic and non-local dependencies.

The mean-field approach [45, 56, 19] provides another way to address the scalability issue, but under
very different settings compared to ours. Specifically, the mean-field approach typically assumes
homogeneous agents with identical local state/action space and policies, and each agent depends
on other agents through their population or “mean” behavior. In contrast, our approach considers a
local-interaction model, where there is an underlying graph and each agent depends on neighboring
agents in the graph. Further, our approach allows heterogeneous agents, which means that the local
state/action spaces and policies can differ among the agents.

Another related line of work uses centralized training with decentralized execution, e.g., [28, 15],
where there is a centralized coordinator that can communicate with all the agents and keep track of
their experiences and policies. In contrast, our work only requires distributed training, where we
constrain the scale of communication in training within the κ-hop neighborhood of each agent.

More broadly, this paper contributes to a growing literature that uses exponential decay to derive
scalable algorithms for learning in networked systems. The specific form of exponential decay that
we generalize is related to the idea of “correlation decay” studied in [16, 17], though their focus is on
solving static combinatorial optimization problems whereas ours is on learning policies in dynamic
environments. Most related to the current paper is [38], which shows an exponential decay property
in a restricted networked MARL model with purely local dependencies. In contrast, we show a more
general µ-decay property holds for a general form of stochastic, non-local dependencies.

The technical work in this paper contributes to the analysis of stochastic approximation (SA), which
has received considerable attention over the past decade [54, 44, 11, 55]. Our work is most related
to [37], which uses an asynchronous nonlinear SA to study the finite-time convergence rate for
asynchronous Q-learning on a single trajectory. Beyond [37], there are many other works that use
SA schemes to study TD learning and Q-learning, e.g. [44, 52, 20]. The finite-time error bound for
TD learning with state aggregation in our work is most related to the asymptotic convergence limit
given in [49] and the application of SA scheme to asynchronous Q-learning in [37]. Beyond these
papers, other related work in the broader area of RL with state aggregation includes [26, 23, 22, 9, 43].
We add to this literature with a novel finite-time convergence bound for a general SA with state
aggregation. This result, in turn, yields the first finite-time error bound in the infinity norm for both
TD learning with state aggregation and Q-learning with state aggregation.

2 Networked MARL

We consider a network of agents that are associated with an underlying undirected graph G = (N , E),
where N = {1, 2, · · · , n} denotes the set of agents and E ⊆ N × N denotes the set of edges.
The distance dG(i, j) between two agents i and j is defined as the number of edges on the shortest
path that connects them on graph G. Each agent is associated with its local state si ∈ Si and
local action ai ∈ Ai where Si and Ai are finite sets. The global state/action is defined as the
combination of all local states/actions, i.e., s = (s1, · · · , sn) ∈ S := S1 × · · · × Sn, and a =
(a1, · · · , an) ∈ A := A1 × · · · ×An. We use Nκ

i to denote the κ-hop neighborhood of agent i on G,
i.e., Nκ

i := {j ∈ N | dG(i, j) ≤ κ}. Let f(κ) := supi |Nκ
i |. For a subset M ⊆ N , we use sM/aM

to denote the tuple formed by the states/actions of agents in M .
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Before we define the transitions and rewards, we first define the notion of active link sets, which are
directed graphs on the agents N and they characterize the interaction structure among the agents.
More specifically, an active link set is a set of directed edges that contains all self-loops, i.e., a subset
ofN ×N and a super set of {(i, i) | i ∈ N}. Generally speaking, (j, i) ∈ Lmeans agent j can affect
agent i in the active link set L. Given an active link set L, we also useNi(L) := {j ∈ N | (j, i) ∈ L}
to denote the set of all agents (include itself) who can affect agent i in the active link set L. In this
paper, we consider a pair of active link sets (Lst , L

r
t ) that is independently drawn from some joint

distribution D at each time step t,1 where the distribution D will be defined using the underlying
graph G later in Section 2.1. The role of Lst/L

r
t is that they define the dependence structure of state

transition/reward at time t, which we detail below.

Transitions. At time t, given the current state, action s(t), a(t) and the active link set Lst , the next
individual state si(t + 1) is independently generated and only depends on the state/action of the
agents in Ni(Lst ). In other words, we have,

P (s(t+ 1)|s(t), a(t), Lst ) =
∏
i∈N

Pi(si(t+ 1)|sNi(Lst )(t), aNi(Lst )(t), L
s
t ). (1)

Rewards. Each agent is associated with a local reward function ri. At time t, it is a function of Lrt
and the state/action of agents in Ni(Lrt ): ri(Lrt , sNi(Lrt )(t), aNi(Lrt )(t)). The global reward r(t) is
defined to be the summation of the local rewards ri(t).

Policy. Each agent follows a localized policy that depends on its β-hop neighborhood, where β ≥ 0
is a fixed integer. Specifically, at time step t, given the global state s(t), agent i adopts a local policy
ζi parameterized by θi to decide the distribution of ai(t) based on the the states of agents in Nβ

i .

Our objective is for all the agents to cooperatively maximize the discounted global reward, i.e.,

J(θ) = Es∼π0

[∑∞
t=0 γ

tr(s(t), a(t)) | s(0) = s

]
, where π0 is a given distribution on the initial

global state, and we recall r(s(t), a(t)) is the global stage reward defined as the sum of all local
rewards at time t.

Examples. To highlight the applicability of the general model, we include two examples of networked
systems that feature the dependence structure captured by our model in Appendix A: a wireless
communication example and an example of controlling a process that spreads over a network.

Note that a limitation of our setting is that the dependence structure we consider is stationary, in the
sense that dependencies are sampled i.i.d. from the distribution D. It is important to consider more
general time-varying forms (e.g. Markovian) in future research.

Background. Before moving on, we review a few key concepts in RL which will be useful in
the rest of the section. We use πθt to denote the distribution of s(t) under policy θ given that
s(0) ∼ π0. A well-known result [47] is that the gradient of the objective ∇J(θ) can be computed
by 1

1−γEs∼πθ,a∼ζθ(·|s)Q
θ(s, a)∇ log ζθ(a | s), where distribution πθ(s) = (1 − γ)

∑∞
t=0 γ

tπθt (s)

is the discounted state visitation distribution. Evaluating the Q-function Qθ(s, a) plays a key role
in approximating ∇J(θ). The local Q-function for agent i is the discounted local reward, i.e.

Qθi (s, a) = Eζθ
[∑∞

t=0 γ
tri(t) | s(0) = s, a(0) = a

]
, where we use ri(t) to denote the local reward

of agent i at time step t. Using local Q-functions, we can decompose the global Q-function as
Qθ(s, a) = 1

n

∑n
i=1Q

θ
i (s, a), which allows each node to evaluate its local Q-function separately.

A key challenge in our MARL setting is that directly estimating the Q-functions is not scalable since
the size of the Q-functions is exponentially large in the number of agents. Therefore, in Section 2.1,
we study structural properties of the Q-functions resulting from the dependence structure in the
transition (1), which enables us to design a scalable RL algorithm in Section 2.2.

2.1 µ-decay Property

One of the core challenges for MARL is that the size of the Q function is exponentially large in the
number of agents. The key to our algorithm and its analysis is the identification of a novel structural

1Here, correlations between Lst and Lrt are possible
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decay property for the Q-function, which says that the local Q-function of each agent i is mainly
decided by the states of the agents who are near i. This property is critical for the design of scalable
algorithms because it enables the agents to reduce the dimension of the Q-function by truncating
its dependence of the states and actions of far away agents. Recently, exponential decay has been
shown to hold in networked MARL when the network is static [38, 36], which is exploited to design a
scalable RL algorithm. However, in stochastic network settings it is too much to hope for exponential
decay in general [14], and so we introduce the more general notion of µ-decay here, where µ is a
function that converges to 0 as κ tends to infinity. The case of exponential decay that has been studied
previously corresponds to µ(κ) = γκ/(1 − γ). The formal definition of µ-decay is given below,
where for simplicity, we use i L−→ j to denote (i, j) ∈ L and denote Nκ

−i := N \Nκ
i .

Definition 2.1. For a function µ : N→ R+ that satisfies limκ→+∞ µ(κ) = 0, the µ-decay property
holds if for any policy θ and any i ∈ N , the local Q function Qθi satisfies

∣∣Qθi (s, a)−Qθi (s′, a′)
∣∣ ≤

µ(κ) for any (s, a), (s′, a′) that are identical within Nκ
i , i.e. sNκi = s′Nκi

, aNκi = a′Nκi
.

Intuitively, if the µ-decay property holds and µ(κ) decays quickly as κ increases, we can approxi-
mately decompose the globalQ function asQθ(s, a) = 1

n

∑n
i=1Q

θ
i (s, a) ≈ 1

n

∑n
i=1 Q̂

θ
i (sNκi , aNκi ),

where Q̂i only depends on the states and actions within the κ-hop neighborhood of agent i. Before
our work, [46] empirically showed that such a value decomposition allows efficient training of
MARL. Under the assumption that such decomposition exists, [46] propose an approach to learn this
decomposition. In contrast, as we prove in this section, the µ decay property holds provably and
therefore, the global Q function can be directly decomposed in the networked MARL model and that
the error of such decomposition is provably small.

Our first result is Theorem 2.1 which shows the relationship between the random active link sets and
the µ-decay property. The proof of Theorem 2.1 is deferred to Appendix B.1.
Theorem 2.1. Define La as the static active link set that contains all pairs (i, j) whose graph
distance on G is less than or equal to β, which is the dependency of local policy. Let random variable
Xi(κ) denote the smallest t ∈ N such that there exists a chain of agents

ja0
Ls0−−→ js1

La−−→ ja1
Ls1−−→ · · ·

Lst−1−−−→ jst
La−−→ jat ,

that satisfies ja0 ∈ Nκ
−i and jat

Lrt−−→ i. The µ-decay property holds for µ(κ) = 1
1−γE

[
γXi(κ)

]
.

To make the µ-decay result more concrete, we provide several scenarios that yield different upper
bounds on the term E

[
γXi(κ)

]
. In the first scenario, we study the case where long range links do

not exist in Corollary 2.2. In this case, we obtain an exponential decay property that generalizes the
result in [38]. A proof is in Appendix B.2.
Corollary 2.2 (Exponential Decay). Consider a distribution D of active link sets that satisfies

P(Ls,Lr)∼D{(i, j) ∈ Ls} = 0, for all i, j ∈ N s.t. dG(i, j) ≥ α1,

P(Ls,Lr)∼D{(i, j) ∈ Lr} = 0, for all i, j ∈ N s.t. dG(i, j) ≥ α2.

Then, E
[
γXi(κ)

]
≤ Cρκ, where ρ = γ1/(α1+β), C = γ−α2/(α1+β).

In the second scenario, long range active links can occur, but with exponentially small probability
with respect to their distance. In this case, we can obtain a near-exponential decay property where
µ(κ) = O(ρκ/ log κ)) for some ρ ∈ (0, 1). A proof can be found in Appendix B.3.
Theorem 2.3 (Near-Exponential Decay). Suppose the distribution D of active link sets satisfies

P(Ls,Lr)∼D{(i, j) ∈ Ls ∪ Lr} ≤ cλdG(i,j), for all i, j ∈ N ,

where c ≥ 1, 1 > λ > 0 are constants. If the largest size of the κ neighborhood in the underlying
graph G can be bounded by a polynomial of κ, i.e., there exists some constants c0 ≥ 1, n0 ∈ N such
that |{j ∈ N | dG(i, j) = κ}| ≤ c0(κ+ 1)n0 holds for all i, then E

[
γXi(κ−1)

]
≤ Cρκ/(1+ln(κ+1))

for some positive constant C and decay rate ρ < 1. 2

It is interesting to compare the result above with models of the so-called “small world phenomena" in
social networks, e.g., [14]. In these models, a link (i, j) occurs with probability 1/poly(dG(i, j)),

2The explicit expression of C and ρ can be found in Appendix B.3.

5



Algorithm 1 Scalable Actor Critic

1: for m = 0, 1, 2, · · · do
2: Sample initial global state s(0) ∼ π0.
3: Each node i takes action ai(0) ∼ ζθi(m)

i (· | sNβi (0)) to obtain the global state s(1).

4: Each node i records sNκi (0), aNκi (0), ri(0) and initialize Q̂0
i to be all zero vector.

5: for t = 1, · · · , T do
6: Each node i takes action ai(t) ∼ ζθi(m)

i (· | sNβi (t)) to obtain the global state s(t+ 1).

7: Each node i update the local estimation Q̂i with step size αt−1 = H
t−1+t0

,

Q̂ti
(
sNκi (t− 1), aNκi (t− 1)

)
=

(1− αt−1)Q̂t−1
i

(
sNκi (t− 1), aNκi (t− 1)

)
+ αt−1

(
ri(t) + γQ̂t−1

i

(
sNκi (t), aNκi (t)

))
,

Q̂ti
(
sNκi , aNκi

)
= Q̂t−1

i

(
sNκi , aNκi

)
for
(
sNκi , aNκi

)
6=
(
sNκi (t− 1), aNκi (t− 1)

)
.

8: Each node i approximate∇θiJ(θ) by
ĝi(m) =

∑T
t=0 γ

t 1
n

∑
j∈Nκi

Q̂Tj
(
sNκj (t), aNκj (t)

)
∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)
.

9: Each node i conducts gradient ascent by θi(m+ 1) = θi(m) + ηmĝi(m).

as opposed to the exponential dependence in Lemma 2.3. In this case, one can see function µ(κ)
is lower bounded by 1/poly(κ), which leads us to conjecture that µ(κ) is also upper bounded by
O(1/poly(κ)). Thus, when information spreads “slowly” it helps a localized algorithm to learn
efficiently.

2.2 A Scalable Actor Critic Algorithm

Motivated by the µ-decay property of the Q-functions, we design a novel Scalable Actor Critic
algorithm (Algorithm 1) for networked MARL problem, which exploits the µ-decay result in the
previous section. The Critic part (from line 2 to line 7) uses the local trajectory {(sNκi , aNκi , ri)} to
evaluate the local Q-functions under parameter θ(m). Intuitively, the µ-decay property guarantees
that we can achieve good approximation error even when κ is not large. The Actor part (from line
8 to line 9) computes the estimated partial derivative using the estimated local Q-functions, and
uses the partial derivative to update local parameter θi. The step size sequence {ηm} will be defined
in Theorem B.2. Compared with the Scalable Actor Critic algorithm proposed in [38], Algorithm
1 extends the policy dependency structure considered. No longer is the dependency completely
local; it now extends to all agents within the β-hop neighborhood. Interestingly, the time-varying
dependencies do not add complexity into the algorithm (though the analysis is more complex).

Algorithm 1 is highly scalable. Each agent i needs only to query and store the information within its
κ-hop neighborhood during the learning process. The parameter κ can be set to balance accuracy and
complexity. Specifically, as κ increases, the error bound becomes tighter at the expense of increasing
computation, communication, and space complexity.

2.3 Convergence

We now present our main result, a finite-time error bound for the Scalable Actor Critic algorithm
(Algorithm 1) that holds under general (non-local) dependencies. To that end, we first describe the
assumption needed in our result. It focuses on the Markov chain formed by the global state-action
pair (s, a) under a fixed policy parameter θ and is standard for finite-time convergence results in RL,
e.g., [44, 5, 37].

