
Appendix

A More Discussion on Related Work

Offline reinforcement learning There is a growing body of work on offline RL recently [Levine
et al., 2020] in both offline policy evaluation (OPE) and offline policy optimization. OPE (also known
as Off-Policy Evaluation [Li et al., 2015]) requires estimating the value of a target policy π from
an offline dataset that is often generated using another behavior policy µ. A variety of algorithms
and theoretical guarantees have been established for offline policy evaluation [Li et al., 2015, Jiang
and Li, 2016, Liu et al., 2018, Kallus and Uehara, 2019a,b, Uehara and Jiang, 2019, Xie et al., 2019,
Yin and Wang, 2020, Duan and Wang, 2020, Liu et al., 2020a,b, Feng et al., 2020]. The majority
of these work uses (vanilla or more advanced versions of) importance sampling to correct for the
distribution shift, or uses minimax formulation to approximate the task and solves the questions
through convex/non-convex optimization.

Meanwhile, the offline policy optimization problem needs to find a near-optimal policy given
the offline dataset. The study of offline policy optimization can be dated back to the classical
Fitted Q-Iteration algorithm [Antos et al., 2008a,b]. The sample complexity for offline policy
optimization is studied in a line of recent work [Chen and Jiang, 2019, Le et al., 2019, Xie and
Jiang, 2020b,a, Liu et al., 2020b]. The focus on these work is on the combination of offline RL
and function approximation; when specialized to the tabular setting, the sample complexities have
a rather suboptimal dependence on the horizon H (or (1 − γ)−1 in the discounted setting). In
particular, Chen and Jiang [2019], Le et al. [2019] first established finite sample guarantees with
complexity Õ((1− γ)−6βµ/ε

2) (where βµ is the concentration coefficient) and it is later improved
to Õ((1− γ)−4βµ/ε

2) by Xie and Jiang [2020b] with a finer analysis. Later, Xie and Jiang [2020a]
considers offline RL under weak realizability assumption and Liu et al. [2020b] considers offline RL
without good exploration. Those are challenging offline settings but their dependence on horizon
(1 − γ)−1 (or H) is very suboptimal. The recent work of Yin et al. [2021] (OPE + uniform
convergence) first achieves the sample complexity Õ(H3/dmε

2) in the finite-horizon non-stationary
transition setting for tabular offline RL, and establishes a lower bound Ω(H3/dmε

2) (where dm is a
constant related to the data coverage of the behavior policy in the given MDP that is similar to the
concentration coefficient βµ) that matches the upper bound up to logarithmic factors. Compared with
these work, we analyze a new variance reduction algorithm for offline policy learning, which is a
more generic approach as it adapts to all typical settings (finite horizon stationary/non-stationary
transition, infinite horizon setting) with optimal sample complexity while the technique in Yin et al.
[2021] only works for non-stationary setting and cannot directly reduce to Õ(H2/dmε

2) when the
transition becomes stationary. Concurrent to this work, Jin et al. [2020] study pessimism-based
algorithms for offline policy optimization under insufficient coverage of the data and Wang et al.
[2020], Zanette [2020] provide some negative results (exponential lower bound) for offline RL with
linear MDP structure.

Reinforcement learning in online settings In online RL (where one has interactive access to the
environment), the model-based UCBVI algorithm achieves the minimax regret of Õ(

√
HSAT) [Azar

et al., 2017] and is later improved by [Dann et al., 2018]. Later this minimax rate is also achieved
by EULER with stronger problem-dependent expressions [Zanette and Brunskill, 2019, Simchowitz
and Jamieson, 2019]. Model-free algorithms such a Q-learning is able to achieve a

√
H-suboptimal

regret comparing to lower bound [Jin et al., 2018] and this gap is recently closed by an improved
model-free algorithm in [Zhang et al., 2020].

In the generative model setting (where one has a simulator that samples (rt, st+1) from any
(st, at), [Azar et al., 2013, Wainwright, 2019] prove sample complexity Õ((1 − γ)−3SA/ε2) is
sufficient for the output Q-function to be ε-optimal, i.e. ||Q? −Qout||∞ < ε, however this does not
imply ε-optimal policy with the same sample complexity. The most related to our work among this
line is [Sidford et al., 2018a], which designs an variance reduction algorithm that overcomes the
above issue and obtains Õ((1 − γ)−3SA/ε2) sample complexity or finding the optimal policy as
well. Later [Yang and Wang, 2019] again uses VR to obtain the sample optimality under the linear
transition models. The design of our algorithm builds upon the variance reduction technique; our

13

doubling technique and analysis in the offline setting can be seen as a generalization of [Sidford et al.,
2018a]; see Section 5 and Appendix F.4 for more detailed discussions.

B Proofs for finite-horizon non-stationary setting

The roadmap of our analysis in this section consists of first doing concentration analysis, then
iteratively reasoning using induction, analyzing the doubling procedure and proving from prototypical
version to the practical version. Moreover, we also formally point out one defect in Sidford et al.
[2018a] later (see Section F.4) to contrast that our doubling VR procedure is necessary.

Even before that, let us start with the simple monotone preservation lemma.

Lemma B.1. Suppose V and π is any value and policy satisfy Vt ≤ TπtVt+1 for all t ∈ [H]. Then it
holds Vt ≤ V πt ≤ V ?t , for all t ∈ [H].

Proof. We only need to show Vt ≤ V πt . Since Vt ≤ TπtVt+1, we can use it repeatedly to obtain

Vt ≤ TπtVt+1 ≤ Tπt(Tπt+1Vt+2) ≤ ... ≤ Tπt ◦ Tπt+1 ◦ ... ◦ TπHVH+1 (3)

where “◦” denotes operator composition. Note by default VH+1 = V πH+1 = V ?H+1 = 0, therefore

Tπt+1
◦ ...◦TπHVH+1 = Tπt+1

◦ ...◦TπHV πH+1 = Tπt+1 ◦ ...◦TπH−1
V πH = ... = TπtV πt+1 = V πt (4)

where we use the definition of Bellman equation that V πt = TπtV πt+1 for all t. Combining (3) and (4)
gives the stated result.

B.1 Concentration analysis for non-stationary transition setting

Recall z̃t, σ̃V in
t+1

(59) and gt (60) are three quantities deployed in Algorithm 1 that use off-policy data
D. We restate their definition as follows:

z̃t(st, at) =

{
P>t (·|st, at)V in

t+1, if nst,at <
1
2
m · dµt (st, at),

1
nst,at

∑m
i=1 V

in
t+1(s

(i)
t+1) · 1

[s
(i)
t =st,a

(i)
t =at]

, if nst,at ≥ 1
2
m · dµt (st, at).

σ̃V in
t+1

(st, at) =

{
σV in

t+1
(st, at), if nst,at <

1
2
m · dµt (st, at),

1
nst,at

∑m
i=1[V in

t+1(s
(i)
t+1)]2 · 1

[s
(i)
t =st,a

(i)
t =at]

− z̃2
t (st, at), otherwise.

gt(st, at) =

{
P>(·|st, at)[Vt+1 − V in

t+1]− f(st, at), if nst,at <
1
2
l · dµt (st, at),

1
n′st,at

∑l
j=1[Vt+1(s

′(j)
t+1)− V in

t+1(s
′(j)
t+1)] · 1

[s
′(j)
t ,a

′(j)
t =st,at]

− f(st, at), o.w.

and recall f(st, at) = 4uin
√

log(2HSA/δ)/ldµt (st, at). Also, we use bold letters to represent
matrices, e.g. Pt ∈ RSA×S satisfies Pt[(st, at), st+1] = Pt(st+1|st, at). The following Lem-
mas B.2,B.4,B.5 provide their concentration properties.

Lemma B.2. Let z̃t be defined as (59) in Algorithm 1, where z̃t is the off-policy estimator of
P>t (·|st, at)V in

t+1 using m episodic data. Then with probability 1− δ, we have

∣∣z̃t − PtV in
t+1

∣∣ ≤
√

4 · σV in
t+1
· log(HSA/δ)

m · dµt
+

4Vmax

3m · dµt
log(HSA/δ), ∀t ∈ [H] (5)

here z̃t,PtV in
t+1, σV in

t+1
, dµt ∈ RS×A are S ×A column vectors and

√
· is elementwise operation.