Assumption 2.1. Under any fixed policy θ, {z(t) := (s(t), a(t))} is an aperiodic and ir-
reducible Markov chain on state space Z := S × A with a unique stationary distribution
dθ = (dθz, z ∈ Z), which satisfies dθz > 0,∀z ∈ Z . Define dθ(z′) =

∑
z∈Z:zNκ

i
=z′ d

θ(z)

and σ′(κ) := infz′∈ZNκ
i
dθ(z′). There exists positive constants K1,K2 such that K2 ≥ 1 and

∀z′ ∈ Z,∀t ≥ 0, supK⊆Z
∣∣∑

z∈K d
θ
z −

∑
z∈K P(z(t) = z | z(0) = z′)

∣∣ ≤ K1e
−t/K2 .
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We next analyze the Critic part of Algorithm 1 within a given outer loop iteration m. Since the policy
is fixed in the inner loop, the global state/action pair (s, a) in the original MDP can be viewed as the
state of a Markov chain. We observe that each local estimate Q̂ti

(
sNκi , aNκi

)
can be viewed as a form

of state aggregation, where the global state (s, a) is “compressed” to h(s, a) := (sNκi , aNκi ). Broadly
speaking, the technique of state aggregation is one of the easiest-to-deploy schemes for state space
compression [21, 43], while its final performance relies heavily on whether the state aggregation map
h only aggregates “similar” states. To have a good approximate equivalence, we need to find a good
h, i.e., if two states are mapped to the same abstract state, their value functions are required to be
close (to be discussed in Theorem 3.2). In the context of networked MARL, the µ decay property
(Definition 2.1) provides a natural mapping for state aggregation h(s, a) := (sNκi , aNκi ) which we
defined earlier. This mapping h maps the global state/action to the local states/actions in agent i’s
κ-hop neighborhood and the µ-decay property guarantees that if h(s, a) = h(s′, a′), the difference in
their Q-functions is upper bounded by µ(κ), which is vanishing as κ increases. This shows that the
mapping h we used is “good” in the sense it aggregates very similar global state-action pairs. This
idea leads to the following theorem about the Critic part of Scalable Actor Critic (Algorithm 1).
Theorem 2.4. Suppose Assumption 2.1 and µ-decay property (Definition 2.1) hold. Let the step
size be αt = H

t+t0
with t0 = max(4H, 2K2 log T ), and H ≥ 2

(1−γ)σ′(κ) . Define constant Cb :=

4K1(1 + 2K2 + 4H). Then, inside outer loop iteration m, for each i ∈ N , with probability

at least 1 − δ, we have sup(s,a)∈S×A

∣∣∣Qθ(m)
i (s, a)− Q̂Ti (sNκi , aNκi )

∣∣∣ ≤ Ca√
T+t0

+
C′a
T+t0

+ µ(κ)
1−γ ,

where the constants are given by Ca = 40H
(1−γ)2

√
K2 log T

(
log
(

4f(κ)K2T
δ

)
+ log log T

)
and C ′a =

8
(1−γ)2 max{ 144K2H log T

σ′(κ) + Cb, 2K2 log T + t0}.

The proof of Theorem 2.4 can be found in Appendix B.4. The most related result in the literature to
Theorem 2.4 is Theorem 7 in [38]. In comparison, Theorem 2.4 applies for more general, potentially
non-local, dependencies and, also, improves the constant term by a factor of 1/(1− γ).

To analyze the Actor part of Algorithm 1, we make the following additional boundedness and
Lipschitz continuity assumptions on the gradients. These are standard assumptions in the literature.

Assumption 2.2. For any i, ai, sNβi and θi, we assume
∥∥∥∇θi log ζθii (ai | sNβi )

∥∥∥ ≤ Wi. Then, for

any Lat ,
∥∥∇θ log ζθ(a | s)

∥∥ ≤W :=
√∑n

i=1W
2
i . We further assume∇J(θ) is W ′-Lipschitz in θ.

Intuitively, since the quality of the estimated policy gradient depends on the quality of the estimation
of Q-functions, if every agent i has learned a good approximation of its local Q-function in the Critic
part of Algorithm 1, the policy gradient can be approximated well. Therefore, the Actor part can
obtain a good approximation of a stationary point of the objective function. We state the sample
complexity result in Theorem 2.5 and defer the detailed bounds and a proof to Appendix B.5.
Theorem 2.5. Under Assumption 2.2, to reach anO(ε)-approximate stationary point with probability
at least 1− δ, we need to choose κ such that µ(κ) = O

(
W−2(1− γ)4ε

)
. The number of required

iterations of the outer loop should satisfyM = Ω̃
(
ε−2poly(W,W ′, 1

1−γ )
)

and the number of required

iterations of the inner loop is T = Ω̃
(
ε−2poly(W, 1

σ′(κ) ,K2,
1

1−γ , log f(κ), log(1/δ))
)
.

Note that W scales with the number of agents n. Thus, Theorem 2.5 shows that the complexity of our
algorithm scales with the largest state-action space size of any κ-hop neighborhood and the number
of agents n, which avoids the exponential blowup in n when the graph is sparse and achieves scalable
RL for networked agents even under stochastic, non-local settings.

3 Proof Idea: Stochastic Approximation and State Aggregation

In this section, we present the key technical innovation underlying our results on MARL in Theorem
2.4: a new finite-time analysis of a general asynchronous stochastic approximation (SA) scheme. As
we mention in Section 2, the truncation enabled by µ-decay provides a form of state aggregation,
which we analyze via a general SA scheme in Section 3.1. Further, this SA scheme is of interest more
broadly, e.g., to the settings of TD learning with state aggregation (Section 3.2) and asynchronous
Q-learning with state aggregation (Appendix D.4).
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3.1 Stochastic Approximation

Consider a finite-state Markov chain whose state space is given by N = {1, 2, · · · , n}. Let {it}∞t=0
be the sequence of states visited by this Markov chain. Our focus is generalizing the following
asynchronous stochastic approximation (SA) scheme, which is studied in [48, 41, 52]: Let parameter
x ∈ RN , and F : RN → RN be a γ-contraction in the infinity norm. The update rule of the SA
scheme is given by

xit(t+ 1) = xit(t) + αt(Fit(x(t))− xit(t) + w(t)),

xj(t+ 1) = xj(t) for j 6= it, j ∈ N ,
(2)

where w(t) is a noise sequence. It is shown in [37] that parameter x(t) converges to the unique fixed
point of F at the rate of O

(
1/
√
t
)
.

While general, in many cases, including networked MARL, we do not wish to calculate an entry for
every state in N in parameter x, but instead, wish to calculate “aggregated entries.” Specifically, at
each time step, after it is generated, we use a surjection h to decide which dimension of parameter x
should be updated. This technique, referred to as state aggregation, is one of the easiest-to-deploy
schemes for state space compression in the RL literature [21, 43]. In the generalized SA scheme, our
objective is to specify the convergence point as well as obtain a finite-time error bound.

Formally, to define the generalization of (2), let N = {1, · · · , n} be the state space of {it} and
M = {1, · · · ,m}, (m ≤ n) be the abstract state space. The surjection h : N → M is used
to convert every state in N to its abstraction in M. Given parameter x ∈ RM and function
F : RN → RN , we consider the generalized SA scheme that updates x(t) ∈ RM starting from
x(0) = 0,

xh(it)(t+ 1) = xh(it)(t) + αt
(
Fit(Φx(t))− xh(it)(t) + w(t)

)
,

xj(t+ 1) = xj(t) for j 6= h(it), j ∈M,
(3)

where the feature matrix Φ ∈ RN×M is defined as

Φij =

{
1 if h(i) = j

0 otherwise
,∀i ∈ N , j ∈M. (4)

In order to state our main result characterizing the convergence of (3), we must first state a few
definitions and assumptions. To begin, we define the weighted infinity norm as in [37], except that
we extend its definition so as to define the contraction of function F . The reason we use the weighted
infinity norm as opposed to the standard infinity norm is that its generality can be used in certain
settings for undiscounted RL, as shown in [48, 2].
Definition 3.1 (Weighted Infinity Norm). Fix a positive vector v ∈ RM. For x ∈ RM, we define
‖x‖v := supi∈M

|xi|
vi

. For x ∈ RN , we define ‖x‖v := supi∈N
|xi|
vh(i)

.

Next, we state our assumption on the mixing rate of the Markov chain {it}, which is common in the
literature [50, 44]. It holds for any finite-state Markov chain which is aperiodic and irreducible [5].
Assumption 3.1 (Stationary Distribution and Geometric Mixing Rate). {it} is an aperiodic and
irreducible Markov chain on state space N with stationary distribution d = (d1, d2, · · · , dn). Let
d′j =

∑
i∈h−1(j) di and σ′ = infj∈M d′j . There exists positive constants K1,K2 which satisfy that

supS⊆N
∣∣∑

i∈S di −
∑
i∈S P(it = i | i0 = j)

∣∣ ≤ K1 exp(−t/K2),∀j ∈ N ,∀t ≥ 0 and K2 ≥ 1.

Our next assumption ensures contraction of F . It is also standard, e.g., [48, 52, 37], and ensures that
F has a unique fixed point y∗.
Assumption 3.2 (Contraction). Operator F is a γ contraction in ‖·‖v, i.e., for any x, y ∈ RN , we
have ‖F (x)− F (y)‖v ≤ γ‖x− y‖v. Further, there exists some constant C > 0 such that for any
x ∈ RN , we have ‖F (x)‖v ≤ γ‖x‖v + C.

In Assumption 3.2, notice that the first sentence directly implies the second with C = (1 + γ)‖y∗‖v ,
where y∗ ∈ RN is the unique fixed point of F . Further, while Assumption 3.2 implies that F has
a unique fixed point y∗, we do not expect our stochastic approximation scheme to converge to it.
Instead, we show that the convergence is to the unique x∗ that solves

ΠF (Φx∗) = x∗, where Π :=
(
Φ>DΦ

)−1
Φ>D. (5)
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Here D = diag(d1, d2, · · · , dn) denotes the steady-state probabilities for the process {it}. Note that
x∗ is well-defined because the operator ΠF (Φ·), which defines a mapping from RM to RM, is also
a contraction in ‖·‖v . We state and prove this as Proposition C.1 in Appendix C.1.

Our last assumption is on the noise sequence w(t). It is also standard, e.g., [41, 37].
Assumption 3.3 (Martingale Difference Sequence). wt is Ft+1 measurable and satisfies Ew(t) |
Ft = 0. Further, |w(t)| ≤ w̄ almost surely for constant w̄.

We are now ready to state our finite-time convergence result for stochastic approximation.
Theorem 3.1. Suppose Assumptions 3.1, 3.2, 3.3 hold. Further, assume there exists constant
x̄ ≥ ‖x∗‖v such that ∀t, ‖x(t)‖v ≤ x̄ almost surely.3 Let the step size be αt = H

t+t0
with t0 =

max(4H, 2K2 log T ), and H ≥ 2
σ′(1−γ) . Let x∗ be the unique solution of equation ΠF (Φx∗) = x∗,

and define constants C1 := 2x̄+C+ w̄
v , C2 := 4x̄+ 2C+ w̄

v , C3 := 2K1(2x̄+C)(1 + 2K2 + 4H).
Then, with probability at least 1− δ,

‖x(T )− x∗‖v ≤
Ca√
T + t0

+
C′a

T + t0
= Õ

(
1√
T

)
,

where the constants are given by Ca = 4HC2

1−γ

√
K2 log T

(
log
(

4mK2T
δ

)
+ log log T

)
and C ′a =

4 max{ 48K2C1H log T+σ′C3

(1−γ)σ′ , 2x̄(2K2 log T+t0)
1−γ }.

A proof of Theorem 3.1 can be found in Appendix C.2. Compared with Theorem 4 in [37], Theorem
3.1 holds for a more general SA scheme where state aggregation is used to reduce the dimension
of the parameter x. The proof technique used in [37] does not apply to our setting because our
stationary point x∗ has a more complex form (4). To do the generalization, we need to use a different
error decomposition method compared to [37] that leverages the stationary distribution D rather than
the distribution of it condition on it−τ (see Appendix C.2 for details). Because of this generality,
Theorem 3.1 requires a stronger but standard assumption on the mixing rate of the Markov chain
{it}.

3.2 State Aggregation

To illustrate the impact of our analysis of SA (Theorem 3.1) beyond the network setting, we study a
simpler application to the cases of TD-learning and Q-learning with state aggregation in this section.
Understanding state aggregation methods is a foundational goal of analysis in the RL literature and it
has been studied in many previous works, e.g., [26, 23, 22, 9, 43]. Further, the result is extremely
useful in the analysis in networked MARL that follows since the µ-decay property we introduce
(Definition 2.1) provides a natural state aggregation in the network setting (see Corollary 2.4). Due
to space constraints, in this section we only introduce the results on TD-learning; the results on
Q-learning are given in Appendix D.4.

In TD learning with state aggregation [43, 49], given the sequence of states visited by the Markov
chain is {it}, the update rule of TD(0) is given by

θh(it)(t+ 1) = θh(it)(t) + αt
(
rt + γθh(it+1)(t)− θh(it)(t)

)
,

θj(t+ 1) = θj(t) for j 6= h(it), j ∈M,
(6)

where h : N →M is a surjection that maps each state in N to an abstract state inM and rt is the
reward at time step t such that E[rt] = r(it, it+1).

Taking F as the Bellman Policy Operator, i.e., the i’th dimension of function F is given by

Fi(V ) = Ei′∼P(·|i)[r(i, i
′) + γVi′ ],∀i ∈ N , V ∈ RN .

The value function (vector) V ∗ is defined as V ∗i = E[
∑∞
t=0 γ

tr(it, it+1) | i0 = i], i ∈ N [49]. By
defining the feature matrix Φ as (4) and the noise sequence as

w(t) = rt + γθh(it+1)(t)− Ei′∼P(·|it)[r(it, i
′) + γθh(i′)(t)],

we can rewrite the update rule of TD(0) in (6) in the form of an SA scheme (3). Therefore, we can
apply Theorem 3.1 to obtain a finite-time error bound for TD learning with state aggregation. A proof
of Theorem 3.2 can be found in Appendix D.2.

3The assumption on x̄ follows from Assumptions 3.2 and 3.3. See Proposition C.2 in Appendix C.3.
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Theorem 3.2. Let Assumption 3.1 hold for the Markov chain {it} and let the stage reward rt be
upper bounded by r̄ almost surely. Assume that if h(i) = h(i′) for i, i′ ∈ N , we have |V ∗i − V ∗i′ | ≤ ζ
for a constant ζ . Consider TD(0) with the step size αt = H

t+t0
, where t0 = max(4H, 2K2 log T ) and

H ≥ 2
σ′(1−γ) . Define constant C4 := 4K1(1 + 2K2 + 4H). Then, with probability at least 1− δ,

‖Φ · θ(T )− V ∗‖∞ ≤
Ca√
T + t0

+
C′a

T + t0
+

ζ

1− γ ,

where the constants are given by Ca = 40Hr̄
(1−γ)2

√
K2 log T

(
log
(

4mK2T
δ

)
+ log log T

)
and C′a =

8r̄
(1−γ)2

max{ 144K2H log T
σ′ + C4, 2K2 log T + t0}.

The most related prior results to Theorem 3.2 are [44, 4]. In contrast to these, Theorem 3.2 considers
the infinity norm, which is more natural for measuring error when using state aggregation. Further,
our analysis is different and extends to the case of Q-learning with state aggregation (see Appendix
D.4), where we obtain the first finite-time error bound. Moreover, unlike [4], our TD-learning
algorithm does not require a projection step.

4 Concluding Remarks

In this paper, we propose and analyze the Scalable Actor Critic Algorithm that provably learns a
near-optimal local policy in a setting where every agent is allowed to interact with a random subset of
agents. The µ-decay property, which enables the decentralized approximation of local Q functions, is
the key to our approach.