Proof. First fix st, at. Let Et := {nst,at ≥ 1
2m · d

µ
t (st, at)}, then by definition,

z̃t(st, at)−P>t (·|st, at)V in
t+1 =

(
1

nst,at

m∑
i=1

V in
t+1(s

(i)
t+1) · 1[s

(i)
t = st, a

(i)
t = at]− P>t (·|st, at)V in

t+1

)
·1(Et).

14

Next we conditional on nst,at . Then from above expression and Bernstein inequality G.3 we have
with probability at least 1− δ∣∣z̃t(st, at)− P>t (·|st, at)V in

t+1

∣∣
=

∣∣∣∣∣ 1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)− P>t (·|st, at)V in

t+1

∣∣∣∣∣ · 1(Et)

≤

√2 · σV in
t+1

(st, at) · log(1/δ)

nst,at
+

2Vmax

3nst,at
log(1/δ)

 · 1(Et)

≤

√
4 · σV in

t+1
(st, at) · log(1/δ)

m · dµt (st, at)
+

4Vmax

3m · dµt (st, at)
log(1/δ)

where we use shorthand notation V in
t+1(s

(i)
t+1|st, at) to denote the value of V in

t+1(s
(i)
t+1) given

s
(i)
t = st and a(i) = at. The condition V in

t ≤ Vmax is guaranteed by Lemma B.1. Now
we get rid of the conditional on nst,at . Denote A = {z̃t(st, at) − P>(·|st, at)V in

t+1 ≤√
4 · σV in

t+1
(st, at) · log(1/δ)/m · dµt (st, at) + 4Vmax

3m·dµt (st,at)
log(1/δ)}, then equivalently we can

rewrite above result as P(A|nst,at) ≥ 1 − δ. Note this is the same as E[1(A)|nst,at] ≥ 1 − δ,
therefore by law of total expectation we have

P(A) = E[1(A)] = E[E[1(A)|nst,at]] ≥ E[1− δ] = 1− δ,

i.e. for fixed (st, at) we have with probability at least 1− δ,

∣∣z̃t(st, at)− P>(·|st, at)V in
t+1

∣∣ ≤
√

4 · σV in
t+1

(st, at) · log(1/δ)

m · dµt (st, at)
+

4Vmax

3m · dµt (st, at)
log(1/δ)

Apply the union bound over all t, st, at, we obtain

∣∣z̃t − PtV in
t+1

∣∣ ≤
√

4 · σV in
t+1
· log(HSA/δ)

m · dµt
+

4Vmax

3m · dµt
log(HSA/δ),

where the inequality is element-wise and this is (5).

Remark B.3. Exquisite reader might notice under the Assumption 2.1 it is likely for some (st, at) the
corresponding dµt (st, at) = 0, then the result (5) may fail to be meaningful (since less than infinity is
trivial). However, in fact for those entries it is legitimate to set the right hand side of (5) equal to 0.
The reason comes from our construction in (59) that when dµt (st, at) = 0, it must holds nst,at = 0,
so in this case z̃t(st, at) = P>(·|st, at)V in

t+1. Therefore, we keep writing in this fashion only for the
ease of illustration.
Lemma B.4. Let σ̃V in

t+1
be defined as (59) in Algorithm 1, i.e. the off-policy estimator of σV in

t+1
(st, at)

using m episodic data. Then with probability 1− δ, we have

∣∣∣σ̃V in
t+1
− σV in

t+1

∣∣∣ ≤ 6V 2
max

√
log(4HSA/δ)

m · dµt
+

4V 2
max log(4HSA/δ)

m · dµt
, ∀t = 1, ...,H. (6)

Proof. From the definition we have for fixed (st, at)

σ̃V in
t+1

(st, at)− σV in
t+1

(st, at) =

(
1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)2 − P>(·|st, at)(V in

t+1)2

)
1(Et)

+

[1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)

]2

−
[
P>(·|st, at)V in

t+1

]21(Et)

15

By using the same conditional on nst,at as in Lemma B.2, applying Hoeffding’s inequality and law
of total expectation, we obtain with probability 1− δ/2, the first term in above is bounded by(

1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)2 − P>(·|st, at)(V in

t+1)2

)
1(Et)

≤ V 2
max

√
2 log(4/δ)

nst,at
· 1(Et) ≤ 2V 2

max

√
log(4/δ)

m · dµt (st, at)
,

(7)

and similarly with probability 1− δ/2,(
1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)− P>(·|st, at)V in

t+1

)
1(Et) ≤ 2Vmax

√
log(4/δ)

m · dµt (st, at)
. (8)

Note for a, b, c > 0, if |a − b| ≤ c, then |a2 − b2| = |a − b| · |a + b| ≤ |a − b| · (|a| + |b|) ≤
|a− b| · (2|b|+ c) ≤ c · (2|b|+ c) = 2bc+ c2, therefore by (8) we have[1

nst,at

nst,at∑
i=1

V in
t+1(s

(i)
t+1|st, at)

]2

−
[
P>(·|st, at)V in

t+1

]21(Et)

≤4P>(·|st, at)V in
t+1 · Vmax

√
log(4/δ)

m · dµt (st, at)
+

4V 2
max log(4/δ)

m · dµt (st, at)

≤4V 2
max

√
log(4/δ)

m · dµt (st, at)
+

4V 2
max log(4/δ)

m · dµt (st, at)

(9)

where the last inequality comes from |P>(·|st, at)V in
t+1| ≤ ||P (·|st, at)||1||V in

t+1||∞ ≤ Vmax. Com-
bining (7), (9) and a union bound, we have with probability 1− δ,∣∣∣σ̃V in

t+1
(st, at)− σV in

t+1
(st, at)

∣∣∣ ≤ 6V 2
max

√
log(4/δ)

m · dµt (st, at)
+

4V 2
max log(4/δ)

m · dµt (st, at)
,

apply again the union bound over t, st, at gives the desired result.

Lemma B.5. Fix time t ∈ [H]. Let gt be the estimator in (60) in Algorithm 1. Then if ||Vt+1 −
V in
t+1||∞ ≤ 2uin, then with probability 1− δ/H ,

0 ≤ Pt[Vt+1 − V in
t+1]− gt ≤ 8uin

√
log(2HSA/δ)

ldµt

Proof. Recall gt, d
µ
t are vectors. By definition of gt(st, at), applying Hoeffding’s inequality we

obtain with probability 1− δ/H

gt(st, at) + f(st, at)− P>(·|st, at)[Vt+1 − V in
t+1]

=

 1

n′st,at

l∑
j=1

[
Vt+1(s

′(j)
t+1|st, at)− V in

t+1(s
′(j)
t+1|st, at)

]
− P>(·|st, at)[Vt+1 − V in

t+1]

 · 1(Et)

≤

(
||Vt+1 − V in

t+1||∞

√
2 log(2H/δ)

n′st,at

)
· 1(Et)

≤||Vt+1 − V in
t+1||∞

√
4 log(2H/δ)

l · dµt (st, at)

16

Now use assumption ||Vt+1−V in
t+1||∞ ≤ 2uin and a union bound over st, at, we have with probability

1− δ/H , ∣∣gt + f − P[Vt+1 − V in
t+1]

∣∣ ≤ 4uin

√
log(2HSA/δ)

ldµt
(10)

use f = 4uin
√

log(2HSA/δ)/ldµt , we obtain the stated result.

Remark B.6. The marginal state-action distribution dµt entails the hardness in off-policy setting.
If the current logging policy µ satisfies there exists some st, at such that dµt (st, at) is very small,
then learning the MDP using this off-policy data will be generically hard, unless dπ

∗

t (st, at) is also
relatively small for this st, at, see analysis in the following sections.