There are a number of future directions motivated by the results in this paper. For example, we
allow the interaction structure among the agents to change in a stochastic way in this work. It is
interesting to see if such structure can be time-varying in more general ways (e.g., Markovian or
adversarial). Besides, although our Scalable Actor Critic algorithm consumes much less memory
than a centralized tabular approach, the memory space required by each agent i to store Q̂i grows
exponentially with respect to f(κ), which denotes the size of the largest κ-hop neighborhood. Thus,
memory problems may still arise if f grows quickly as κ increases. Therefore, an interesting open
problem is whether we can apply additional function approximations on truncated state/action pair
(sNκi , aNκi ), and obtain similar finite-time convergence guarantees as Scalable Actor Critic.
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A Examples

A.1 Wireless Networks

We consider a wireless network with multiple access points setting shown in Fig. 1, where a set of
user nodes in a wireless network, denoted by U = {u1, u2, · · · , un}, share a set of access points
Y = {y1, y2, · · · , ym} [60]. Each access point yi is associated with a probability pi of successful
transmission. Each user node ui only has access to a subset Yi ⊆ Y of the access points. Typically,
this available set is determined by each user node’s physical connections to the access points. To
apply the networked MARL model, we identify the set of user nodes U as the set of agents N in
Section 2. The underlying graph G = (N , E) is defined as the conflict graph, i.e., edge (ui, uj) ∈ E
if and only if Yi ∩ Yj 6= ∅.

Figure 1: An example setup of wireless networks. Each user node can send packets to the access
points at the corners of its grid.

At each time step t, each user ui receives a packet with initial life span d with probability q. Each
user maintains a queue to cache the packets it receives. At each time step, if the packet is successfully
sent to an access point, it will be removed from the queue. Otherwise, its life span will decrease by 1.
A packet is discarded from the queue immediately if its remaining life span is 0. At each time step t,
a user node ui can choose to send one of the packets in its queue to one of the access point yi,t ∈ Yi.
If no other user node sends packets to access point yi,t at time step t, the packet from user i can be
delivered successfully with probability pi. Otherwise, the sending action will fail. A user ui receives
a local reward of ri,t = 1 immediately after successfully sending a packet at time step t, and receives
ri,t = 0 otherwise. Our objective is to find a policy that maximizes the global discounted reward
under a discounted factor 0 ≤ γ < 1:

E

[
n∑
i=1

∞∑
t=0

γtri,t

]
.

To see how this setting fits into our model, we first define the local state/action and specify the
parameters. Since each packet has a life span of d, and each user node receives at most one packet
at a time step, we use a d-tuple si = (e1, e2, · · · , ed) ∈ Si := {0, 1}d to denote the local state of
user node i. Specifically, ej indicates whether user node ui has a packet with remaining life span j
in its queue. A local action of user node ui is 2-tuple (l, y), which means sending the packet with
remaining life span l ∈ {1, 2, · · · , d} to an access point y ∈ Yi. Note that we define an empty action
that does nothing at all. If a user node performs an action (l, y) when there is no packet with life
span l in its queue, we view this as an empty action. This setting falls into the category we studied in
Corollary 2.2, where long range links do not exist. Specifically, in this setting, the next local state
of user node ui depends on the current local states/actions in its 1-hop neighborhood (α1 = 1 in
Corollary 2.2). We assume each user node can choose its action only based on its current local state
(β = 0). Due to potential collisions, the local reward of user ui also depends on the states/actions in
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Figure 2: Discounted reward in the train-
ing process. 5× 5 grid, 1 user per grid.

Figure 3: Discounted reward in the train-
ing process. 3× 4 grid, 2 users per grid.

its 1-hop neighborhood (α2 = 1 in Corollary 2.2). Though this is a static setting, note that the results
of [38] do not apply.

The detailed setting we use is as follows. We consider the setting where the user nodes are located in
h× w grids (see Fig. 1). There are c user nodes in each grid, and each user can send packets to an
access point on the corner of its grid. We set the initial life span d = 2, the arrival probability q = 0.5,
and the discounted factor γ = 0.7. The successful transmission probability pi for each access point
yi is sampled uniformly randomly from [0, 1]. We run the Scalable Actor Critic algorithm with
parameter κ = 1 to learn a localized stochastic policy in two cases (h,w, c) = (5, 5, 1) (see Fig. 2)
and (h,w, c) = (3, 4, 2) (see Fig. 3). For comparison, we use a benchmark based on the localized
ALOHA protocol [39]. Specifically, the benchmark policy works as following: At time step t, each
user node ui takes the empty action with a certain probability p′; otherwise, it sends the packet with
the minimum remaining life span to a random access point in Yi, with the probability proportional to
the successful transmission probability of this access point and inverse proportional to the number of
users sharing this access point. In Fig. 2 and Fig. 3, we have tuned the parameter p′ to find the one
with the highest discounted reward.

As shown in Fig. 2 and Fig. 3, starting from the initial policy that chooses an local action uniformly
at random, the Scalable Actor Critic algorithm with parameter κ = 1 can learn a policy that performs
better than the benchmark. As a remark, the benchmark policy requires the set {pi}1≤i≤m, the
probability of successful transmission, as input. Moreover, in the benchmark policy, the probability
of performing an empty action also needs to be tuned manually. In contrast, the Scalable Actor Critic
algorithm can learn a better policy without these specific inputs by interacting with the system.

A.2 Spreading Networks

We consider a spreading network with n agents and an underlying graph G. See Fig. 4 for an
illustration of n = wh agents on a w × h grid network. For each agent i, the local state/action space
is given by Si = {0, 1} and Ai = {0, 1}. To make the discussion more concrete, in the following we
present the spreading network model in the context of SIS epidemic network. This version of the SIS
model has been studied in, for example, [40]. Our setting is more general and can be generalized to
other types of spreading networks like opinion networks, social networks, etc. At time step t, the
local state si(t) = 0 means agent i is “susceptible”, while the local state si(t) = 1 means the agent i
is “infected”. By taking action ai(t) = 1, agent i can suppress its infection probability at the expense
of incurring an action cost. In the meantime, agent i will incur an infection cost if si(t) = 1. The
interaction among agents is modeled by a set of undirected links, where two agents can affect each
other if they are connected by a link. To model the influence of physical distance on the pattern of
social contact, we assume the short range links occur more frequently than long range links. An
illustration of the spreading network is shown in Fig. 4 (a), where the black nodes denote the agents
with state 1; the white nodes denote the agents with state 0; the blue edges denote the set of active
links at some time step.

Mathematically, the model can be described as follows. At each time step t, each agent i can decide
her/his local action ai(t) based on the information of local states in the 1-hop neighborhood N1

i , i.e.,
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Figure 4: An illustration of the spreading network with 25 agents on a 5× 5 grid network. The black
nodes denote “infected” agents; The white nodes denote “susceptible” agents; The blue edges denote
the active links at some time step.

β = 1. The local reward ri(t) is a function of the local state si(t) and the local action ai(t), i.e., Lrt
is static and only contains self loops. Specifically, we define

ri(t) = −c(a)
i 1(ai(t) = 1)− c(s)i 1(si(t) = 1),

where
(
c
(s)
i , c

(a)
i

)
are parameters associated with agent i and can be different among agents. As

mentioned earlier, c(s)i penalizes the agent for being “infected”, while c(a)
i is the cost of taking

epidemic control measure. The stage reward is the sum of these two costs.

To describe the state transition rule, we first define the way the active link set Lst is generated:
independently for each pair of agents (i, j) ∈ N × N with i 6= j, with probability 2−dG(i,j),
we include edges (i, j) and (j, i) in the set Lst ; otherwise, neither edge is included in the set, i.e.
(i, j), (j, i) 6∈ Lst . Given Lst , the next local state si(t+ 1) is sampled from a distribution that depends
on the local states in Ni(Lst ). Specifically, define the quantities

ni(t) = |{j | j ∈ Ni(Lt) \ {i}, sj(t) = 1, aj(t) = 0}|,
mi(t) = |{j | j ∈ Ni(Lt) \ {i}, sj(t) = 1, aj(t) = 1}|.

Then, the probability that si(t+ 1) = 0 is given by

P (si(t+1) = 0 | sNi(Lt), aNi(Lt)) =


p

(r)
i if si(t) = 1;(
1− p(h)

i

)ni(t)(
1− p(m)

i

)mi(t)
if si(t) = 0, ai(t) = 1;(

1− p(m)
i

)ni(t)(
1− p(l)

i

)mi(t)
if si(t) = 0, ai(t) = 0,

where
(
p

(r)
i , p

(h)
i , p

(m)
i , p

(l)
i

)
are parameters associated with agent i and can be different among

agents. Due to control actions, we assume p(h)
i > p

(m)
i > p

(l)
i . This provides the transition rule,

and the underlying intuition is that the local state of agent i turns from “infected” (si(t) = 1) to
“susceptible” (si(t+1) = 0) with a fixed recovering probability p(r)

i ; the probability that agent i turns
from “susceptible” (si(t) = 0) to “infected” (si(t+ 1) = 1) depends on the number of neighboring
agents in the active link set that are already infected, and further, whether agent i or the nearby agents
j take epidemic control measures (ai(t) = 1, aj(t) = 1) or not. Roughly speaking, the more nearby
infected agents, the more likely agent i will become infected; however, if epidemic control measures
are taken by agent i and nearby agents in Ni(Lst ), the probability of agent i getting infected will be
smaller.
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Figure 5: Discounted reward in the training process. 5× 5 grid.

We run the Scalable Actor Critic algorithm with parameter κ = 1 to learn a localized stochastic
policy in the case (h,w) = (5, 5) (Fig. 5). For each agent i, parameters

(
c
(s)
i , c

(a)
i , p

(r)
i , p

(h)
i

)
are

sampled independently from the distribution

c
(s)
i ∼ U [1.0, 3.0], c

(a)
i ∼ U [0.01, 0.20], p

(r)
i ∼ U [0.1, 0.5], p

(h)
i ∼ U [0.5, 0.9],

and we set p(m)
i = p

(h)
i /4, p

(l)
i = p

(m)
i /4. At time step 0, for each i ∈ N , we initialize local state

si(0) to be 1 with probability 0.3.

B Stochastic Networked MARL

B.1 Proof of Theorem 2.1

For ease of exposition, let A,B be two subsets of the agent set N and we use A τ−→ B to denote the
event that there exists a chain

ja0
Ls0−−→ js1

La−−→ ja1
Ls1−−→ · · ·

Lsτ−1−−−→ jsτ
La−−→ jaτ ,

whose head and tail satisfies ja0 ∈ A and jaτ ∈ B.

Given a sequence of active link sets {Lst}∞t=0 and under fixed global policy θ, we say the information
at set A ⊆ N spread to another set B ⊆ N in τ time steps (denoted by I(A)

τ−→ I(B)) if there exists
(s, a) and (s′, a′) such that (sN\A, aN\A) = (s′N\A, a

′
N\A) and the distribution of (sB(τ), aB(τ))

given (s(0), a(0)) = (s, a) is different with that given (s(0), a(0)) = (s′, a′).

We show by induction that I(A)
τ−→ I(B) happens only if A τ−→ B happens.

If τ = 0, since I(A)
0−→ I(B), we see that A ∩ B 6= ∅. Therefore, we can let ja0 be any agent in

A ∩B. Hence we also have A 0−→ B.

Suppose the statement holds for τ = t. When τ = t+ 1, suppose that I(A)
t+1−−→ I(B). Define sets

B′ := {j ∈ N | ∃k ∈ B, s.t.j La−−→ k}, B′′ := {j ∈ N | ∃k ∈ B′, s.t.j Lst−−→ k}.

Notice that B ⊆ B′ ⊆ B′′. By the definition of transition probability and policy dependence, we
know that the distribution of aB(t+ 1) is decided by sB′(t+ 1), and the distribution of sB′(t+ 1) is
decided by (sB′′(t), aB′′(t)). Therefore, we must have I(A)

t−→ I(B′′). By the induction hypothesis,
we have A t−→ B′′, which further implies A t+1−−→ B. This finishes the induction.

Given a sequence of active link sets {(Lst , Lrt )}, we use πt,i to denote the distribution of(
sNi(Lrt )(t), aNi(Lrt )(t)

)
given that (s(0), a(0)) = (s, a); we use π′t,i to denote the distribution of(

sNi(Lrt )(t), aNi(Lrt )(t)
)

given that (s(0), a(0)) = (s′, a′). We notice that πt,i 6= π′t,i happens only
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if I(Nκ
−i)

t−→ I(Ni(L
r
t )), which is true only if Nκ

−i
t−→ Ni(L

r
t ). Recall that Xi(κ) is defined as the

smallest t such that Nκ
−i

t−→ Ni(L
r
t ) holds. Hence, we obtain that∣∣Qθi (s, a)−Qθi (s′, a′)
∣∣

≤ E{(Lst ,Lrt )}

∞∑
t=0

∣∣∣γtEπt,iri(sNi(Lrt ), aNi(Lrt ))− γtEπ′t,iri(sNi(Lrt ), aNi(Lrt ))
∣∣∣

≤ E{(Lst ,Lrt )}

∞∑
t=Xi(κ)

∣∣∣γtEπt,iri(sNi(Lrt ), aNi(Lrt ))− γtEπ′t,iri(sNi(Lrt ), aNi(Lrt ))
∣∣∣

≤ 1

1− γ
E
[
γXi(κ)

]
,

where we use the definition of Xi(κ) in the second step.

B.2 Proof of Corollary 2.2

Given a sequence of active link sets {(Lst , Lrt )}, let t = Xi(κ). By the definition of Xi(κ), we
assume that a chain of agents

ja0
Ls0−−→ js1

La−−→ ja1
Ls1−−→ · · ·

Lst−1−−−→ jst
La−−→ jat

satisfies ja0 ∈ Nκ
−i and jat

Lrt−−→ i.

By the triangle inequality and the assumptions of Lemma 2.2, we obtain that

dG(ja0 , i) ≤
t−1∑
τ=0

(
dG(jaτ , j

s
τ+1) + dG(jsτ+1, j

a
τ+1)

)
+ dG(jat , i)

≤ t(β + α1) + α2.

Therefore, we see that t is lower bounded by κ−α2

β+α1
, which also gives a lower bound of Xi(κ).

B.3 Proof of Theorem 2.3

To simplify notation, we adopt the same notations as in the proof of Theorem 2.1 (Appendix B.1).
Specifically, recall that we use A τ−→ B to denote the event that there exists a chain

ja0
Ls0−−→ js1

La−−→ ja1
Ls1−−→ · · ·

Lsτ−1−−−→ jsτ
La−−→ jaτ ,

whose head and tail satisfies ja0 ∈ A and jaτ ∈ B. We will use ∂Nκ
i to denote the set of neighbors

whose distance to i is κ, i.e., ∂Nκ
i := {j ∈ N | dG(i, j) = κ} = Nκ

i \ N
κ−1
i . Define aκ :=

E
[
γXi(κ−1)

]
. Define function cat (concatenation) such that for a pair of active link sets (Ls, La),

(x, y) ∈ cat(Ls, La) if and only if ∃z ∈ N such that x Ls−−→ z
La−−→ y.

Before proving Theorem 2.3, we first give an upper bound for the sum of an infinite sequence
{poly(k + i) · νi}i∈N, where ν < 1 is a positive constant. This result is helpful for showing an upper
bound of P (Nκ

−i → N j
i ).

Lemma B.1. If m ∈ N∗ and 0 < ν < 1 are constants, for all k ≥ 2m
ln(1/ν) , we have

∞∑
i=0

(k + i)mνi ≤ 1

1−
√
ν
· km.

Proof of Lemma B.1. Define function f : R+ ∪ {0} → R+ as

f(t) = (k + t)m · νt/2.
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The derivative of function f is given by

f ′(t) = (k + t)m−1 · νt/2
(
m+

1

2
ln ν · (k + t)

)
.

Since k ≥ 2m
ln(1/ν) , f ′(t) ≤ 0 holds for all t ≥ 0, hence we have f(t) ≤ f(0) = km.

Therefore, we obtain that
∞∑
i=0

(k + i)mνi ≤
∞∑
i=0

f(i) · νi/2

≤ km
∞∑
i=0

νi/2

≤ 1

1−
√
ν
· km.

Now we come back to the proof of Theorem 2.3.