B.2 Iterative update analysis

The goal of iterative update is to obtain the recursive relation: Q?t −Qt ≤ Pπ
?

t [Q?t+1 −Qt+1] + ξt,
where Pπ

?

t ∈ RSA×SA is a matrix. We control the error propagation term ξt to be small enough.
Lemma B.7. Let Q? be the optimal Q-value satisfying Q?t = r + PtV ?t+1 and π? is one optimal
policy satisfying Assumption 2.1. Let π and Vt be the Return of inner loop in Algorithm 1, and recall
VH+1 = 0 ∈ RS , QH+1 = 0 ∈ RS×A. We have with probability 1− δ, for all t ∈ [H],

V in
t ≤ Vt ≤ TπtVt+1 ≤ V ?t , Qt ≤ r + PtVt+1, and Q?t −Qt ≤ Pπ

?

t [Q?t+1 −Qt+1] + ξt,

where

ξt ≤8uin

√
log(2HSA/δ)

ldµt
+

√
16 · σV ?t+1

· log(4HSA/δ)

m · dµt
+

√
16 · log(4HSA/δ)

m · dµt
· uin

+Vmax

[
8
√

6 ·
(

log(16HSA/δ)

m · dµt

)3/4

+
56 log(16HSA/δ)

3m · dµt

]
.

Here Pπ
?

∈ RS·A×S·A with Pπ
?

(st,at),(st+1,at+1) = dπ
?

(st+1, at+1|st, at).

Proof. Step1: For any a, b ≥ 0, we have the basic inequality
√
a+ b ≤

√
a +
√
b, and apply to

Lemma B.4 we have with probability 1− δ/4,√∣∣∣σ̃V in
t+1
− σV in

t+1

∣∣∣ ≤ Vmax·
(

36 log(16HSA/δ)

m · dµt

)1/4

+2Vmax·

√
log(16HSA/δ)

m · dµt
, ∀t = 1, ...,H.

(11)
Next, similarly for any a, b ≥ 0, we have

√
a ≤

√
|a− b|+

√
b, conditional on above then apply to

Lemma B.2 (with probability 1− δ/4) and we obtain with probability 1− δ/2,∣∣z̃t − PtV in
t+1

∣∣
≤

√
4 · σV in

t+1
· log(4HSA/δ)

m · dµt
+

4Vmax

3m · dµt
log(4HSA/δ)

≤

(√
σ̃V in

t+1
+

√∣∣∣σ̃V in
t+1
− σV in

t+1

∣∣∣)√4 · log(4HSA/δ)

m · dµt
+

4Vmax

3m · dµt
log(4HSA/δ)

=

√
4 · σ̃V in

t+1
· log(4HSA/δ)

m · dµt
+

(√∣∣∣σ̃V in
t+1
− σV in

t+1

∣∣∣)√4 · log(4HSA/δ)

m · dµt
+

4Vmax

3m · dµt
log(4HSA/δ)

≤

√
4 · σ̃V in

t+1
· log(4HSA/δ)

m · dµt
+ 2
√

6 · Vmax ·
(

log(16HSA/δ)

m · dµt

)3/4

+
16Vmax

3m · dµt
log(16HSA/δ).

Since e =
√

4 · σ̃V in
t+1
· log(4HSA/δ)/(m · dµt) + 2

√
6 · Vmax · (log(16HSA/δ)/(m · dµt))

3/4
+

16Vmax log(16HSA/δ)/(3m · dµt), from above we have

zt = z̃t − e ≤ PtV in
t+1, (12)

17

and
zt ≥ PtV in

t+1 − 2e. (13)

Next note √σ(·) is a norm, so by norm triangle inequality (for the second inequality) and
√
a ≤√

b+
√
|b− a| with (11) (for the first inequality) we have

√
σ̃V in

t+1
≤√σV in

t+1
+ Vmax

[(
36 log(16HSA/δ)

m · dµt

)1/4

+

√
4 log(16HSA/δ)

m · dµt

]

≤√σV ?t+1
+
√
σV ?t+1−V in

t+1
+ Vmax

[(
36 log(16HSA/δ)

m · dµt

)1/4

+

√
4 log(16HSA/δ)

m · dµt

]

≤√σV ?t+1
+
√

Pt(V ?t+1 − V in
t+1)2 + Vmax

[(
36 log(16HSA/δ)

m · dµt

)1/4

+

√
4 log(16HSA/δ)

m · dµt

]

≤√σV ?t+1
+ ||V ?t+1 − V in

t+1||∞ · 1 + Vmax

[(
36 log(16HSA/δ)

m · dµt

)1/4

+

√
4 log(16HSA/δ)

m · dµt

]

≤√σV ?t+1
+ uin · 1 + Vmax

[(
36 log(16HSA/δ)

m · dµt

)1/4

+

√
4 log(16HSA/δ)

m · dµt

]

Plug this back to (13) we get

zt ≥PtV in
t+1 −

√
16 · σV ?t+1

· log(4HSA/δ)

m · dµt
−

√
16 · log(4HSA/δ)

m · dµt
· uin

−Vmax

[
8
√

6 ·
(

log(16HSA/δ)

m · dµt

)3/4

+
56 log(16HSA/δ)

3m · dµt

]
.

(14)

To sum up, so far we have shown that (12), (14) hold with probability 1− δ/2 and we condition on
that.

Step2: Next we prove

Qt ≤ r + PtVt+1, V in
t ≤ Vt ≤ V ?t , ∀t ∈ [H] (15)

using backward induction.

First of all, V ?H+1 = VH+1 = V in
H+1 = 0 implies V ?H+1 ≤ VH+1 ≤ V in

H+1 and

QH = r + zH + gH = r + (0− e) + (0− f) ≤ r = r + P>H0 = r + P>HVH+1,

so the results hold for the base case.

Now for certain t, using induction assumption we can assume with probability at least 1− (H − t−
1)δ/H , for all t′ = t+ 1, ...,H ,

V in
t′ ≤ Vt′ ≤ V ?t′ , Qt′ ≤ r + Pt′Vt′+1. (16)

In particular, since V in
t+1 ≤ V ?t+1 ≤ V in

t+1 + uin1, so combine this and (16) for t′ = t+ 1 we get

V ?t+1 − Vt+1 ≤ V ?t+1 − V in
t+1 ≤ uin1.

By Lemma B.5, with probability 1− δ/H ,

Pt[Vt+1 − V in
t+1]− 8uin

√
log(2HSA/δ)

ldµt
≤ gt ≤ Pt[Vt+1 − V in

t+1]. (17)

By the right hand side of above and (12) we acquire with probability 1− (H − t)δ/H ,

Qt = r + zt + gt ≤ r + PtV in
t+1 + Pt[Vt+1 − V in

t+1] = r + PtVt+1 ≤ r + PtV ?t+1 = Q?t

18

where the second equality already gives the proof of the first part of claim (15) and the second
inequality is by induction assumption. Moreover, above Qt ≤ Q?t also implies VQt ≤ VQ?t = V ?t , so
together with Lemma B.1 (note V in

t ≤ Tπin
t
V in
t+1) we have

Vt = max(VQt , V
in
t) ≤ V ?t ,

this completes the proof of the second part of claim (15).

Step3: Next we prove Vt ≤ TπtVt+1.

For a particular st, on one hand, if πt(st) = argmaxat Qt(st, at), by Qt ≤ r + PtVt+1 we have in
this case:

Vt(st) = max
at

Qt(st, at) = Qt(st, πt(st)) ≤ r(st, πt(st))+P>(·|st, πt(st))Vt+1 = (TπtVt+1)(st),

where the first equal sign comes from the definition of Vt when VQt(st) ≥ V in
t (st) and the first

inequality is from Step2.

On the other hand, if πt(st) = πin(st), then

Vt(st) = V in
t (st) ≤ (Tπin

t
V in
t+1)(st) ≤ (Tπin

t
Vt+1)(st) = (TπtVt+1)(st)

where the first inequality is the property of input V in, πin and the second inequality is from Step2.

Step4: It remains to prove Q?t −Qt ≤ Pπ
?

t [Q?t+1 −Qt+1] + ξt. Indeed, using the construction of
Qt, we have

Q?t −Qt = Q?t − r − zt − gt = PtV ?t+1 − zt − gt
=PtV ?t+1 − Pt(Vt+1 − V in

t+1)− PtV in
t+1 + ξt = PtV ?t+1 − PtVt+1 + ξt,

(18)

where the second equation uses Bellman optimality equation and the third equation uses the definition
of ξt = Pt(Vt+1 − V in

t+1)− gt + PtV in
t+1 − zt. By (14) and (17),

ξt ≤8uin

√
log(2HSA/δ)

ldµt
+

√
16 · σV ?t+1

· log(4HSA/δ)

m · dµt
+

√
16 · log(4HSA/δ)

m · dµt
· uin

+Vmax

[
8
√

6 ·
(

log(16HSA/δ)

m · dµt

)3/4

+
56 log(16HSA/δ)

3m · dµt

]
.

Lastly, note PtV ?t+1 = Pπ
?

t Q?t+1 and by definition Vt+1 ≥ VQt+1
, so we have PtVt+1 ≥ PtVQt+1

=

P
πQt+1

t Qt+1 ≥ Pπ
?

t Qt+1, the last inequality holds true since πQt+1
is the greedy policy over Qt+1.

Threfore (18) becomes Q?t − Qt = PtV ?t+1 − PtVt+1 + ξt ≤ Pπ
?

t Q?t+1 − Pπ
?

t Qt+1 + ξt. This
completes the proof.

Lemma B.8. Suppose the input V in
t , t ∈ [H] of Algorithm 1 satisfies V in

t ≤ Tπin
t
V in
t+1 and V in

t ≤
V ?t ≤ V in

t + uin1. Let Vt, π be the return of inner loop of Algorithm 1 and choose m = l :=
m′ · log(16HSA)/(uin)2, where m′ is a parameter will be decided later. Then in addition to the
results of Lemma B.7, we have with probability 1− δ,

• if uin ∈ [
√
H,H], then:

0 ≤ V ?t − Vt ≤

≤
(

12H2

√
m′

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
4√
m′

∥∥∥∥∥
H∑
t′=t

dπ
?

t:t′

√
σV ?

t′+1

dµt′

∥∥∥∥∥
∞

+
8
√

6H
10
4

(m′)3/4

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
56H3

3m′

∥∥∥∥dπ
?

t:t′
1

dµt′

∥∥∥∥
∞,H

)
uin · 1.

19

• if uin ≤
√
H , then

0 ≤ V ?t − Vt ≤

≤
(

12
√
H3

√
m′

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
4√
m′

∥∥∥∥∥
H∑
t′=t

dπ
?

t:t′

√
σV ?

t′+1

dµt′

∥∥∥∥∥
∞

+
8
√

6H
9
4

(m′)3/4

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
56H

5
2

3m′

∥∥∥∥dπ
?

t:t′
1

dµt′

∥∥∥∥
∞,H

)
uin · 1.

where dπ
?

t:t′ ∈ RS·A×S·A is a matrix represents the multi-step transition from time t to t′, i.e.
dπ

?

(st,at),(st′ ,at′)
= dπ

?

t:t′(st′ , at′ |st, at) and recall 1/dµt′ is a vector. dπ
?

t:t′
1
dµ
t′

is a matrix-vector multi-

plication. For a vector dt ∈ RS×A, norm || · ||∞,H is defined as ||dt||∞,H = maxt,st,at dt(st, at).

Remark B.9. Note if uin ≥
√
H , the first term in Vt − V ?t requires sample m′ of order O(H4),

which is suboptimal. This is the main reason why we need the doubling procedure in Algorithm 2 to
keep the whole algorithm optimal.

Proof. By Lemma B.7, we have with probability 1− δ, for all t ∈ [H],

V in
t ≤ Vt ≤ TπtVt+1 ≤ V ?t , Qt ≤ r + PtVt+1, and Q?t −Qt ≤ Pπ

?

t [Q?t+1 −Qt+1] + ξt,

where

ξt ≤8uin

√
log(2HSA/δ)

ldµt
+

√
16 · σV ?t+1

· log(4HSA/δ)

m · dµt
+

√
16 · log(4HSA/δ)

m · dµt
· uin

+Vmax

[
8
√

6 ·
(

log(16HSA/δ)

m · dµt

)3/4

+
56 log(16HSA/δ)

3m · dµt

]
.

Applying the recursion repeatedly, we obtain

Q?t −Qt ≤
H∑
t′=t

t′−1∏
i=t

Pπ
?

i

 ξt′
Note

∏t′−1
i=t Pπ

?

i ∈ RS·A×S·A represents the multi-step transition from time t to t′, i.e.
(
∏t′−1
i=t Pπ

?

i)(st,at),(st′ ,at′)
= dπ

?

t:t′(st′ , at′ |st, at). Therefore

Q?t −Qt ≤
H∑
t′=t

t′−1∏
i=t

Pπ
?

i

 ξt′ =

H∑
t′=t

dπ
?

t:t′ξt′

≤
H∑
t′=t

dπ
?

t:t′

(
8uin

√
log(2HSA/δ)

ldµt′
+

√
16 · σV ?

t′+1
· log(4HSA/δ)

m · dµt′
+

√
16 · log(4HSA/δ)

m · dµt′
· uin

+Vmax

[
8
√

6 ·
(

log(16HSA/δ)

m · dµt′

)3/4

+
56 log(16HSA/δ)

3m · dµt′

])
(19)

Now by our choice of m := m′ · log(16HSA/δ)/(uin)2 and l := m′/H · log(16HSA/δ), then
(19) further less than

≤
H∑
t′=t

dπ
?

t:t′

8
√
H + 4uin√
m′dµt′

uin +

√
16 · σV ?

t′+1

m′ · dµt′
uin + Vmax

[
8
√

6 ·
(

(uin)2/3

m′ · dµt′

)3/4

+
56uin

3m′ · dµt′

]
· uin


(20)

20

Case1. If uin ≤
√
H , then (20) is less than

≤
H∑
t′=t

dπ
?

t:t′

 12
√
H√

m′dµt′
+

√
16 · σV ?

t′+1

m′ · dµt′
+ Vmax

[
8
√

6 ·
(
H1/3

m′ · dµt′

)3/4

+
56H1/2

3m′ · dµt′

]uin

≤
(

12
√
H3

√
m′

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
4√
m′

∥∥∥∥∥
H∑
t′=t

dπ
?

t:t′

√
σV ?

t′+1

dµt′

∥∥∥∥∥
∞

+
8
√

6H
9
4

(m′)3/4

∥∥∥∥∥dπ
?

t:t′

[
1

dµt′

] 3
4

∥∥∥∥∥
∞,H

+
56H

5
2

3m′

∥∥∥∥dπ
?

t:t′
1

dµt′

∥∥∥∥
∞,H

)
uin · 1.

(21)

Case2. If uin ≥
√
H , then (20) is less than

≤
H∑
t′=t

dπ
?

t:t′

 12H√
m′dµt′

+

√
16 · σV ?

t′+1

m′ · dµt′
+ Vmax

[
8
√

6 ·
(
H2/3

m′ · dµt′

)3/4

+
56H

3m′ · dµt′

]uin

≤
(

12H2

√
m′

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

+
4√
m′

∥∥∥∥∥
H∑
t′=t

dπ
?

t:t′

√
σV ?

t′+1

dµt′

∥∥∥∥∥
∞

+
8
√

6H
10
4

(m′)3/4

∥∥∥∥∥dπ
?

t:t′

[
1

dµt′

] 3
4

∥∥∥∥∥
∞,H

+
56H3

3m′

∥∥∥∥dπ
?

t:t′
1

dµt′

∥∥∥∥
∞,H

)
uin · 1.

(22)

B.3 The doubling procedure

Before we explain the doubling procedure, let us first finish the proof the Algorithm 1.

Lemma B.10. For convenience, define:

A 1
2

=

∥∥∥∥∥dπ
?

t:t′

√
1

dµt′

∥∥∥∥∥
∞,H

, A2 =

∥∥∥∥∥
H∑
t′=t

dπ
?

t:t′

√
σV ?

t′+1

dµt′

∥∥∥∥∥
∞

, A 3
4

=

∥∥∥∥∥dπ
?

t:t′

[
1

dµt′

] 3
4

∥∥∥∥∥
∞,H

, A1 =

∥∥∥∥dπ
?

t:t′
1

dµt′

∥∥∥∥
∞,H

.