By union bound, we derive an upper bound of the probability that a link (x, y) is in cat(Ls, La).
Suppose d ∈ N is constant that satisfies dG(x, y) ≥ d, and the probability P is taken over (Ls, Lr) ∼
D:

P ((x, y) ∈ cat(Ls, La)) = P (∃z ∈ N , (x, z) ∈ Ls ∧ (z, y) ∈ La)

≤
∑

z:dG(z,y)≤β

P ((x, z) ∈ Ls)

≤ c0(β + 1)n0+1 · cλd−β

= cgλ
d, (7)

where constant cg is defined as c0c(β + 1)n0+1λ−β .

By the assumption on the size of κ-hop neighborhood, we know that for some constant c0 and
n0 ∈ N∗, |∂Nκ

i | ≤ c0(κ+ 1)n0 holds for all κ ≥ 1. Let n1 := 2n0. With the help of Lemma B.1,

we show that for some constant c2 > 0, P
(
Nκ−1
−i

1−→ ∂N j
i

)
is upper bounded by c2(κ+ 1)n1λκ−j

for all j ≤ κ− 1 when κ ≥ 2n0

ln(1/λ) :

P
(
Nκ−1
−i

1−→ ∂N j
i

)
≤ P

(
∃x ∈ Nκ−1

−i , y ∈ ∂N j
i s.t. (x, y) ∈ cat(Ls, La)

)
(8a)

≤
∞∑
q=0

P
(
∃x ∈ ∂Nκ+q

i , y ∈ ∂N j
i s.t. (x, y) ∈ cat(Ls, La)

)
(8b)

≤
∞∑
q=0

∑
x∈∂Nκ+qi ,y∈∂Nji

P ((x, y) ∈ cat(Ls, La)) (8c)

≤
∞∑
q=0

∑
x∈∂Nκ+qi ,y∈∂Nji

cgλ
(κ+q−j) (8d)

≤ cgλκ−j
∞∑
q=0

∣∣∂Nκ+q
i

∣∣ · ∣∣∣∂N j
i

∣∣∣ · λq
≤ cgc20(κ+ 1)n0λκ−j

∞∑
q=0

(κ+ q + 1)n0λq (8e)

≤ c2(κ+ 1)n1λκ−j , (8f)

where we use the definition of Nκ−1
−i

1−→ ∂N j
i in (8a); we use union bound in (8b) and (8c); we

use the fact that dG(x, y) ≥ κ + q − j,∀x ∈ ∂Nκ+q
i , y ∈ ∂N j

i and (7) in (8d); we use the bounds
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∣∣∣∂N j
i

∣∣∣ ≤ c0j
n0 ≤ c0κ

n0 and
∣∣∂Nκ+q

i

∣∣ ≤ c0(κ + q)n0 in (8e); we define c2 :=
cgc

2
0

1−
√
λ

and use
Lemma B.1 in (8f).

Let constants c3 and q be defined as

c3 :=
1

2
4
√
λ(1−

√
λ)

(
1
√
γ
− 1

)
,

q :=
1

ln(1/λ)
max{(ln c2 − ln c3 − 2 ln(1−√γ)), (2n1 + 4)},

and define function p(κ) := [q(1 + ln(κ+ 1))] + 1. We can find κ0 ∈ Z+ such that p(κ) ≥ κ for all
κ ≤ κ0, and p(κ) > κ for all κ > κ0.

Let ρ be a constant such that 1 > ρ > max{γ1/(2q), 4
√
λ}. Let C := ρ−max{q+1,

2n0
ln(1/λ)

}. Recall that
we define aκ := E

[
γXi(κ−1)

]
, where Xi(κ− 1) denotes the smallest t such that Nκ−1

−i
t−→ Ni(L

r
t )

holds. Now we show by induction that

aκ ≤ Cρκ/(1+ln(κ+1)),∀κ ≥ 1. (9)

Since aκ ≤ 1, (9) clearly holds when κ ≤ κ0. To see this, recall that we have κ ≤ p(κ) and
C ≥ ρ−(q+1) by definition, thus the right hand side of (9) can be lower bounded by

Cρκ/(1+ln(κ+1)) ≥ ρ−(q+1) · ρp(κ)/(1+ln(κ+1)) ≥ ρ−(q+1) · ρq+1 = 1.

When κ > κ0, we have κ > p(κ). Recall that aκ := E
[
γXi(κ−1)

]
. Notice that Xi(κ− 1) = 0 if and

only if Nκ−1
−i ∩Ni(Lr0) 6= ∅. To simplify the notation, we denote the event Nκ−1

−i ∩Ni(Lr0) 6= ∅ by
E0. Using this and the idea of dynamic programming, we see that

aκ ≤ γ

P{(¬Nκ−1
−i

1−→ Nκ−1
i

)
∧ ¬E0}aκ +

κ−1∑
j=0

P{
(
Nκ
−i

1−→ ∂N j
i

)
∧
(
¬Nκ
−i

1−→ N j−1
i

)
∧ ¬E0}aj


+ P (E0)

≤ γ

P{¬Nκ−1
−i

1−→ Nκ−1
i }aκ +

κ−1∑
j=0

P{
(
Nκ
−i

1−→ ∂N j
i

)
∧
(
¬Nκ
−i

1−→ N j−1
i

)
}aj

+ P (E0),

(10)

where the probability P are taken over (Ls0, L
r
0) ∼ D.

Since κ ≥ p(κ) ≥ q ≥ 2n1

ln(1/λ) ≥
2n0

ln(1/λ) , by Lemma B.1, we see that

P (E0) = P{∃j ∈ Nκ−1
−i s.t. (j, i) ∈ Lr} ≤

∞∑
q=0

cc0(κ+ q + 1)n0λκ+q ≤ cc0

1−
√
λ

(κ+ 1)n0+1λκ.

Substituting this into (10) and rearranging the terms gives(
1− γP{¬Nκ−1

−i
1−→ Nκ−1

i }
)
aκ ≤ γ

κ−1∑
j=κ−p(κ)+1

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ−1
−i

1−→ N j−1
i

)
}aj

+ γ

κ−p(κ)∑
j=0

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ−1
−i

1−→ N j−1
i

)
}aj

+
cc0

1−
√
λ

(κ+ 1)n0+1λκ. (11)

For simplicity, we define ρκ := ρ1/(1+ln(κ+1)). By the induction assumption, we have that

aj ≤ Cρj/(ln(j+1)+1) ≤ Cρj/(ln(κ+1)+1) = Cρjκ.
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Substituting this into (11) gives that(
1− γP{¬Nκ−1

−i
1−→ Nκ−1

i }
)
aκ ≤ Cγ

κ−1∑
j=κ−p(κ)+1

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ−1
−i

1−→ N j−1
i

)
}ρjκ

+ Cγ

κ−p(κ)∑
j=0

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ−1
−i

1−→ N j−1
i

)
}ρjκ

+
c0

1−
√
λ

(κ+ 1)n0+1λκ. (12)

By the definition of p(κ) and q, we see that

λ−p(κ) ≥ λ−q(1+ln(κ+1)) = λ−q · (κ+ 1)q ln(1/λ) ≥ c2
c3(1−√γ)2

· (κ+ 1)n1 ≥ c2
c3(1− γ)

· (κ+ 1)n1 .

Therefore, we obtain the upper bound

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ
−i

1−→ N j−1
i

)
} ≤ P{Nκ−1

−i
1−→ ∂N j

i }

≤ c2(κ+ 1)n1λ(κ−j)

≤ (1− γ)c3λ
(κ−p(κ)−j).

Using this and divide both sides of (12) by
(

1− γP{¬Nκ
−i

1−→ Nκ−1
i }

)
, we see that

aκ ≤ γ
(
Cρκ−p(κ)+1

κ + Cc3(ρκ−p(κ)
κ + λ1 · ρκ−p(κ)−1

κ + λ2 · ρκ−p(κ)−2
κ + · · · )

)
+

c0

(1− γ)(1−
√
λ)

(κ+ 1)n0+1λκ, (13)

where we also use the fact that
κ−1∑

j=κ−p+1

P{
(
Nκ−1
−i

1−→ ∂N j
i

)
∧
(
¬Nκ−1
−i

1−→ N j−1
i

)
} ≤ 1− γP{¬Nκ−1

−i
1−→ Nκ−1

i }.

By the definition of p(κ), q and c2, we have that

λ
κ
4 ≤ λ

p(κ)
4 ≤ (κ+ 1)−

q ln(1/λ)
4 ≤ (κ+ 1)−n0−1

and

λ
κ
2 ≤ λ

p(κ)
2 ≤ λ

q
2 ≤

(1−√γ)(1− γ)(1−
√
λ)

2c0
,

which implies

λ
3κ
4 ≤

(1−√γ)(1− γ)(1−
√
λ)

2c0(κ+ 1)n0+1
. (14)

Dividing both sides of (13) by Cρκκ gives that

aκ
Cρκκ

≤ γ

(
1

ρ
p(κ)−1
κ

+
c3

ρ
p(κ)
κ

· 1

1− (λ/ρκ)

)
+

c0

(1− γ)(1−
√
λ)

(κ+ 1)n0+1λ
3κ
4 (15a)

≤ γ
(

1

ρq
+

1

ρq+1
· c3

1−
√
λ

)
+

1

2
(1−√γ) (15b)

=
γ

ρq

(
1 +

c3

ρ(1−
√
λ)

)
+

1

2
(1−√γ)

≤ √γ · 1

2

(
1 +

1
√
γ

)
+

1

2
(1−√γ) (15c)

= 1,

where we use ρκ = ρ1/(1+lnκ) ≥ ρ ≥ 4
√
λ in (15a); we use ρκ ≥ 4

√
λ, p = [q(1 + lnκ)] + 1, and

(14) in (15b); we use c3 =
√
λ(1−

√
λ)(
√
γ − 1) ≤ ρ(1−

√
λ)(
√
γ − 1) and ρ ≥ γ1/(2q) in (15c).
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B.4 Proof of Theorem 2.4

In the Critic part of Algorithm 1, since the policy is fixed to be θ(m), the pair (s, a) can be viewed
as the state of a Markov chain C, and Qθ(m)(s, a) in the original MDP corresponds to the value
function V ∗((s, a)) on C. Define the state aggregation map h such that h((s, a)) = (sNκi , aNκi ). By
the µ-decay property, we see that if h((s, a)) = h((s′, a′)), then

|V ∗((s, a))− V ∗((s′, a′))| =
∣∣∣Qθ(m)(s, a)−Qθ(m)(s′, a′)

∣∣∣ ≤ µ(κ).

Note that Assumption 2.1 implies that Assumption 3.1 holds for C. Thus, we can apply Theorem 3.2
to finish the proof of Theorem 2.4.

B.5 Proof of Theorem 2.5

Before showing Theorem 2.5, we first state a theorem concerning the actor part of Algorithm 1. The
proof is deferred to Appendix B.6.
Theorem B.2. Under the same assumption as Theorem 2.5, suppose inner loop length T is sufficiently
large such that T+1 ≥ logγ((1−γ)µ(κ)) and with probability at least 1− δ

2 , the following inequality
holds for all agents i ∈ N :

sup
m≤M−1

sup
(s,a)∈S×A

∣∣∣Qθ(m)
i (s, a)− Q̂T (sNκi , aNκi )

∣∣∣ ≤ ιµ(κ)

1− γ ,

where ι is a positive constant. Suppose the actor step size satisfies ηm = η√
m+1

with η ≤ 1
4W ′ .

Define CM := 2
η(1−γ) +

8W 2
√

logM log 4
δ+96W ′W 2η logM

(1−γ)4 . Then, with probability at least 1− δ,∑M−1
m=0 ηm‖∇J(θ(m))‖2∑M−1

m=0 ηm
≤ CM√

M + 1
+

2(2 + ι)W 2µ(κ)

(1− γ)4
. (16)

As a remark, note that the left hand side of (16) is a weighted average of the squared norm of the
gradients ∇J(θ(m)). We say the algorithm has reached an O(ε)-approximate stationary point if the
left hand side of (16) is in the order of O(ε).

Now we come back to the proof of Theorem 2.5. Let constant ι = 2 in Theorem B.2. By Theorem
B.2, to satisfy ∑M−1

m=0 ηm‖∇J(θ(m))‖2∑M−1
m=0 ηm

≤ O(ε),

it suffices to guarantee that

CM√
M + 1

= O(ε), and
2(2 + ι)W 2µ(κ)

(1− γ)4
= O(ε).

These can be satisfied by letting

M = Ω̃

(
ε−2

(
(W ′)2

(1− γ)2
+
W 4(1 + log(1/δ))

(1− γ)8

))
, µ(κ) = O

(
W−2(1− γ)4ε

)
.

To satisfy

sup
m≤M−1

sup
(s,a)∈S×A

∣∣∣Qθ(m)
i (s, a)− Q̂T (sNκi , aNκi )

∣∣∣ ≤ ιµ(κ)

1− γ
,

with probability at least 1− δ
2 , by Corollary 2.4, it suffices to select T such that

1√
T + t0

· 40H

(1− γ)2

√
K2 log T

(
log

(
4f(κ)K2T

δ

)
+ log log T

)
+

1

T + t0
· 8

(1− γ)2
max{144K2H log T

σ′(κ)
+ C3, 2K2 log T + t0}

≤ µ(κ)

1− γ
.
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Recall that

µ(κ) = O
(
W−2(1− γ)4ε

)
, H ≥ 2

(1− γ)σ′(κ)
, t0 = max(4H, 2K2 log T ).

Hence the required number of inner loop is

T = Ω̃

(
W 4(K2(log f(κ) + log(1/δ) + 1) +K1)

ε2(1− γ)12σ′(κ)2

)
.

B.6 Proof of Theorem B.2

While Theorem 5 in [38] studies the error bound of Scalable Actor Critic as a whole, we want to
decouple the effect of the inner loop and the outer loop in Theorem B.2. Our proof of Theorem
B.2 uses similar techniques with the proof in [38], but we extend the analysis to a more general
dependence model.

According to Algorithm 1, at iteration m, agent i performs gradient ascent by

θi(m+ 1) = θi(m) + ηmĝi(m),

with step size ηm = η√
m+1

. The approximate local gradient ĝi(m) is given by

ĝi(m) =

T∑
t=0

γt
1

n

∑
j∈Nκi

Q̂m,Tj

(
sNκj (t), aNκj (t)

)
∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)
.

Recall that the true local gradient is given by

∇θiJ(θ(m)) =

∞∑
t=0

E
s∼πθ(m)

t ,a∼ζθ(m)
i (·|s)γ

tQθ(m)(s, a)∇θi log ζθi(m)
(
ai(t) | sNβi (t)

)
,

where we use πθt to denote the distribution of global state s(t) under fixed policy θ.

To bound ‖ĝ(m)−∇θJ(θ(m))‖, we define intermediate quantities g(m) and h(m) whose i’th
component is given by

gi(m) =

T∑
t=0

γt
1

n

∑
j∈Nκi

Q
θ(m)
j (s(t), a(t))∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)
,

hi(m) =

T∑
t=0

E
s∼πθ(m)

t ,a∼ζθ(m)(·|s)γ
t 1

n

∑
j∈Nκi

Q
θ(m)
j (s, a)∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)
.

Lemma B.3. We have almost surely, ∀m ≤M ,

max(‖ĝ(m)‖, ‖g(m)‖, ‖h(m)‖, ‖∇J(θ(m))‖) ≤ W

(1− γ)2
.

To show Lemma B.3, we only need to replace ζθi(m)
i (ai(t) | si(t)) by ζθi(m)

i

(
ai(t) | sNβi (t)

)
in the

proof of Lemma 17 in [38].

Notice that
ĝ(m)−∇J(θ(m)) = e1(m) + e2(m) + e3(m),

where

e1(m) := ĝ(m)− g(m), e2(m) := g(m)− h(m), e3(m) := h(m)−∇J(θ(m)).

To bound ‖ĝ(m)−∇J(θ(m))‖, we only need to bound e1(m), e2(m), e3(m) separately.