Recall ε is the target accuracy in the outer loop of Algorithm 1. Then:

• If u(0) ≤
√
H , then choose m(i) = B log(16HSAK/δ)/(u(i−1))2 and l(i) =

B/H log(16HSAK/δ), where

B = max

[
962H3A2

1
2
, 322A2

2,
(

64
√

6A 3
4

) 4
3

H3,
448

3
H5/2A1

]
, K = log2(

√
H/ε),

• If u(0) >
√
H , then choose m(i) = B log(16HSAK/δ)/(u(i−1))2 and l(i) =

B/H log(16HSAK/δ), where

B = max

[
962H4A2

1
2
, 322A2

2,
(

64
√

6A 3
4

) 4
3

H
10
3 ,

448

3
H3A1

]
, K = log2(H/ε),

Then Algorithm 1 guarantees with probability 1 − δ, the output π(K) is a ε-optimal policy, i.e.
||V ?1 − V π

(K)

1 ||∞ < ε with total episode complexity:

2B log(16HSAK/δ)

ε2
K

for both cases. Moreover, B can be simplified as:

• If u(0) ≤
√
H ,then B ≤ cH3/dm;

21

• If u(0) >
√
H , then B ≤ cH4/dm.

Proof of Lemma B.10. Step1: proof in general. First, using induction it is easy to show for all
0 < a1, ..., an < 1, it follows

(1− a1) · (1− a2) · ... · (1− an) ≥ 1− (a1 + ...+ an).

and this directly implies (1 − δ
K)K ≥ 1 − δ. By the choice of m′ and K, for both situ-

ation by Lemma B.8 we always have ||V ?t − V π
(i)

t ||∞ < u(i−1)/2 = u(i) with probability
1 − δ/K (this is because we choose m(i) = l(i) = B log(16HSAK/δ)/(u(i−1))2 instead of
B log(16HSA/δ)/(u(i−1))2).

Therefore by chain rule of probability,

P
(
∀i ∈ [K], t ∈ [H], V ?t − V π

(i)

t ≤ u(i)
)

=

K∏
j=2

P
(
∀t ∈ [H], V ?t − V π

(j)

t ≤ u(j)
∣∣∣∀i ∈ [j − 1], t ∈ [H], V ?t − V π

(i)

t ≤ u(i)
)

×P
(
∀t ∈ [H], V ?1 − V π

(1)

1 ≤ u(1)
)

≥(1− δ

K
)K ≥ 1− δ.

In particular, in both situation6

∀t ∈ [H], V ?t − V π
(K)

t ≤ u(K) = u(0) · 2−K = ε,

with total number of budget to be

K∑
i=1

(m(i) +Hl(i)) =

K∑
i=1

B log(16HSAK/δ)

(u(i−1))2
+

K∑
i=1

Hl(i)

≤
K∑
i=1

B log(16HSAK/δ)

(u(0) · 2−K)2
+

K∑
i=1

Hl(i) =
B log(16HSAK/δ)

ε2
K +

K∑
i=1

Hl(i) ≤ 2
B log(16HSAK/δ)

ε2
K,

where the last step uses ε ≤ 1.

Step2: simplified expression for m′. Indeed,

dπ
?

t:t′

√
1

dµt′
≤ dπ

?

t:t′

√
1

dm
· 1 ≤

√
1

dm
||dπ

?

t:t′ ||1 · ||1||∞ · 1 =

√
1

dm
· 1⇒ A 1

2
≤
√

1

dm
;

dπ
?

t:t′

[
1

dµt′

] 3
4

≤ dπ
?

t:t′

[
1

dm

] 3
4

· 1 ≤
[

1

dm

] 3
4

||dπ
?

t:t′ ||1 · ||1||∞ · 1 =

[
1

dm

] 3
4

· 1⇒ A 3
4
≤
[

1

dm

] 3
4

;

dπ
?

t:t′
1

dµt′
≤ dπ

?

t:t′
1

dm
· 1 ≤ 1

dm
||dπ

?

t:t′ ||1 · ||1||∞ · 1 =
1

dm
· 1⇒ A1 ≤

1

dm
;

and

H∑
t′=t

∑
st′ ,at′

dπ
?

t:t′(st′ , at′ |st, at)

√
σV ?

t′+1
(st′ , at′)

dµt′(st′ , at′)

=

H∑
t′=t

∑
st′ ,at′

√
dπ

?

t:t′(st′ , at′ |st, at)

√
σV ?

t′+1
(st′ , at′)dπ

?

t:t′(st′ , at′ |st, at)
dµt′(st′ , at′)

6The last equal sign holds since if u(0) ≤
√
H (or u(0) ≤ H), you can always reset u(0) =

√
H (or

u(0) = H).

22

≤
√

1

dm

H∑
t′=t

∑
st′ ,at′

√
dπ

?

t:t′(st′ , at′ |st, at)
√
σV ?

t′+1
(st′ , at′)dπ

?

t:t′(st′ , at′ |st, at)

≤
↑

CS Ineq

√
1

dm

H∑
t′=t

√ ∑
st′ ,at′

dπ
?

t:t′(st′ , at′ |st, at)
∑
st′ ,at′

σV ?
t′+1

(st′ , at′)dπ
?

t:t′(st′ , at′ |st, at)

=

√
1

dm

H∑
t′=t

√
1 · Eπ?st′ ,at′

[
σV ?

t′+1
(st′ , at′)

∣∣∣st, at]

≤
↑

CS Ineq

√
1

dm

√√√√ H∑
t′=t

1 ·
H∑
t′=t

Eπ?st′ ,at′
[
σV ?

t′+1
(st′ , at′)

∣∣∣st, at]

≤
↑

lem G.5

√
1

dm

√√√√ H∑
t′=t

1 ·Varπ?

[
H∑
t′=t

rt′

∣∣∣∣∣st, at
]
≤

√
H3

dm
⇒ A2 ≤

√
H3

dm
,

Plug all these numbers back, we have the simplified bound for B.

Remark B.11. The Assumption 2.1 comes into picture for the validity of the bound for A2 since
when dπ

?

t:t′(s
′
t, a
′
t|st, at) > 0, by Assumption 2.1 we always have dµt′(s

′
t, a
′
t) > 0 so the bound will

never be the trivial +∞.
Corollary B.12. Note choose any m′ > B (in Lemma B.10) yields the similar complexity bound of

2m′ log(16HSAK/δ)

ε2
K,

therefore by the simplified bound ofB, we choosem′ = O(H4/dm) for stage1 andm′ = O(H3/dm)
for stage2.

The doubling procedure. As we can see in Lemma B.10, if the initial input V (0)
t in Algorithm 2

has supt ||V
(0)
t − V ?t ||∞ ≥

√
H (i.e. u(0) >

√
H), then it requires total of Õ(H4/dmε

2) episodes
to obtain ε accuracy, which is suboptimal. The doubling procedure helps resolve the problem.
Concretely, for any final accuracy 0 < ε ≤ 1:

• Stage1. Denote ε′ =
√
Hε and u(0) = H , then by the choice of K and m′H = cH4/dm

for the case of u(0) ≥
√
H in Lemma B.10, it outputs V intermediate

t , πintermediate which is ε′
optimal with complexity:

2m′H log(16HSAKε′/δ)

ε′2
Kε′

where Kε′ = log2(H/ε′);

• Stage2. Use V intermediate
t , πintermediate as input, since ε′ =

√
Hε ≤

√
H , we can set u(0) =√

H . Now by Lemma B.10 again (with m′√
H

= cH3/dm), Algorithm 2 has the final output
V final
t , πfinal that is ε optimal with complexity

2m′√
H

log(16HSAKε/δ)

ε2
Kε.

where Kε = log2(
√
H/ε).

Plug back ε′ =
√
Hε, Algorithm 2 guarantees ε-optimal policy with probability 1 − δ using total

complexity
2m′H log(16HSAKε′/δ)

ε′2
Kε′ +

2m′√
H

log(16HSAKε/δ)

ε2
Kε

≤
4 max[

m′H
H ,m′√

H
] log(16HSA log2(

√
H/ε)/δ)

ε2
log2(

√
H/ε)

≤O

(
H3 log(16HSA log2(

√
H/ε)/δ)

dmε2
log2(

√
H/ε)

) (23)

23

where the last inequality uses m′√
H
≤ cH3/dm and m′H ≤ cH4/dm in Lemma B.10 and above

holds with probability 1− δ .

This provides the minimax optimality of Õ(H3/dmε
2) for non-stationary setting.

B.4 Practical OPDVR

To go from non-implementable version to the practical version, the idea is to bound the event
{nst,at ≤ 1

2m · d
µ
t (st, at)} and {n′st,at ≤

1
2 l · d

µ
t (st, at)} so that with high probability, the non-

implementable version is identical to the practical OPDVR in Algorithm 2. Specifically, when
m′ ≥ 8H2/dm (this is satisfied since for each stage we set m′ to be at least O(H3/dm)), then

dm min
i
m(i) = dm min

i

m′ log(16KHSA/δ)

(u(i−1))2
≥ dm

m′ log(16KHSA/δ)

H2
≥ 8 log(16KHSA/δ),

so by Lemma G.2 and a union bound

P

 ⋃
i∈[K]

⋃
{t,st,at : dµt (st,at)>0}

{n(i)
st,at ≤

1

2
m(i) · dµt (st, at)} ∪ {n′(i)st,at ≤

1

2
l(i) · dµt (st, at)}


≤2P

 ⋃
i∈[K]

⋃
{t,st,at : dµt (st,at)>0}

{n(i)
st,at ≤

1

2
m(i) · dµt (st, at)}


≤2KHSA · max

{i,t,st,at : dµt (st,at)>0}
P
(
n(i)
st,at ≤

1

2
m(i) · dµt (st, at)

)
≤2KHSA · e−dm minim

(i)/8 ≤ 2KHSA

16KHSA/δ
= δ/8 < δ/4,

(24)
and repeat this analysis for both stages, we have with probability 1 − δ/2, Practical OPDVR is
identical to the non-implementable version.

B.5 Proof of Theorem 3.2

Proof. The proof consists of two parts. The first part is to use (23) to show OPDVR in Algorithm 2
outputs ε-optimal policy using episode complexity

2 max[
m′H
H ,m′√

H
] log(32HSA log2(

√
H/ε)/δ)

ε2
log2(

√
H/ε)

with probability 1− δ/2, and the second part is to use (24) to let Practical OPDVR is identical to the
non-implementable version with probability 1− δ/2. Apply a union bound of these two gives the
stated results in Theorem 3.2 with probability 1− δ.

C Proofs for finite-horizon stationary setting

Again, recall z̃t(s, a), σ̃V in
t+1

(s, a) (61) and gt (62) are three quantities deployed in Algorithm 1 that
use off-policy data D. We restate their definition as follows:

z̃t(s, a) =

{
P>(·|s, a)V in

t+1, if ns,a ≤ 1
2m ·

∑H
t=1 d

µ
t (s, a),

1
ns,a

∑m
i=1

∑H
u=1 V

in
t+1(s

(i)
u+1) · 1

[s
(i)
u =s,a

(i)
u =a]

, if ns,a >
1
2m ·

∑H
t=1 d

µ
t (s, a).

σ̃V in
t+1

(s, a) =

{
σV in

t+1
(s, a), if ns,a ≤ 1

2m ·
∑H
t=1 d

µ
t (s, a),

1
ns,a

∑m
i=1

∑H
u=1[V in

t+1(s
(i)
u+1)]2 · 1

[s
(i)
u =s,a

(i)
u =a]

− z̃2
t (s, a), otherwise.

gt(s, a) =

{
P>(·|s, a)[Vt+1 − V in

t+1]− f(s, a), if n′s,a ≤ 1
2 l ·
∑H
t=1 d

µ
t (s, a),

1
n′s,a

∑l
j=1

∑H
u=1[Vt+1(s

′(j)
u+1)− V in

t (s
′(j)
u+1)] · 1

[s
′(j)
u ,a

′(j)
u =s,a]

− f(s, a), o.w.

24

where

ns,a =

m∑
i=1

H∑
t=1

1[s
(i)
t = s, a

(i)
t = a], (25)

and recall f(s, a) = 4uin
√

log(2HSA/δ)/l
∑H
t=1 d

µ
t (s, a).

Lemma C.1. Let z̃t be defined as (61) in Algorithm 1, where z̃t is the off-policy estimator of
P>(·|s, a)V in

t+1 using m episodic data. Then with probability 1− δ, we have

∣∣z̃t − PtV in
t+1

∣∣ ≤

√√√√16 · σV in

t+1
· log(HSA/δ)

m
∑H
t=1 d

µ
t

+

√
16Vmax · log(2HSA/δ)

9m
∑H
t=1 d

µ
t

· log(HSA/δ)

 , ∀t ∈ [H]

(26)
here z̃t,PtV in

t+1, σV in
t+1
, dµt ∈ RS×A are S ×A column vectors and

√
· is elementwise operation.

Proof. Consdier fixed s, a. Let Es,a := {ns,a ≥ 1
2m ·

∑H
t=1 d

µ
t (s, a)}, then by definition,

z̃t(s, a)−P>(·|s, a)V in
t+1 =

(
1

ns,a

m∑
i=1

H∑
u=1

V in
t+1(s

(i)
u+1) · 1[s(i)

u = s, a(i)
u = a]− P>(·|s, a)V in

t+1

)
·1(Es,a).

First note by (25)

E[ns,a] =

m∑
i=1

H∑
t=1

E
[
1[s

(i)
t = s, a

(i)
t = a]

]
=

m∑
i=1

H∑
t=1

dµt (s, a) = m

H∑
t=1

dµt (s, a).

Next we conditional on ns,a. Define Fk := {s(i)
u , a

(i)
u }u∈[k]

i∈[m] is an increasing filtration and denote

X :=

m∑
i=1

H∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a],

then by tower property E[X|F(Y)] = E[E[X|F(Y, Z)]|F(Y)] (the fourth equal sign in below)

Xk :=E[X|Fk] = E

[
m∑
i=1

H∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

∣∣∣∣∣Fk
]

=

m∑
i=1

E

[
H∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

∣∣∣∣∣Fk
]

=

m∑
i=1

E

[
H∑
u=k

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

∣∣∣∣∣Fk
]

+

m∑
i=1

k−1∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

=

m∑
i=1

H∑
u=k

E
[
E
[(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

∣∣Fu]∣∣∣Fk]
+

m∑
i=1

k−1∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

=

m∑
i=1

H∑
u=k

E
[
1[s(i)

u = s, a(i)
u = a]E

[(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

) ∣∣s(i)
u , a(i)

u

]∣∣∣Fu]
+

m∑
i=1

k−1∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

25

Note if 1[s
(i)
u = s, a

(i)
u = a] = 1, then

1[s(i)
u = s, a(i)

u = a]E
[(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

) ∣∣s(i)
u , a(i)

u

]
=1 · E

[(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

) ∣∣s(i)
u = s, a(i)

u = a
]

=E
[
V in
t+1(s

(i)
u+1)

∣∣s(i)
u = s, a(i)

u = a
]
− P>(·|s, a)V in

t+1

=P>(·|s, a)V in
t+1 − P>(·|s, a)V in

t+1 = 0

if 1[s
(i)
u = s, a

(i)
u = a] = 0, then still

1[s(i)
u = s, a(i)

u = a]E
[(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

) ∣∣s(i)
u , a(i)

u

]
= 0

So plug back to obtain

Xk =

m∑
i=1

k−1∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a].

is a martingale.

First of all by Hoeffding’s inequality, we have the martingale difference satisfies with probability
1− δ/2,

|Xk+1 −Xk| =

∣∣∣∣∣
m∑
i=1

(
V in
t+1(s

(i)
k+1)− P>(·|s, a)V in

t+1

)
· 1[s

(i)
k = s, a

(i)
k = a]

∣∣∣∣∣
=

∣∣∣∣∣
nk,s,a∑
i=1

(
V in
t+1(s

(i)
k+1|s, a)− P>(·|s, a)V in

t+1

)∣∣∣∣∣
≤
√

2nk,s,a · Vmax log(2/δ) ≤
√

2ns,a · Vmax log(2/δ)

(27)

where we use shorthand notation V in
t+1(s

(i)
k+1|s, a) to denote the value of V in

k+1(s
(i)
k+1) given s(i)

k = s

and a(i)
k = a and nk,s,a =

∑m
i=1 1[s

(i)
k = s, a

(i)
k = a] ≤ ns,a.