Lemma B.4. With probability at least 1− δ
2 , we have

sup
0≤m≤M−1

∥∥e1(m)
∥∥ ≤ ιWµ(κ)

(1− γ)2
.
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Proof of Lemma B.4. By the assumption that

sup
m≤M−1

sup
i∈N

sup
(s,a)∈S×A

∣∣∣Qθ(m)
i (s, a)− Q̂T (sNκi , aNκi )

∣∣∣ ≤ ι · µ(κ)

1− γ
,

we have for all m ≤M − 1 and i ∈ N ,

‖ĝi(m)− gi(m)‖

≤

∥∥∥∥∥∥
T∑
t=0

γt
1

n

∑
j∈Nκi

[
Q̂m,Tj

(
sNκj (t), aNκj (t)

)
−Qθ(m)

j (s(t), a(t))
]
∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)∥∥∥∥∥∥
≤

T∑
t=0

γt
1

n

∑
j∈Nκi

∣∣∣Q̂m,Tj

(
sNκj (t), aNκj (t)

)
−Qθ(m)

j (s(t), a(t))
∣∣∣∥∥∥∇θi log ζ

θi(m)
i

(
ai(t) | sNβi (t)

)∥∥∥
≤

T∑
t=0

γt
ι · µ(κ)

1− γ
Wi

<
2ιWi · µ(κ)

(1− γ)2
.

Combining all n dimensions finishes the proof.

Lemma B.5. With probability at least 1− δ
2 , we have∣∣∣∣∣

M−1∑
m=0

ηm〈∇J(θ(m)), e2(m)〉

∣∣∣∣∣ ≤ 2W 2

(1− γ)4

√√√√2

M−1∑
m=0

η2
m log

4

δ
.

To show Lemma B.5, we only need to replace ζθi(m)
i (ai(t) | si(t)) by ζθi(m)

i

(
ai(t) | sNβi (t)

)
in the

proof of Lemma 19 in [38].

Lemma B.6. When T + 1 ≥ logγ((1− γ)µ(κ)), we have almost surely

∥∥e3(m)
∥∥ ≤ 2Wµ(κ)

1− γ
.

To show Lemma B.6, we only need to replace ζθi(m)
i (ai(t) | si(t)) with ζθi(m)

i

(
ai(t) | sNβi (t)

)
and

replace cρκ+1 with µ(κ) in the proof of Lemma 20 in [38].

Now we come back to the proof of Theorem B.2. Using the identical steps with the proof of Theorem
5 in [38], we can obtain that (equation (44) in [38])

M−1∑
m=0

1

2
ηm‖∇J(θ(m))‖2 ≤ J(θ(m))−J(θ(0))−

M−1∑
m=0

ηmεm,0+

M−1∑
m=0

ηmεm,1+

M−1∑
m=0

η2
mεm,2, (17)

where
εm,0 = 〈∇J(θ(m)), e2(m)〉,
εm,1 = ‖∇J(θ(m))‖(

∥∥e1(m)
∥∥+

∥∥e3(m)
∥∥),

εm,2 = 2W ′(
∥∥e1(m)

∥∥2
+
∥∥e2(m)

∥∥2
+
∥∥e3(m)

∥∥2
).

By Lemma B.5, we have with probability at least 1− δ
2 ,∣∣∣∣∣

M−1∑
m=0

ηmεm,0

∣∣∣∣∣ ≤ 2W 2

(1− γ)4

√√√√2

M−1∑
m=0

η2
m log

4

δ
. (18)
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By Lemma B.4 and Lemma B.6, we have with probability at least 1− δ
2 ,

sup
m≤M−1

εm,1 ≤
W

(1− γ)2

(
sup

m≤M−1

∥∥e1(m)
∥∥+ sup

m≤M−1

∥∥e3(m)
∥∥)

≤ (2 + ι)W 2µ(κ)

(1− γ)4
. (19)

By Lemma B.3, we have almost surely max(
∥∥e1(m)

∥∥,∥∥e2(m)
∥∥,∥∥e3(m)

∥∥) ≤ 2 W
(1−γ)2 , and hence

almost surely

sup
m≤M−1

εm,2 = 2W ′
(∥∥e1(m)

∥∥2
+
∥∥e2(m)

∥∥2
+
∥∥e3(m)

∥∥2
)

≤ 24W ′W 2

(1− γ)4
. (20)

By union bound, (18), (19), and (20) hold simultaneously with probability 1− δ. Combining them
with (17) gives∑M−1

m=0 ηm‖∇J(θ(m))‖2

2
∑M−1
m=0 ηm

≤
(J(θ(M))− J(θ(0))) +

∣∣∣∑M−1
m=0 ηmεm,0

∣∣∣+ supm≤M−1 εm,2
∑M−1
m=0 η

2
m∑M−1

m=0 ηm
+ 2 sup

m≤M−1
εm,1.

(21)

We can use identical steps with the proof of Theorem 5 in [38] to bound the first term in (21), and use
(19) to bound the second term in (21). This completes the proof.

C Stochastic Approximation Scheme

C.1 Contraction of the Update Operator

To show that the equation ΠF (Φx) = x has a unique solution x∗, by the Banach–Caccioppoli
fixed-point theorem, it suffices to show that operator ΠF (Φ·) is a γ-contraction in ‖·‖v .

Proposition C.1. If Assumption 3.2 holds, operator ΠF (Φ·) is a contraction in ‖·‖v, i.e., for any
x, y ∈ RM, ‖ΠF (Φx)−ΠF (Φy)‖v ≤ γ‖x− y‖v.

To prove this proposition, we first show both operator Π and operator Φ are non-expansive in ‖·‖v
before combining them with F .

Proof of Proposition C.1. We first show that operator Π is non-expansive in ‖·‖v, i.e. for any
x, y ∈ RN , we have

‖Πx−Πy‖v ≤ ‖x− y‖v. (22)

Since Π is a linear operator, it suffices to show that for any x ∈ RN , ‖Πx‖v ≤ ‖x‖v .

Recall that ∀j ∈M, h−1(j) := {i ∈ N | h(i) = j}. Using this notation, the j th element of vector
Πx is given by

(Πx)j =
1∑

i∈h−1(j) di

(
Φ>Dx

)
j

=
1∑

i∈h−1(j) di
·
∑

i∈h−1(j)

dixi.

Hence we see that ∣∣∣(Πx)j

∣∣∣
vj

≤ 1∑
i∈h−1(j) di

·
∑

i∈h−1(j)

di
|xi|
vj
≤ sup
i∈h−1(j)

|xi|
vj

. (23)
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By taking supj on both sides of (23), we see that

‖Πx‖v = sup
j∈M

∣∣∣(Πx)j

∣∣∣
vj

≤ sup
j∈M

sup
i∈h−1(j)

|xi|
vj

= sup
i∈N

|xi|
vh(i)

= ‖x‖v, (24)

where we use the definition of ‖·‖v on RN in the last equation. Hence we have shown that Π is
non-expansive in ‖·‖v (inequality (22)).

We can also show that for any x, y ∈ RM, we have

‖Φx− Φy‖v = ‖x− y‖v. (25)

Since Φ is a linear operator, we only need to show that for any x ∈ RM, ‖Φx‖v = ‖x‖v .

Since (Φx)i = xh(i),∀i ∈ N , by the definition of ‖·‖v on RN , we see that

‖Φx‖v = sup
i∈N

|(Φx)i|
vh(i)

= sup
i∈N

∣∣xh(i)

∣∣
vh(i)

= sup
j∈M

|xj |
vj

= ‖x‖v.

Hence we have shown that Φ is non-expansive in ‖·‖v (equation (25)).

Therefore, for any x, y ∈ RM, we have

‖ΠF (Φx)−ΠF (Φy)‖v ≤ ‖F (Φx)− F (Φy)‖v (26a)
≤ γ‖Φx− Φy‖v (26b)
= γ‖x− y‖v, (26c)

where we use (22) in (26a); Assumption 3.2 in (26b); (25) in (26c).

C.2 Proof of Theorem 3.1

The proof approach of Theorem 3.1 is similar to the proof of Theorem 4 in [37]. Specifically, we
show an upper bound for ‖x(t)− x∗‖v by induction on time step t. To do so, we divide the whole
proof into three steps: In Step 1, we manipulate the update rule (3) so that it can be written in a
recursive form of sequence ‖x(t)− x∗‖v (see Lemma C.1); In Step 2, we bound the effect of noise
terms in the recursive form we obtained in Step 1; In Step 3, we combine the first two steps to finish
the induction.

For simplicity of notation, we use ei to denote the indicator vector in Rn, i.e. the i th entry is 1 and
all other entries are 0. We also use ξi to denote the indicator vector in Rm.

One of the main proof techniques used in [37] is to consider Dt = Eeite>it | Ft−τ , which is the
distribution of it condition on Ft−τ , in the coefficients of the recursive relationship of sequence
‖x(t)− x∗‖v . However, this approach does not work in the more general setting we consider because
x∗ may not be the stationary point of operator (Φ>DtΦ)−1φ>DtF (Φ·). As a result, we cannot
decompose ‖x(t)− x∗‖v recursively if we use Dt in the coefficients. To overcome this difficulty,
we use D = diag(d1, · · · , dn), which is the stationary distribution of it, in the coefficients of the
recursive relationship (Lemma C.1).

Now we begin the technical part of our proof.

Step 1: Decomposition of Error. Let Dt = Eeite>it | Ft−τ , where τ is a parameter that we will
tune later. Then Dt is a Ft−τ -measurable n-by-n diagonal random matrix, with its i’th entry being
dt,i = P(it = i | Ft−τ ). Recall that D = diag(d1, · · · , dn), where d is the stationary distribution of
the Markov Chain {it}.
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Notice that for all i ∈ N , we have ξh(i) = Φ>ei. We can rewrite the update rule as

x(t+ 1) = x(t) + αt[e
>
itF (Φx(t))− ξ>h(it)

x(t) + w(t)]ξh(it)

= x(t) + αt[ξh(it)e
>
itF (Φx(t))− ξh(it)ξ

>
h(it)

x(t) + w(t)ξh(it)]

= x(t) + αtΦ
>[eite>it(F (Φx(t))− Φx(t)) + w(t)eit

]
(27a)

= x(t) + αt
[
Φ>DF (Φx(t))− Φ>DΦx(t)

]
+ αtΦ

>[(eite>it −D)(F (Φx(t))− Φx(t)) + w(t)eit
]

= x(t) + αt
[
Φ>DF (Φx(t))− Φ>DΦx(t)

]
+ αtΦ

>[(eite>it −D)(F (Φx(t− τ))− Φx(t− τ)) + w(t)eit
]

+ αtΦ
>(eite

>
it −D)[F (Φx(t))− F (Φx(t− τ))− Φ(x(t)− x(t− τ))]

= (I − αtΦ>DΦ)x(t) + αtΦ
>DF (Φx(t)) + αt(ε(t) + ψ(t)), (27b)

where in (27a), we use ξh(it) = Φ>eit . Additionally, in (27b), we define

ε(t) = Φ>
[
(eite

>
it −D)(F (Φx(t− τ))− Φx(t− τ)) + w(t)eit

]
and

ψ(t) = Φ>(eite
>
it −D)[F (Φx(t))− F (Φx(t− τ))− Φ(x(t)− x(t− τ))].

We further decompose ε(t) as ε(t) = ε1(t) + ε2(t), where ε1(t) and ε2(t) are defined as

ε1(t) = Φ>
[
(eite

>
it −Dt)(F (Φx(t− τ))− Φx(t− τ)) + w(t)eit

]
and

ε2(t) = Φ>(Dt −D)(F (Φx(t− τ))− Φx(t− τ)).

We see that condition on Ft−τ , the expected value of ε1(t) is zero, i.e.

Eε1(t) | Ft−τ
= Φ>E

[
(eite

>
it −Dt) | Ft−τ

]
[F (Φx(t− τ))− Φx(t− τ)] + Φ>E[E[w(t) | Ft]eit | Ft−τ ]

= 0.

Recall that matrix Π is defined as

Π =
(
Φ>DΦ

)−1
Φ>D.

By expanding (27) recursively, we obtain that

x(t+ 1) =

t∏
k=τ

(
I − αkΦ>DΦ

)
x(τ) +

t∑
k=τ

αk

(
t∏

l=k+1

(I − αlΦ>DΦ)

)
Φ>DF (Φx(k))

+

t∑
k=τ

αk

(
t∏

l=k+1

(I − αlΦ>DΦ)

)
(ε(k) + ψ(k))

= B̃τ−1,tx(τ) +

t∑
k=τ

Bk,tΠF (Φx(k)) +

t∑
k=τ

αkB̃k,t(ε(k) + ψ(k)), (28)

where Bk,t = αk
(
Φ>DΦ

)∏t
l=k+1(I − αlΦ>DΦ) and B̃k,t =

∏t
l=k+1

(
I − αlΦ>DΦ

)
.

For simplicity of notation, we define D′ = Φ>DΦ ∈ RM×M. Notice that D′ is a diagonal matrix in
RM×M with the j’th entry d′j =

∑
j∈h−1(i) di. Clearly,Bk,t and B̃k,t arem-by-m diagonal matrices,

with the i’th diagonal entry given by bk,t,i and b̃k,t,i, where bk,t,i = αkd
′
i

∏t
l=k+1(1 − αld′i) and

b̃k,t,i =
∏t
l=k+1(1− αld′i). Therefore, for any i ∈M, we have

b̃τ−1,t,i +

t∑
k=τ

bk,t,i = 1. (29)
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Also, by the definition of σ′, we have that for any i, almost surely

bk,t,i ≤ βk,t := αk

t∏
l=k+1

(1− αlσ′), b̃k,t,i ≤ β̃k,t =

t∏
l=k+1

(1− αlσ′),

where σ′ = min{d′1, · · · , d′m}.
Recall that x∗ is the unique solution of the equation ΠF (Φx∗) = x∗. Lemma C.1 shows that we can
expand the error term ‖x(t)− x∗‖v recursively.
Lemma C.1. Let Υt = ‖x(t)− x∗‖v , we have almost surely,

Υt+1 ≤ β̃τ−1,tΥτ + γ sup
i∈M

t∑
k=τ

bk,t,iΥk +

∥∥∥∥∥
t∑

k=τ

αkB̃k,tε(k)

∥∥∥∥∥
v

+

∥∥∥∥∥
t∑

k=τ

αkB̃k,tψ(k)

∥∥∥∥∥
v

.

Proof of Lemma C.1. By (28) and the triangle inequality of ‖·‖v , we have

‖x(t+ 1)− x∗‖v

≤ sup
i∈M

1

vi

∣∣∣∣∣b̃τ−1,t,ixi(τ) +
t∑

k=τ

bk,t,i(ΠF (Φx(k)))i − x
∗
i

∣∣∣∣∣
+

∥∥∥∥∥
t∑

k=τ

αkB̃k,tε(k)

∥∥∥∥∥
v

+

∥∥∥∥∥
t∑

k=τ

αkB̃k,tψ(k)

∥∥∥∥∥
v

. (30)

We also see that for each i ∈M,

1

vi

∣∣∣∣∣b̃τ−1,t,ixi(τ) +

t∑
k=τ

bk,t,i(ΠF (Φx(k)))i − x
∗
i

∣∣∣∣∣
≤ b̃τ−1,t,i

1

vi
|xi(τ)− x∗i |+

t∑
k=τ

bk,t,i
1

vi
|(ΠF (Φx(k)))i − x

∗
i | (31a)

≤ b̃τ−1,t,i‖x(τ)− x∗‖v +

t∑
k=τ

bk,t,i‖(ΠF (Φx(k)))− x∗‖v

≤ b̃τ−1,t,i‖x(τ)− x∗‖v + γ

t∑
k=τ

bk,t,i‖x(k)− x∗‖v, (31b)

where in (31a), we use (29) which says b̃τ−1,t,i +
∑t
k=τ bk,t,i = 1 holds for all i ∈M; in (31b), we

use Proposition C.1, which says ΠF (Φ·) is γ-contraction in ‖·‖v with fixed point x∗.