Second,

Var [Xk+1|Fk] = Var

[
m∑
i=1

(
V in
t+1(s

(i)
k+1)− P>(·|s, a)V in

t+1

)
· 1[s

(i)
k = s, a

(i)
k = a]

∣∣∣∣∣Fk
]

=

m∑
i=1

Var
[(
V in
t+1(s

(i)
k+1)− P>(·|s, a)V in

t+1

)
· 1[s

(i)
k = s, a

(i)
k = a]

∣∣∣Fk]
=

m∑
i=1

Var
[(
V in
t+1(s

(i)
k+1)− P>(·|s, a)V in

t+1

)
· 1[s

(i)
k = s, a

(i)
k = a]

∣∣∣s(i)
k , a

(i)
k

]
=

m∑
i=1

1[s
(i)
k = s, a

(i)
k = a]Var

[
V in
t+1(s

(i)
k+1)

∣∣∣s(i)
k , a

(i)
k

]
=

m∑
i=1

1[s
(i)
k = s, a

(i)
k = a]Var

[
V in
t+1(s

(i)
k+1)

∣∣∣s(i)
k = s, a

(i)
k = a

]
=

m∑
i=1

1[s
(i)
k = s, a

(i)
k = a] · σV in

t+1
(s, a).

where the second equal sign uses episodes are independent, the third equal sign uses Markov property,
the fourth uses 1[s

(i)
k = s, a

(i)
k = a] is measurable w.r.t s(i)

k , a
(i)
k and P>(·|s, a)V in

t+1 is constant, the
fifth equal sign uses the identity

1[s
(i)
k = s, a

(i)
k = a]Var

[
V in
t+1(s

(i)
k+1)

∣∣∣s(i)
k , a

(i)
k

]
= 1[s

(i)
k = s, a

(i)
k = a]Var

[
V in
t+1(s

(i)
k+1)

∣∣∣s(i)
k = s, a

(i)
k = a

]
26

and sixth line is true since we have stationary transition, the underlying transition is always P (·|s, a)
regardless of time step. This is the key for further reducing the dependence on H and is NOT shared
by non-stationary transition setting!

Therefore finally,

H∑
k=1

Var [Xk+1|Fk] =

H∑
k=1

m∑
i=1

1[s
(i)
k = s, a

(i)
k = a] · σV in

t+1
(s, a) = ns,a · σV in

t+1
(s, a). (28)

Recall that s, a is fixed and we conditional on ns,a. Also note by tower property E[X] = 0. Therefore
by (27), (28) Freedman’s inequality (Lemma G.4) with probability7 1− δ

|X| =

∣∣∣∣∣
m∑
i=1

H∑
u=1

(
V in
t+1(s

(i)
u+1)− P>(·|s, a)V in

t+1

)
· 1[s(i)

u = s, a(i)
u = a]

∣∣∣∣∣
≤
√

8ns,a · σV in
t+1

(s, a) · log(1/δ) +
2
√

2ns,a · Vmax log(2/δ)

3
· log(1/δ).

which means with probability at least 1− δ∣∣z̃t(s, a)− P>(·|s, a)V in
t+1

∣∣
=

∣∣∣∣ Xns,a
∣∣∣∣ · 1(Es,a)

≤


√

8ns,a · σV in
t+1

(s, a) · log(1/δ) +
2
√

2ns,a·Vmax log(2/δ)

3 · log(1/δ)

ns,a

 · 1(Es,a)

=

√8 · σV in
t+1

(s, a) · log(1/δ)

ns,a
+

√
8 · Vmax

9ns,a
· log(2/δ) · log(1/δ)

 · 1(Es,a)

≤


√√√√16 · σV in

t+1
(s, a) · log(1/δ)

m
∑H
t=1 d

µ
t (s, a)

+

√
16Vmax · log(2/δ)

9m
∑H
t=1 d

µ
t (s, a)

· log(1/δ)



Now we get rid of the conditional on nst,at . Denote

A =

∣∣z̃t(s, a)− P>(·|s, a)V in
t+1

∣∣ ≤

√√√√16 · σV in

t+1
(s, a) · log(1/δ)

m
∑H
t=1 d

µ
t (s, a)

+

√
16Vmax · log(2/δ)

9m
∑H
t=1 d

µ
t (s, a)

· log(1/δ)

 ,

then equivalently we can rewrite above result as P(A|ns,a) ≥ 1 − δ. Note this is the same as
E[1(A)|ns,a] ≥ 1− δ, therefore by law of total expectation we have

P(A) = E[1(A)] = E[E[1(A)|ns,a]] ≥ E[1− δ] = 1− δ,

Finally, apply the union bound over all t, s, a, we obtain

∣∣z̃t − PtV in
t+1

∣∣ ≤

√√√√16 · σV in

t+1
· log(HSA/δ)

m
∑H
t=1 d

µ
t

+

√
16Vmax · log(2HSA/δ)

9m
∑H
t=1 d

µ
t

· log(HSA/δ)

 ,

where the inequality is element-wise and this is (5).
7To be mathematically rigorous, the difference bound is not with probability 1 but in the high probability

sense. Therefore essentially we are using a weaker version of freedman’s inequality that with high probability
bounded difference, e.g. see Chung and Lu [2006] Theorem 34,37. We do not present our result by explicitly
writing in that way in order to prevent over-technicality and make the readers easier to understand.

27

Lemma C.2. Let σ̃V in
t+1

be defined as (61) in Algorithm 1, the off-policy estimator of σV in
t+1

(s, a)

using m episodic data. Then with probability 1− δ, we have

∣∣∣σ̃V in
t+1
− σV in

t+1

∣∣∣ ≤ 6V 2
max

√
log(4HSA/δ)

m ·
∑H
t=1 d

µ
t

+
4V 2

max log(4HSA/δ)

m ·
∑H
t=1 d

µ
t

, ∀t = 1, ...,H. (29)

Proof. From the definition we have for fixed (s, a)

σ̃V in
t+1

(s, a)− σV in
t+1

(s, a)

=

(
1

ns,a

m∑
i=1

H∑
u=1

[
V in
t+1(s

(i)
u+1)2 − P>(·|s, a)(V in

t+1)2
]
1[s(i)

u = s, a(i) = a]

)
1(Es,a)

+

[1

ns,a

m∑
i=1

H∑
u=1

V in
t+1(s

(i)
u+1)1[s(i)

u = s, a(i) = a]

]2

−
[
P>(·|s, a)V in

t+1

]21(Es,a)

Now we conditional on ns,a. The key point is we can regroup m episodic data into mH data pieces,
in order. (This is valid since within each episode data is generated by time and between different
episodes are independent, so we can concatenate one episode after another and end up with mH
pieces that comes in sequentially.) This key reformulation allows us to apply Azuma Hoeffding’s
inequality and obtain with probability 1− δ/2,(

1

ns,a

m∑
i=1

H∑
u=1

[
V in
t+1(s

(i)
u+1)2 − P>(·|s, a)(V in

t+1)2
]
1[s(i)

u = s, a(i)
u = a]

)
1(Es,a)

=

(
1

ns,a

ns,a∑
u′=1

[
V in
t+1(s

(i)
u′+1)2 − P>(·|s, a)(V in

t+1)2
]
1[s

(i)
u′ = s, a

(i)
u′ = a]

)
1(Es,a)

≤V 2
max

√
2 log(4/δ)

ns,a
· 1(Es,a) ≤ 2V 2

max

√
log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

,

(30)

where the first equal sign comes from the reformulation trick and the first inequality is by Xk :=∑k
u′=1

[
V in
t+1(s

(i)
u′+1)2 − P>(·|st, at)(V in

t+1)2
]
1[s

(i)
u′ = s, a

(i)
u′ = a] is martingale. Similarly with

probability 1− δ/2,(
1

ns,a

nst,at∑
u′=1

V in
t+1(s

(i)
u′+1|s, a)− P>(·|s, a)V in

t+1

)
1(Es,a) ≤ 2Vmax

√
log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

. (31)

Note for a, b, c > 0, if |a − b| ≤ c, then |a2 − b2| = |a − b| · |a + b| ≤ |a − b| · (|a| + |b|) ≤
|a− b| · (2|b|+ c) ≤ c · (2|b|+ c) = 2bc+ c2, therefore by (31) we have[1

ns,a

ns,a∑
u′=1

V in
t+1(s

(i)
u′+1|s, a)

]2

−
[
P>(·|s, a)V in

t+1

]21(Es,a)

≤4P>(·|s, a)V in
t+1 · Vmax

√
log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

+
4V 2

max log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

≤4V 2
max

√
log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

+
4V 2

max log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

(32)

where the last inequality comes from |P>(·|s, a)V in
t+1| ≤ ||P (·|s, a)||1||V in

t+1||∞ ≤ Vmax. Combin-
ing (30), (32) and a union bound, we have with probability 1− δ,∣∣∣σ̃V in

t+1
(s, a)− σV in

t+1
(s, a)

∣∣∣ ≤ 6V 2
max

√
log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

+
4V 2

max log(4/δ)

m ·
∑H
t=1 d

µ
t (s, a)

,

28

apply again the union bound over t, s, a gives the desired result.