Therefore, by substituting (31) into (30), we obtain that

Υt+1 ≤ β̃τ−1,tΥτ + γ sup
i∈M

t∑
k=τ

bk,t,iΥk +

∥∥∥∥∥
t∑

k=τ

αkB̃k,tε(k)

∥∥∥∥∥
v

+

∥∥∥∥∥
t∑

k=τ

αkB̃k,tψ(k)

∥∥∥∥∥
v

.

Step 2: Bounding
∥∥∥∑t

k=τ αkB̃k,tε(k)
∥∥∥
v

and
∥∥∥∑t

k=τ αkB̃k,tψ(k)
∥∥∥
v
.

We start with a bound on each individual ε1(k), ε2(k), and ψ(k) in Lemma C.2. For simplicity of
notation, we define v := infj∈M vj .
Lemma C.2. The following bounds hold almost surely.

1. ‖ε1(t)‖v ≤ 4x̄+ 2C + w̄
v := ε̄.

2. ‖ε2(t)‖v ≤ (2x̄+ C) · 2K1 exp(−τ/K2).

3. ‖ψ(t)‖v ≤ 3
(

2x̄+ C + w̄
v

)∑t
k=t−τ+1 αk−1.
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Proof of Lemma C.2. By the definition of ‖·‖v in RM and its extension to RN , the induced matrix
norm of ‖·‖ for a matrix A = [aij ]i∈M,j∈N is given by ‖A‖v = supi∈M

∑
j∈N

vh(j)
vi
|aij |. Recall

that the i’th entry of the diagonal matrix Dt is given by dt,i = P(it = i | Ft−τ ). Hence we have that∥∥Φ>(eite
>
it −Dt)

∥∥
v

= sup
j∈M

∑
i∈N

1(h(i) = j) · |1(i = it)− dt,i| ≤ 2. (32)

Therefore, we can upper bound ‖ε1(t)‖v by

‖ε1(t)‖v =
∥∥Φ>

[
(eite

>
it −Dt)(F (Φx(t− τ))− Φx(t− τ)) + w(t)eit

]∥∥
v

≤
∥∥Φ>(eite

>
it −Dt)

∥∥
v
‖F (Φx(t− τ))− Φx(t− τ)‖v + |w(t)|

∥∥Φ>eit
∥∥
v

≤ 2‖F (Φx(t− τ))− Φx(t− τ)‖v + |w(t)|
∥∥Φ>eit

∥∥
v

(33a)

≤ 2‖F (Φx(t− τ))‖v + 2‖x(t− τ)‖v +
w̄

v
(33b)

≤ 4x̄+ 2C +
w̄

v
, (33c)

where we use (32) in (33a); the triangle inequality, the definition of v̄, and Assumption 3.3 in (33b);
Assumption 3.2 in (33c).

For ‖ε2(t)‖v , recall that

‖ε2(t)‖v =
∥∥Φ>(Dt −D)(F (Φx(t− τ))− Φx(t− τ))

∥∥
v

= sup
j∈M

1

vj

∣∣∣∣∣∑
i∈N

1(h(i) = j)(dt,i − di)(F (Φx(t− τ))− Φx(t− τ))i

∣∣∣∣∣
= sup

j∈M

1

vj

∣∣∣∣∣∣
∑

i∈h−1(j)

(dt,i − di)(F (Φx(t− τ))− Φx(t− τ))i

∣∣∣∣∣∣. (34)

By Assumption 3.1, we have that

sup
S⊆N

∣∣∣∣∣∑
i∈S

di −
∑
i∈S

dt,i

∣∣∣∣∣ ≤ K1 exp(−τ/K2). (35)

Our objective is to bound the following term in (34) for all j ∈M:∣∣∣∣∣∣
∑

i∈h−1(j)

(dt,i − di)(F (Φx(t− τ))− Φx(t− τ))i

∣∣∣∣∣∣.
Let Mj := supi∈h−1(j) |(F (Φx(t− τ))− Φx(t− τ))i|. Define function g : [−Mj ,Mj ]

N → R as

g(y) =

∣∣∣∣∣∣
∑

i∈h−1(j)

(dt,i − di)yi

∣∣∣∣∣∣.
Suppose ymax ∈ arg maxy g(y). We know that for i ∈ h−1(j), (ymax)i is either Mj or −Mj if
dt,i−di 6= 0. Let Sj := {i ∈ h−1(j) | (ymax)i = Mj} and S′j := {i ∈ h−1(j) | (ymax)i = −Mj}.
Therefore, we see that ∣∣∣∣∣∣

∑
i∈h−1(j)

(dt,i − di)(F (Φx(t− τ))− Φx(t− τ))i

∣∣∣∣∣∣
≤ max

y∈[−Mj ,Mj ]N
g(y) (36a)

=

∣∣∣∣∣∣
∑
i∈Sj

(dt,i − di)

∣∣∣∣∣∣Mj +

∣∣∣∣∣∣
∑
i∈S′j

(dt,i − di)

∣∣∣∣∣∣Mj

≤ 2K1 exp(−τ/K2)Mj . (36b)
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where we use the definition of function g in (36a); we use (35) in (36b).

Substituting (36) into (34) gives that

‖ε2(t)‖v ≤ ‖F (Φx(t− τ))− Φx(t− τ)‖v · 2K1 exp(−τ/K2)

≤ (‖F (Φx(t− τ))‖v + ‖Φx(t− τ)‖v) · 2K1 exp(−τ/K2) (37a)
≤ (2x̄+ C) · 2K1 exp(−τ/K2), (37b)

where we use the triangle inequality in (37a); we use Assumption 3.2 in (37b).

As for ‖ψ(t)‖v , we have the following bound

‖ψ(t)‖v
=
∥∥Φ>(eite

>
it −D)(F (Φx(t))− F (Φx(t− τ)))− Φ>(eite

>
it −D)Φ(x(t)− x(t− τ))

∥∥
v

≤
∥∥Φ>(eite

>
it −D)(F (Φx(t))− F (Φx(t− τ)))

∥∥
v

+
∥∥Φ>(eite

>
it −D)Φ(x(t)− x(t− τ))

∥∥
v

≤
∥∥Φ>(eite

>
it −D)

∥∥
v
· ‖(F (Φx(t))− F (Φx(t− τ)))‖v

+
∥∥Φ>(eite

>
it −D)Φ

∥∥
v
· ‖(x(t)− x(t− τ))‖v. (38)

Notice that∥∥Φ>(eite
>
it −D)Φ

∥∥
v

=
∥∥∥ξh(it)ξ

>
h(it)
−D′

∥∥∥
v

= sup
j∈M

∣∣1(h(it) = j)− d′j
∣∣ ≤ 1.

Substituting this into (38) and use (32), we obtain that

‖ψ(t)‖v ≤ 2‖F (Φx(t))− F (Φx(t− τ))‖v + ‖x(t)− x(t− τ)‖v
≤ 3‖x(t)− x(t− τ)‖v

≤ 3

t∑
k=t−τ+1

‖x(k)− x(k − 1)‖v. (39)

By the update rule of x and Assumption 3.2, we have that

‖x(t)− x(t− 1)‖v ≤ αt−1

(
‖F (Φx(t− 1))‖v + ‖x(t− 1)‖v +

w̄

v

)
≤ αt−1

(
2x̄+ C +

w̄

v

)
. (40)

Substituting (40) into (39), we obtain that

‖ψ(t)‖v ≤ 3

(
2x̄+ C +

w̄

v

) t∑
k=t−τ+1

αk−1.

Lemma C.3. If αt = H
t+t0

, where H > 2
σ′ and t0 ≥ max(4H, τ), then βk,t, β̃k,t satisfies the

following

1. βk,t ≤ H
k+t0

(
k+1+t0
t+1+t0

)σ′H
, β̃k,t ≤

(
k+1+t0
t+1+t0

)σ′H
.

2.
∑t
k=1 β

2
k,t ≤ 2H

σ′
1

t+1+t0
.

3.
∑t
k=τ βk,t

∑k
l=k−τ+1 αl−1 ≤ 8Hτ

σ′
1

t+1+t0
.

Proof of Lemma C.3. To show Lemma C.3, we only need to substitute σ′ for σ in the proof of
[37][Lemma 10].

Lemma C.4. The following inequality holds almost surely∥∥∥∥∥
t∑

k=τ

αkB̃k,tψ(k)

∥∥∥∥∥
v

≤
24
(

2x̄+ C + w̄
v

)
Hτ

σ′
1

t+ 1 + t0
:= Cψ

1

t+ 1 + t0
.
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Proof of Lemma C.4. We have that∥∥∥∥∥
t∑

k=τ

αkB̃k,tψ(k)

∥∥∥∥∥
v

≤
t∑

k=τ

αk

∥∥∥B̃k,t∥∥∥
v
‖ψ(k)‖v

≤ 3

(
2x̄+ C +

w̄

v

) t∑
k=τ

βk,t

k∑
l=k−τ+1

αl−1 (41a)

≤
24
(

2x̄+ C + w̄
v

)
Hτ

σ′
1

t+ 1 + t0
, (41b)

where we use Lemma C.2 in (41a); Lemma C.3 in (41b).

Lemma C.5. For each t, with probability at least 1− δ, we have∥∥∥∥∥
t∑

k=τ

αkB̃k,tε1(k)

∥∥∥∥∥
v

≤ Hε̄

t+ t0

√
2τt log

(
2τm

δ

)
.

To show Lemma C.5, we need to use Lemma C.6, which is Lemma 13 in [37].
Lemma C.6. Let Xt be a Ft-adapted stochastic process which satisfies EXt | Ft−τ = 0.

Further, |Xt| ≤ X̄t almost surely. Then with probability 1 − δ, we have,
∣∣∣∑t

k=0Xt

∣∣∣ ≤√
2τ
∑t
k=0 X̄

2
k log

(
2τ
δ

)
.

Proof of Lemma C.5. Recall that
∑
k=τ αkB̃k,tε1(k) is a random vector in RM, with its i’th entry

t∑
k=τ

αk(ε1)i(k)

t∏
l=k+1

(1− αld′i).

Since step sizes {αl} are deterministic, we see that

E

[
αk(ε1)i(k)

t∏
l=k+1

(1− αld′i) | Fk−τ

]
= αk

t∏
l=k+1

(1− αld′i)E[(ε1)i(k) | Fk−τ ] = 0.

Notice that

αk

t∏
l=k+1

(1− αld′i) =
H

k + t0

t∏
l=k+1

(
1− Hd′i

l + t0

)
(42a)

≤ H

k + t0

t∏
l=k+1

(
1− 2

l + t0

)
(42b)

≤ H

k + t0

t∏
l=k+1

(
1− 1

l + t0

)
≤ H

t+ t0
,

where we use αl = H
l+t0

in (42a); we use H > 2
σ′ in (42b).

By the definition of ε̄, we also see that |(ε1)i(k)| ≤ viε̄. Therefore, by Lemma C.6, we obtain that∣∣∣∣∣
t∑

k=τ

αk(ε1)i(k)

t∏
l=k+1

(1− αld′i)

∣∣∣∣∣ ≤ Hviε̄

t+ t0

√
2τt log

(
2τ

δ

)
holds with probability at least 1− δ. By union bound, we see that with probability at least 1− δ,∥∥∥∥∥

t∑
k=τ

αkB̃k,tε1(k)

∥∥∥∥∥
v

≤ Hε̄

t+ t0

√
2τt log

(
2τm

δ

)
.
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Lemma C.7. If we set τ to be an integer such that

τ ≥ 2K2 max(log t, 1),

we have that ∥∥∥∥∥
t∑

k=τ

αkB̃k,tε2(k)

∥∥∥∥∥
v

≤ Cε2
t+ t0 + 1

,

where t0 = max(τ, 4H) and Cε2 = (2x̄+ C) · 2K1(1 + 2K2 + 4H).

Proof of Lemma C.7. Since K2 ≥ 1, the bound is trivial when t = 1. We consider the case when
t ≥ 2 below.

Since αkB̃k,t is a diagonal matrix and its entries are positive and less than 1, we have that∥∥∥∥∥
t∑

k=τ

αkB̃k,tε2(k)

∥∥∥∥∥
v

≤
t∑

k=τ

∥∥∥αkB̃k,t∥∥∥
v
· ‖ε2(k)‖v

≤ t‖ε2(k)‖v (43a)
≤ t(2x̄+ C) · 2K1 exp(−τ/K2). (43b)

where we use
∥∥∥αkB̃k,t∥∥∥

v
≤ 1 in (43a); Lemma C.2 in (43b).

To show Lemma C.7, we only need to show

t(2x̄+ C) · 2K1(t+ τ + 4H) exp(−τ/K2) ≤ Cε2 (44)

holds for all τ ≥ 2K2 log t because t+ t0 + 1 ≤ t+ τ + 4H.

To study how the left hand side of (44) changes with τ , we define function

g(τ) = (τ + t+ 4H) exp(−τ/K2).

Notice that we view τ as real number in function g, so we can get the derivative of g:

g′(τ) =
exp(−τ/K2)

K2
(K2 − t− 4H − τ).

Therefore, when τ ≥ 2K2 log t, we always have g′(τ) < 0. Hence we obtain that

g(τ) ≤ g(2K2 log t) =
2K2 log t+ t+ 4H

t2
≤ 1 + 2K2 + 4H

t
(45)

holds for all τ ≥ 2K2 log t.

Substituting (45) into (44) finishes the proof.

Step 3: Bounding the error sequence. Based on the recursive relationship we derived in Lemma
C.1 and the bounds we obtained in Step 2, we want to show that, with probability 1− δ,

Υt ≤
Ca√
t+ t0

+
C ′a
t+ t0

, (46)

holds for all τ ≤ t ≤ T , where

Ca =
2Hε̄

1− γ

√
2τ log

(
2τmT

δ

)
, C ′a =

4

1− γ
max(Cψ + Cε2 , 2x̄(τ + t0)).

Notice that Ca and C ′a are independent of t but may dependent on T . We set τ = 2K2 log T.

By applying union bound to Lemma C.5, we see that with probability at least 1− δ, for any t ≤ T ,∥∥∥∥∥
t∑

k=τ

αkB̃k,tε1(k)

∥∥∥∥∥
v

≤ Cε1√
t+ 1 + t0

,
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where Cε1 = Hε̄
√

2τ log
(

2τmT
δ

)
.

Therefore, we get with probability 1− δ, (47) holds for all τ ≤ t ≤ T :

Υt+1 ≤ β̃τ−1,tΥτ + γ sup
i∈M

t∑
k=τ

bk,t,iΥk +
Cε1√

t+ 1 + t0
+
Cψ + Cε2
t+ 1 + t0

. (47)

We now condition on (47) to show (46) by induction. (46) is true for t = τ , as C′a
τ+t0

≥ 8
1−γ x̄ ≥ Υτ ,

where we have used Υτ = ‖x(τ)− x∗‖v ≤ ‖x(τ)‖v + ‖x∗‖v ≤ 2x̄. Then, assuming (46) is true for
up to k ≤ t. By (47), we have that

Υt+1 ≤ β̃τ−1,tΥτ + γ sup
i∈M

t∑
k=τ

bk,t,i

[
Ca√
k + t0

+
C ′a

k + t0

]
+

Cε1√
t+ 1 + t0

+
Cψ + Cε2
t+ 1 + t0

≤ β̃τ−1,tΥτ + γCa sup
i∈M

t∑
k=τ

bk,t,i
1√
k + t0

+ γC ′a sup
i∈M

t∑
k=τ

1

k + t0
bk,t,i

+
Cε1√

t+ 1 + t0
+
Cψ + Cε2
t+ 1 + t0

. (48)

We use the following auxiliary lemma to handle the second and the third term in (48).

Lemma C.8. If σ′H(1−√γ) ≥ 1, t0 ≥ 1, and α0 ≤ 1
2 , then, for any i ∈ N , and any 0 < ω ≤ 1,

we have

t∑
k=τ

bk,t,i
1

(k + t0)ω
≤ 1
√
γ(t+ 1 + t0)ω

.

Proof of Lemma C.8. Recall that αk = H
k+t0

, and bk,t,i = αkd
′
i

∏t
l=k+1(1− αld′i), where d′i ≥ σ′.

Define et =
∑t
k=τ bk,t,i

1
(k+t0)ω . We use induction on t to show that et ≤ 1√

γ(t+1+t0)ω .

The statement is clearly true for t = τ . Assume it is true for t− 1. Notice that

et =

t−1∑
k=τ

bk,t,i
1

(k + t0)ω
+ bt,t,i

1

(t+ t0)ω

= (1− αtd′i)
t−1∑
k=τ

bk,t−1,i
1

(k + t0)ω
+ αtd

′
i

1

(t+ t0)ω
(49a)

= (1− αtd′i)et−1 + αtd
′
i

1

(t+ t0)ω

≤ (1− αtd′i)
1

√
γ(t+ t0)ω

+ αtd
′
i

1

(t+ t0)ω
(49b)

= [1− αtd′i(1−
√
γ)]

1
√
γ(t+ t0)ω

,

where we use bt,t,i = αtd
′
i in (49a); we use the induction assumption in (49b).

33



Plugging in αt = H
t+t0

, we see that

et ≤
[
1− σ′H

t+ t0
(1−√γ)

]
1

√
γ(t+ t0)ω

(50a)

=

[
1− σ′H

t+ t0
(1−√γ)

](
1 +

1

t+ t0

)ω
1

√
γ(t+ 1 + t0)ω

≤
(

1− 1

t+ t0

)(
1 +

1

t+ t0

)ω
1

√
γ(t+ 1 + t0)ω

(50b)

≤
(

1− 1

t+ t0

)(
1 +

1

t+ t0

)
1

√
γ(t+ 1 + t0)ω

(50c)

≤ 1
√
γ(t+ 1 + t0)ω

,

where we use d′i ≥ σ′ in (50a); we use the assumption that σ′H(1 − √γ) ≥ 1 in (50b); we use
0 < ω ≤ 1 in (50c).

Applying Lemma C.8 to (48), we see that

Υt+1 ≤ β̃τ−1,tΥτ +
√
γCa

1√
t+ 1 + t0

+
√
γC ′a

1

t+ 1 + t0

+ Cε1
1√

t+ 1 + t0
+ (Cψ + Cε2)

1

t+ 1 + t0
(51a)

≤
(
√
γCa

1√
t+ 1 + t0

+ Cε1
1√

t+ 1 + t0

)
+

(
√
γC ′a

1

t+ 1 + t0
+ (Cψ + Cε2)

1

t+ 1 + t0
+

(
τ + t0

t+ 1 + t0

)σ′H
Υτ

)
, (51b)

where we use Lemma C.8 in (51a); we use the bound on β̃τ−1,t in Lemma C.3 in (51b).

To bound the two terms in (51b), we define

χt :=
√
γCa

1√
t+ 1 + t0

+ Cε1
1√

t+ 1 + t0

and

χ′t =
√
γC ′a

1

t+ 1 + t0
+ (Cψ + Cε2)

1

t+ 1 + t0
+

(
τ + t0

t+ 1 + t0

)σ′H
aτ .

To finish the induction, it suffices to show that χt ≤ Ca√
t+1+t0

and χ′t ≤
C′a

t+1+t0
. To see this

χt

√
t+ 1 + t0
Ca

=
√
γ+

Cε1
Ca

, χ′t
t+ 1 + t0

C ′a
=
√
γ+

Cψ + Cε2
C ′a

+
Υτ (τ + t0)

C ′a

(
τ + t0

t+ 1 + t0

)σ′H−1

.

It suffices to show that Cε1Ca
≤ 1−√γ, Cψ+Cε2

C′a
≤ 1−√γ

2 , and Υτ (τ+t0)
C′a

≤ 1−√γ
2 . Recall that

Ca =
2Hε̄

1− γ

√
2τ log

(
2τmT

δ

)
, C ′a =

4

1− γ
max(Cψ + Cε2 , 2x̄(τ + t0)),

and

Cε1 = Hε̄

√
2τ log

(
2τmT

δ

)
.

Using that Υτ ≤ 2x̄, one can check that Ca and C ′a satisfy the above three inequalities.
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C.3 Parameter Upper Bound

Proposition C.2. Suppose Assumptions 3.2 and 3.3 hold. Then for all t,

‖x(t)‖v ≤
1

1− γ

(
(1 + γ)‖y∗‖v +

w̄

v

)
holds almost surely, where y∗ ∈ RN is the stationary point of F .

Proof of Proposition C.2. By Assumption 3.2, we have that for all x ∈ RM,

‖F (Φx)‖v ≤ ‖F (Φx)− F (y∗)‖v + ‖F (y∗)‖v (52a)
≤ γ‖Φx− y∗‖v + ‖y∗‖v (52b)
≤ γ‖x‖v + (1 + γ)‖y∗‖v, (52c)

where we use the triangle inequality in (52a) and (52c); we use Assumption 3.2 in (52b).

Let x̄ = 1
1−γ

(
(1 + γ)‖y∗‖v + w̄

v

)
. We prove ‖x(t)‖v ≤ x̄ by induction on t. Since we initialize

x(0) to be 0, the statement is true for t = 0.

Suppose the statement is true for t. By the update rule of x, we see that

1

vh(it)

∣∣xh(it)(t+ 1)
∣∣ ≤ (1− αt)

1

vh(it)

∣∣xh(it)(t)
∣∣+ αt

(
1

vh(it)
|Fit(Φx(t))|+ 1

vh(it)
|w(t)|

)
≤ (1− αt)‖x(t)‖v + αt

(
‖F (Φx(t))‖v +

w̄

v

)
(53a)

≤ (1− αt)‖x(t)‖v + αt

(
γ‖x(t)‖v + (1 + γ)‖y∗‖v +

w̄

v

)
(53b)

≤ (1− αt)x̄+ αt

(
γx̄+ (1 + γ)‖y∗‖v +

w̄

v

)
(53c)

= x̄,

where we use Assumption 3.3 in (53a); (52) in (53b); the induction assumption in (53c).

For j 6= h(it), j ∈M, we have that

1

vj
|xj(t+ 1)| = 1

vj
|xj(t)| ≤ ‖x(t)‖v ≤ x̄. (54)

Combining (53) and (54), we see that the statement also holds for t + 1. Hence we have showed
‖x(t)‖v ≤ x̄ by induction.

D TD/Q-Learning with State Aggregation

D.1 Asymptotic Convergence of TD Learning with State Aggregation

Our asymptotic convergence result for TD learning with state aggregation builds upon the asymptotic
convergence result for TD learning with linear function approximation shown in [49]. For complete-
ness, we first present the main result of [49] in Theorem D.1. In order to do this, we must first state a
few definitions and assumptions made in [49].

We use φ(i) ∈ Rm to denote the feature vector associated with state i ∈ N . Feature matrix Φ is
a n-by-m matrix whose i’th row is φ(i)>. Starting from θ(0) = 0, the TD(λ) algorithm keeps
updating θ, ψ by the following update rule,

θ(t+ 1) = θ(t) + αtdtψt,

ψt+1 = γλψt + φ(it+1),

where ψt is named eligible vector in [49] and satisfies ψ0 = φ(i0).
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Recall that D = diag(d1, d2, · · · , dn) denotes the stationary distribution of Markov chain {it}. For
vectors x, y ∈ Rn, we define inner product 〈x, y〉 = x>Dy. The induced norm of this inner product
is ‖·‖D =

√
〈·, ·〉D. Let L2(N , D) denote the set of vectors V ∈ Rn such that ‖V ‖D is finite.

Recall that we define Π = (Φ>DΦ)−1Φ>D. As shown in [49], the projection matrix that projects
an arbitrary vector in Rn to the set {Φθ | θ ∈ Rm} is given by ΦΠ, i.e. for any V ∈ L2(N , D), we
have

ΦΠV = arg min
V̄ ∈{Φθ|θ∈Rm}

∥∥V − V̄ ∥∥
D
.

Notice that our definition of matrix Π is slightly different with [49] because we want to be consistent
with Section 3.1.

To characterize the TD(λ) algorithm’s dynamics, [49] defines T (λ) : L2(N , D) → L2(N , D)
operator as following: for all V ∈ Rn, let the i’th dimension of

(
T (λ)V

)
be defined as(

T (λ)V
)
i

=

{
(1− λ)

∑∞
m=0 λ

mE
[∑m

t=0 γ
tr(it, it+1) + γm+1Vim+1

| i0 = i
]

if λ < 1

E[
∑∞
t=0 γ

tr(it, it+1) | i0 = i] if λ = 1.

If V is an approximation of the value function V ∗, T (λ) can be viewed as an improved approximation
to V ∗. Notice that when λ = 0, T (λ) is identical with the Bellman operator.

Formally, [49] made four necessary assumptions for their main result (Theorem D.1). We omit the
third assumption ([49][Assumption 3]) in our summary because it must hold when the state space N
is finite.

The first assumption ([49][Assumption 1]) concerns the stationary distribution and the reward function
of the Markov chain {it}. It must hold when Assumption 3.1 holds and every stage reward rt is
upper bounded by r̄, as assumed by Theorem 3.2.

Assumption D.1. The transition probability and cost function satisfies the following two conditions:

1. The Markov chain {it} is irreducible and aperiodic. Furthermore, there is a unique
distribution d that satisfies d>P = d> with di > 0 for all i ∈ N . Let E0 stand for
expectation with respect to this distribution.

2. The reward function r(it, it+1) satisfies E0

[
r2(it, it+1)

]
<∞.

The second assumption ([49][Assumption 2]) concerns the feature vectors and the feature matrix. It
must hold when Φ is defined as (4).

Assumption D.2. The following two conditions hold for Φ:

1. The matrix Φ has full column rank; that is, the m columns (named basis functions in [49])
{φk | k = 1, · · · ,m} are linearly independent.

2. For every k, the basis function φk satisfies E0

[
φ2
k(it)

]
<∞.

The third assumption ([49][Assumption 4]) concerns the learning step size. It must hold if the learning
step sizes are as defined in Theorem 3.2.

Assumption D.3. The step sizes αt are positive, nonincreasing, and chosen prior to execution of the
algorithm. Furthermore, they satisfy

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.

Now we are ready to present the main asymptotic convergence result given in [49].

Theorem D.1. Under Assumptions D.1, D.2, D.3, the following hold.

1. The value function V is in L2(N , D).

2. For any λ ∈ [0, 1], the TD(λ) algorithm with linear function approximation converges with
probability one.

3. The limit of convergence θ∗ is the unique solution of the equation

ΠT (λ)(Φθ∗) = θ∗.

36



4. Furthermore, θ∗ satisfies

‖Φθ∗ − V ∗‖D ≤
1− λγ
1− γ

‖ΦΠV ∗ − V ∗‖D. (55)

Notice that (55) is not exactly the result we want to obtain. Specifically, we want the both sides
of (55) to be in ‖·‖∞ instead of ‖·‖D. Although this kind of result is not obtainable for general
TD learning with linear function approximation, we can leverage the special assumptions for state
aggregation, which are summarized below:
Assumption D.4. h : N →M is a surjective function from set N toM. The feature matrix Φ is as
defined in (4), i.e. the feature vector associated with state i ∈ N is given by

φk(i) =

{
1 if k = h(i)

0 otherwise
,∀k ∈M.

Further, if h(i) = h(i′) for i, i′ ∈ N , we have |V ∗(i)− V ∗(i′)| ≤ ζ for a fixed positive constant ζ.

Under Assumption D.4, we can show the asymptotic error bound in the infinity norm as we desired:
Theorem D.2. Under Assumptions D.1, D.2, D.3, if Assumption D.4 also holds, the limit of conver-
gence θ∗ of the TD(λ) algorithm satisfies

‖Φθ∗ − V ∗‖∞ ≤
(1− λγ)

1− γ
‖ΦΠV ∗ − V ∗‖∞ ≤

(1− λγ)

1− γ
ζ.

To show Theorem D.2, we need to prove several auxiliary lemmas first.
Lemma D.3. Under Assumption D.1, for any V ∈ L2(N , D), we have ‖PV ‖∞ ≤ ‖V ‖∞.

Proof of Lemma D.3. This lemma holds because the transition matrix P is non-expansive in infinity
norm.

Lemma D.4. Under Assumption D.1, for any V, V̄ ∈ L2(N , D), we have∥∥∥T (λ)V − T (λ)V̄
∥∥∥
∞
≤ γ(1− λ)

1− γλ
∥∥V − V̄ ∥∥∞.

Proof of Lemma D.4. By the definition of T (λ), we have that∥∥∥T (λ)V − T (λ)V̄
∥∥∥
∞

=

∥∥∥∥∥(1− λ)

∞∑
m=0

λm(γP )m+1
(
V − V̄

)∥∥∥∥∥
∞

≤ (1− λ)

∞∑
m=0

λmγm+1
∥∥V − V̄ ∥∥∞ (56a)

γ(1− λ)

1− γλ
∥∥V − V̄ ∥∥∞,

where inequality (56a) holds because
∥∥V − V̄ ∥∥∞ <∞ so we use Lemma D.3.

Lemma D.5. Under Assumption D.1 and D.4, we have

‖ΦΠV ∗ − V ∗‖∞ ≤ ζ (57)

and for any V ∈ L2(N , D)
‖ΦΠV ‖∞ ≤ ‖V ‖∞. (58)

Proof of Lemma D.5. For j ∈ M, we use h−1(j) ⊆ N to denote all the elements in N whose
feature is ej , i.e. h−1(j) = {i | i ∈ N , h(i) = j}. Since h is surjection, h−1(j) 6= ∅,∀j ∈ M.
Since ΦΠ is the projection matrix that projects a vector in Rn to the set {Φθ | θ ∈ Rm}, we have

ΠV = arg min
θ∈Rm

∑
j∈M

∑
i∈h−1(j)

di(Vi − θj).
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Hence the optimal θj must be in the range
[
mini∈h−1(j) Vi,maxi∈h−1(j) Vi

]
. Therefore, we see that

|(ΦΠV )i| =
∣∣(ΠV )h(i)

∣∣ ≤ max
i′∈h−1(h(i))

|Vi′ |,

which shows (58). Besides, we also have

|(ΦΠV )i − Vi| ≤ max

(∣∣∣∣ min
i′∈h−1(h(i))

Vi′ − Vi
∣∣∣∣, ∣∣∣∣ max

i′∈h−1(h(i))
Vi′ − Vi

∣∣∣∣). (59)

holds for all z ∈ Z. Let V = V ∗ and use Assumption D.4 in (59) gives (57).

Now we come back to the proof of Theorem D.2.

Notice that

‖Φθ∗ − V ∗‖∞ ≤ ‖Φθ
∗ − ΦΠV ∗‖∞ + ‖ΦΠV ∗ − V ∗‖∞ (60a)

=
∥∥∥ΦΠT (λ)(Φθ∗)− ΦΠV ∗

∥∥∥
∞

+ ‖ΦΠV ∗ − V ∗‖∞ (60b)

≤
∥∥∥T (λ)(Φθ∗)− V ∗

∥∥∥
∞

+ ‖ΦΠV ∗ − V ∗‖∞ (60c)

≤ γ(1− λ)

1− γλ
‖Φθ∗ − V ∗‖∞ + ‖ΦΠV ∗ − V ∗‖∞, (60d)

where we use the triangle inequality in (60a); Theorem D.1 in (60b); Lemma D.5 in (60c); Lemma
D.4 in (60d).

Therefore, we obtain that

‖Φθ∗ − V ∗‖∞ ≤
(1− λγ)

1− γ
‖ΠV ∗ − V ∗‖∞ ≤

(1− λγ)

1− γ
ζ,

where we use Lemma D.5 in the second inequality.

D.2 Proof of Theorem 3.2

Before presenting the proof of Theorem 3.2, we first show two upper bounds that are needed in the
assumptions of Theorem 3.1. We defer the proof of this result to Appendix D.3.

Proposition D.1. Under the same assumptions as Theorem 3.2, we have ‖θ(t)‖∞ ≤ θ̄ := r̄
1−γ holds

for all t almost surely and ‖θ∗‖∞ ≤ θ̄. |w(t)| ≤ w̄ := 2r̄
1−γ also holds for all t almost surely.

Now we come back to the proof of Theorem 3.2. Recall that we define F as the Bellman Policy
Operator and the noise sequence w(t) as

w(t) = rt + γθh(it+1)(t)− Ei′∼P(·|it)
[
r(it, i

′) + γθh(i′)(t)
]
.

Let θ∗ be the unique solution of the equation

ΠF (Φθ∗) = θ∗.

By the triangle inequality, we have that

‖Φ · θ(T )− V ∗‖∞ ≤ ‖Φ · θ(T )− Φ · θ∗‖∞ + ‖Φ · θ∗ − V ∗‖∞
≤ ‖θ(T )− θ∗‖∞ + ‖Φ · θ∗ − V ∗‖∞. (61)

We first bound the first term of (61) by Theorem 3.1. To do this, we first rewrite the update rule of
TD learning with state aggregation (6) in the form of the SA update rule (3):

θh(it)(t+ 1) = θh(it)(t) + αt
(
Fit(Φθ(t))− θh(it)(t) + w(t)

)
,

θj(t+ 1) = θj(t) for j 6= h(it), j ∈M.

Now we verify all the assumptions of Theorem 3.1. Assumption 3.1 is assumed to be satisfied in the
body of Theorem 3.2. As for Assumption 3.2, F is γ-contraction in the infinity norm because it is the
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Bellman operator, and we can set C = 2r̄
1−γ so that C ≥ (1 + γ)‖y∗‖∞ (see the discussion below

Assumption 3.2). As for Assumption 3.3, by the definition of noise sequence w(t), we see that

E[w(t) | Ft] = E
[
rt + γθh(it+1)(t)− Ei′∼P(·|it)

[
r(it, i

′) + γθh(i′)(t)
]
| Ft

]
= E

[
rt + γθh(it+1)(t) | Ft

]
− Ei′∼P(·|it)

[
r(it, i

′) + γθh(i′)(t)
]

= 0.

In addition, we can set w̄ = 2r̄
1−γ according to Proposition D.1. Finally, we can set θ̄ = r̄

1−γ according
to Proposition D.1.

Therefore, by Theorem 3.1, we see that

‖θ(T )− θ∗‖∞ ≤
Ca√
T + t0

+
C ′a

T + t0
, where (62)

Ca =
40Hr̄

(1− γ)2

√
K2 log T ·

√
log T + log log T + log

(
4mK2

δ

)
,

C ′a =
8r̄

(1− γ)2
max

(
144K2H log T

σ′
+ 4K1(1 + 2K2 + 4H), 2K2 log T + t0

)
.

As for the second term of (61), by Theorem D.2, we have that

‖Φ · θ∗ − V ∗‖∞ ≤
ζ

1− γ
. (63)

Substituting (62) and (63) into (61) finishes the proof.

D.3 Proof of Proposition D.1

We show ‖θ(t)‖∞ ≤
r̄

1−γ by induction on t. The statement holds for t = 0 because we initialize
θ(0) = 0. Suppose the statement holds for t. By the induction assumption, we see that

θh(it)(t+ 1) = (1− αt)θh(it)(t) + αt
[
rt + γθh(it+1)(t)

]
≤ (1− αt)‖θ(t)‖∞ + αt[rt + γ‖θ(t)‖∞]

≤ (1− αt)
r̄

1− γ
+ αt

[
rt + γ · r̄

1− γ

]
≤ r̄

1− γ
.

For j 6= h(it), j ∈M, we have that

θj(t+ 1) = θj(t) ≤ ‖θ(t)‖∞ ≤
r̄

1− γ
.

Hence the statement also holds for t+ 1. Therefore, we have showed ‖θ(t)‖∞ ≤
r̄

1−γ by induction.

By Theorem D.1, we know θ∗ = limt→∞ θ(t). Since we have already shown that ‖θ(t)‖∞ ≤
r̄

1−γ
holds for all t, we must have ‖θ∗‖∞ ≤

r̄
1−γ .

Using ‖θ(t)‖∞ ≤
r̄

1−γ , we see that

|w(t)| ≤ |rt|+ γ
∣∣θh(it+1)(t)

∣∣− ∣∣Ei′∼P(·|it)
[
r(it, i

′) + γθh(i′)(t)
]∣∣

≤ 2r̄ + 2γθ̄

=
2r̄

1− γ
.
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D.4 Application of the SA Scheme to Q-learning with State and Action Aggregation

We studyQ-learning with state and action aggregation in a setting that is a generalization of the tabular
setting studied in [37]. Specifically, we consider an MDPM with a finite state space S and finite action
space A. Suppose the transition probability is given by P(st+1 = s′ | st = s, at = a) = P(s′ | s, a),
and the stage reward at time step t is a random variable rt with its expectation given by Rst,at . Under
a stochastic policy π, the Q function (vector) Qπ ∈ RS×A is defined as

Qπs,a = Eπ

[ ∞∑
t=0

γtrt

∣∣∣(s0, a0) = (s, a)

]
,

where 0 ≤ γ < 1 is the discounting factor. We use Q∗ to denote the Q function corresponding to the
optimal policy π∗.

Similar to [37], we assume the trajectory {(st, at, rt)}∞t=0 is sampled by implementing a fixed
behavioral stochastic policy π. In Q-learning with state and action aggregation, the state abstraction
ψ1 operates on the state space S and the action abstraction ψ2 operates on action space A. For
simplicity of notation, we define the abstraction space asM = ψ1(S)× ψ2(A) and the abstraction
operator h : S × A → M as h(s, a) = (ψ1(s), ψ2(a)). The update rule for Q-learning with state
and action aggregation is then given by

θh(st,at)(t+ 1) = (1− αt)θh(st,at)(t) + αt

[
rt + γmax

a∈A
θh(st+1,a)(t)

]
,

θj(t+ 1) = θj(t) for j 6= h(st, at).

(64)

As a remark, some previous work considers abstraction on the state space S but does not compress
the action space (see [21]). In contrast, our setting also compresses the action space, and when ψ2 is
the identity map, our setting reduces to the case with only state aggregation.

To apply the result in Section 3.1, we define function F as the Bellman Optimality Operator, i.e.

Fs,a(Q) = Rs,a + γEs′∼P(·|s,a) max
a′∈A

Qs′,a′ .

It is shown in [3] that Q∗ is the unique fixed point of function F . By viewing S ×A as N , we can
define matrix Φ ∈ N ×M as in (4). We can rewrite the update rule (64) as

θh(st,at)(t+ 1) = θh(st,at)(t) + αt
[
Fst,at(Φθ(t))− θh(st,at)(t) + w(t)

]
,

θj(t+ 1) = θj(t) for j 6= h(st, at),

where

w(t) = rt + γmax
a∈A

θh(st+1,a)(t)− Fst,at(Φθ(t))

= (rt −Rst,at) + γ

[
max
a∈A

θh(st+1,a)(t)− Es′∼P(·|st,at) max
a′∈A

θh(s′,a′)(t)

]
.

Hence we have E[w(t) | Ft] = 0. In order to apply Theorem 3.1, we need the following assumption
on the induced Markov chain of stochastic policy π which is standard, cf. [37].

Assumption D.5. The following conditions hold:

1. For each time step t, the stage reward rt satisfies |rt| ≤ r̄ almost surely.

2. Under the behavioral policy π, the induced Markov chain (st, at) with state space S ×A
satisfies Assumption 3.1 with stationary distribution d and parameters σ′,K1,K2.

The next assumption is approximate Q∗-irrelevant abstraction, which measures the quality of the
abstraction map and is standard in the literature (see [21]).

Assumption D.6. There exists an abstract Q function q :M→ R such that ‖Φq −Q∗‖∞ ≤ εQ∗ .

We can now state our theorem for Q-learning with state aggregation.
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Theorem D.6. Under Assumption D.5 and D.6, suppose the step size of Q-learning with state
aggregation is given by αt = H

t+t0
, where t0 = max(4H, 2K2 log T ) and H ≥ 2

σ′(1−γ) . Then, with
probability at least 1− δ,

‖Φ · θ(T )−Q∗‖∞ ≤
Ca√
T + t0

+
C′a

T + t0
+

2εQ∗

1− γ , where

Ca =
40Hr̄

(1− γ)2

√
K2 log T ·

√
log T + log log T + log

(
4mK2

δ

)
,

C′a =
8r̄

(1− γ)2
max

(
144K2H log T

σ′
+ 4K1(1 + 2K2 + 4H), 2K2 log T + t0

)
.

Proof of Theorem D.6. Define θ∗ as the unique solution of equation θ = ΠF (Φθ), where the defini-
tion of Π is given in (5). Under Assumption D.5, we see that ‖θ∗‖∞ ≤

r̄
1−γ : otherwise, by assuming

that |θ∗i | = ‖θ∗‖∞ > r̄
1−γ , we can derive a contradiction that ‖ΠF (Φθ∗)‖∞ < |θ∗i |. To see this,

recall that linear operators Π and Φ are non-expansions in the infinity norm (see Appendix C.1), and
‖F (v)‖∞ < ‖v‖∞ for a vector v ∈ RN if ‖v‖∞ > r̄

1−γ .

Further, using a similar approach with the proof of Proposition D.1, we also see that

‖θ(t)‖∞ ≤ θ̄ :=
r̄

1− γ
, |w(t)| ≤ w̄ :=

2r̄

1− γ
hold for all t almost surely.

Therefore, by Theorem 3.1, we obtain that

‖θ(T )− θ∗‖∞ ≤
Ca√
T + t0

+
C ′a

T + t0
. (65)

To finish the proof of Theorem D.6, we only need to show that

‖Φθ∗ −Q∗‖ ≤ 2εQ∗

1− γ
. (66)

Given the behavioral policy π, we use {ds,a | (s, a) ∈ S ×A} to denote the stationary distribution
under policy π. Recall that we defineM = ψ1(S) × ψ2(A). For each abstract state-action pair
(x, y) ∈M, we define a distribution p(x,y) over h−1(x, y) such that

p(x,y)(s, a) =
ds,a∑

(s̃,ã)∈h−1(x,y) ds̃,ã
,∀(s, a) ∈ h−1(x, y).

Using the set of distributions {p(x,y) | (x, y) ∈M}, we define two new MDPs:

Mψ = (ψ1(S), ψ2(A), Pψ, Rψ, γ), (67)

where (Rψ)x,y = E(s,a)∼p(x,y) [Rs,a], and Pψ(x′ | x, y) = E(s,a)∼p(x,y) [P (x′ | s, a)]; and

M ′ψ = (S,A, P ′ψ, R′ψ, γ), (68)

where (R′ψ)s,a = E(s̃,ã)∼ph(s,a) [Rs̃,ã], P ′ψ(s′ | s, a) = E(s̃,ã)∼ph(s,a) [P (s′ | s̃, ã)].

We use Γ to denote the Bellman Optimality Operator. For simplicity, we use the subscript to
distinguish the value functions (V ∗), the state-action value functions (Q∗), and the Bellman Optimality
Operators (Γ) of the three MDPs M,Mψ and M ′ψ . Notice that ΓM is identical with F .

We can show that θ∗ is identical with the state-action value function of Mψ , i.e.,

θ∗ = Q∗Mψ
. (69)

To see this, we notice that (Φθ∗)s,a = θ∗h(s,a). Hence we get that

F (Φθ∗)s,a = [ΓMΦθ∗]s,a

= Rs,a + Es′∼P (s,a)

[
max
a

(Φθ∗)s′,a

]
= Rs,a + Es′∼P (s,a)

[
max
a

θ∗h(s′,a)

]
.
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Using this, we further obtain that

(ΠF (Φθ∗))x,y =
∑

(s,a)∈h−1(x,y)

ds,a∑
(s̃,ã)∈h−1(x,y) ds̃,ã

(
Rs,a + Es′∼P (s,a)

[
max
a

θ∗h(s′,a)

])
=

∑
(s,a)∈h−1(x,y)

p(x,y)(s, a)
(
Rs,a + Es′∼P (s,a)

[
max
a

θ∗h(s′,a)

])
= (Rψ)x,y +

∑
(s,a)∈h−1(x,y)

p(x,y)(s, a)
∑

x′∈ψ1(S)

P (x′ | s, a) max
a

θ∗x′,ψ2(a)

= (Rψ)x,y +
∑

x′∈ψ1(S)

Pψ(x′ | x, y) max
y′

θ∗x′,y′

= [ΓMψ
θ∗]x,y.

Since we have ΠF (Φθ∗) = θ∗ by definition, we see that

[ΓMψ
θ∗]x,y = θ∗x,y,∀(x, y) ∈M.

Thus we have shown that θ∗ = Q∗Mψ
.

Next, we observe that the state-value function of MDP M ′ψ is given by

Q∗M ′ψ
= ΦQ∗Mψ

. (70)

This is because

(
ΓM ′ψ (ΦQ∗Mψ

)
)
s,a

= (R′ψ)s,a + γ
∑
s′∈S

P ′ψ(s′ | s, a) max
a′

(ΦQ∗Mψ
)s′,a′

= (R′ψ)s,a + γ〈P ′ψ(s, a),ΦV ∗Mψ
〉

=
∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)
(
Rs̃,ã + γ〈P (s̃, ã),ΦV ∗Mψ

〉
)

(71a)

=
∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)Rs̃,ã

+
∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)γ〈P (s̃, ã),ΦV ∗Mψ
〉

= (Rψ)h(s,a) + γ〈Pψ(h(s, a)), V ∗Mψ
〉 (71b)

= (Q∗Mψ
)h(s,a)

= (ΦQ∗Mψ
)s,a,

where we use the definition of M ′ψ (see (68)) in (71a); we use the definition of Mψ (see (67)) in
(71b).

By (70), we see that

∥∥∥ΦQ∗Mψ
−Q∗M

∥∥∥
∞

=
∥∥∥Q∗M ′ψ −Q∗M∥∥∥∞ ≤ 1

1− γ

∥∥∥ΓM ′ψQ
∗
M −Q∗M

∥∥∥
∞
. (72)
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We further notice that∣∣∣(Γ∗Mψ
Q∗M )s,a − (Q∗M )s,a

∣∣∣
=
∣∣(R′ψ)s,a + γ〈Pψ(s, a), V ∗M 〉 − (Q∗M )s,a

∣∣
=

∣∣∣∣∣∣
 ∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)(Rs̃,ã + γ〈P (s̃, ã), V ∗M 〉)

− (Q∗M )s,a

∣∣∣∣∣∣ (73a)

=

∣∣∣∣∣∣
∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)((Q∗M )s̃,ã − (Q∗M )s,a)

∣∣∣∣∣∣
≤

∑
(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)|(Q∗M )s̃,ã − (Q∗M )s,a|

≤
∑

(s̃,ã)∈h−1(h(s,a))

ph(s,a)(s̃, ã)(2εQ∗) (73b)

= 2εQ∗ ,

where we use the definition of Mψ in (73a); we use Assumption D.6 in (73b).

Substituting (73) into (72) gives that∥∥∥ΦQ∗Mψ
−Q∗M

∥∥∥
∞
≤ 2εQ∗

1− γ
. (74)

Combining (69) and (74) finishes the proof.
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