Lemma C.3. Fix time t ∈ [H]. Let gt be the estimator in (60) in Algorithm 1. Then if ||Vt+1 −
V in
t+1||∞ ≤ 2uin, then with probability 1− δ/H ,

0 ≤ P[Vt+1 − V in
t+1]− gt ≤ 8uin

√
log(2HSA/δ)

l
∑H
t=1 d

µ
t

Proof. Recall gt, d
µ
t are vectors. By definition of gt(s, a), use similar regrouping trick and apply

Azuma Hoeffding’s inequality we obtain with probability 1− δ/H

gt(s, a) + f(s, a)− P>(·|s, a)[Vt+1 − V in
t+1]

=

 1

n′s,a

n′s,a∑
u′=1

[
Vt+1(s

′(j)
u′+1|s, a)− V in

t+1(s
′(j)
u′+1|s, a)

]
− P>(·|s, a)[Vt+1 − V in

t+1]

 · 1(Et)

≤

(
||Vt+1 − V in

t+1||∞

√
2 log(2H/δ)

n′s,a

)
· 1(Et)

≤||Vt+1 − V in
t+1||∞

√
4 log(2H/δ)

l ·
∑H
t=1 d

µ
t (s, a)

Now use assumption ||Vt+1 − V in
t+1||∞ ≤ 2uin and a union bound over s, a, we have with probability

1− δ/H , ∣∣∣gt + f − P[Vt+1 − V (0)
t+1]

∣∣∣ ≤ 4uin

√
log(2HSA/δ)

l
∑H
t=1 d

µ
t

(33)

use f = 4uin
√

log(2HSA/δ)/l
∑H
t=1 d

µ
t , we obtain the stated result.

Proof of Theorem 4.1 Note that Lemma C.1,C.2,C.3 updates Lemma B.2,B.4,B.5 by replacing dµt
with

∑H
t=1 d

µ
t and keeping the rest the same except the second order term

√
16Vmax·log(2HSA/δ)

9m
∑H
t=1 d

µ
t

·
log(HSA/δ) in Lemma C.1 is different from Lemma C.1. However, this is still lower order term
since it is of order Õ(

√
H

m
∑H
t=1 d

µ
t

). To avoid redundant reasoning, by following the identical logic

as Section B.2 we have a similar expression of (14) as follows:

zt ≥ PV in
t+1 −

√
16 · σV ?t+1

· log(4HSA/δ)

m ·
∑H
t=1 d

µ
t

−
√

16 · log(4HSA/δ)

m ·
∑H
t=1 d

µ
t

· uin

− Vmax

8
√

6 ·

(
log(16HSA/δ)

m ·
∑H
t=1 d

µ
t

)3/4

+
56 log(16HSA/δ)

3m ·
∑H
t=1 d

µ
t

− c√Vmax · log(16HSA/δ)

m ·
∑H
t=1 d

µ
t

log(HSA/δ).

(34)
where the last term is additional. However, note when uin ≤

√
H , then√

16 · log(4HSA/δ)

m ·
∑H
t=1 d

µ
t

·uin ≤ Õ

(√
H

m
∑H
t=1 d

µ
t

)
, c

√
Vmax · log(16HSA/δ)

m ·
∑H
t=1 d

µ
t

≤ Õ

(√
H

m
∑H
t=1 d

µ
t

)

so the last term c
√

Vmax·log(16HSA/δ)

m·
∑H
t=1 d

µ
t

can be assimilated by previous one. If uin >
√
H , it is of even

lower order. Therefore following the same reasoning we can complete the proof for Algorithm 1.

From non-implementable version to the practical version, we need to bound the event of {ns,a ≤
1
2m ·

∑H
t=1 d

µ
t (s, a)}, where ns,a =

∑m
i=1

∑H
t=1 1[s

(i)
t = s, a

(i)
t = a]. In this case, ns,a is no longer

29

binomial random variable so Lemma G.2 cannot be applied. However, the trick we use for resolving
this issue is the following decomposition{

ns,a ≤
1

2
m ·

H∑
t=1

dµt (s, a)

}
⊂

H⋃
t=1

{
nt,s,a ≤

1

2
mdµt (s, a)

}
,

where ns,a =
∑H
t=1 nt,s,a and nt,s,a =

∑m
i=1 1[s

(i)
t = s, a

(i)
t = a] are binomial random variables.

Lemma G.2 can then be used together with union bounds to finish the proof.

D Proofs for infinite-horizon discounted setting

First recall data D = {s(i), a(i), r(i), s′(i)}i∈[n] are i.i.d off-policy pieces with (s(i), a(i)) ∼ dµ and
s′(i) ∼ P (·|s(i), a(i)). Moreover, dµ is defined as:

dµ(s) = (1− γ)

∞∑
t=0

γtP[st = s|s0 ∼ d0, µ], dµ(s, a) = dµ(s)µ(a|s).

The corresponding estimators in Algorithm 3 are defined as:

z̃(s, a) =

{
P>(·|s, a)V in, if ns,a ≤ 1

2m · d
µ(s, a),

1
ns,a

∑m
i=1 V

in(s′(i)) · 1[s(i)=s,a(i)=a], if ns,a >
1
2m · d

µ(s, a).

σ̃V in(s, a) =

{
σV in(s, a), if ns,a ≤ 1

2m · d
µ(s, a),

1
ns,a

∑m
i=1[V in(s′(i))]2 · 1[s(i)=s,a(i)=a] − z̃2(s, a), otherwise.

(35)

where ns,a :=
∑n
i=1 1[s(i) = s, a(i) = a] is the number of samples start at (s, a). Similarly,

P>(·|s, a)[V − V in] is later updated using different l episodes (n′s,a is the number count from l
episodes):

g(i)(s, a) =

{
P>(·|s, a)[V (i) − V in]− f(s, a), if n′s,a ≤ 1

2 l · d
µ(s, a),

1
n′s,a

∑l
j=1[V (i)(s′(j))− V in(s′(j))] · 1[s′(j),a′(j)=s,a] − f(s, a), o.w.

(36)

where f = 4uin
√

log(2RSA/δ)/ldµ and R = ln(4/uin(1− γ)).
Lemma D.1. Suppose V and π is any value and policy satisfy V ≤ TπV . Then it holds V ≤ V π ≤
V ?.

Proof. This is similar to Lemma B.1 and the key is to use Bellman equation V π = TπV π .

Lemma D.2. Let z̃ be defined as (35) in Algorithm 3, where z̃ is the off-policy estimator of
P>(·|s, a)V in using m episodic data. Then with probability 1− δ, we have

∣∣z̃ − PV in
∣∣ ≤√4 · σV in · log(SA/δ)

m · dµ
+

4Vmax

3m · dµ
log(SA/δ). (37)

here z̃,PV in, σV in , dµ ∈ RS×A are S ×A column vectors and
√
· is elementwise operation.

Proof. First fix s, a. Let Es,a := {ns,a ≥ 1
2m · d

µ(s, a)}, then by definition,

z̃(s, a)−P>(·|s, a)V in
t+1 =

(
1

ns,a

m∑
i=1

V in(s′(i)) · 1[s(i) = s, a(i) = a]− P>(·|s, a)V in

)
·1(Es,a).

Next we conditional on ns,a. Then from above expression and Bernstein inequality G.3 we have with
probability at least 1− δ∣∣z̃(s, a)− P>(·|s, a)V in

∣∣
=

∣∣∣∣∣ 1

ns,a

ns,a∑
i=1

V in(s′(i)|s, a)− P>(·|s, a)V in

∣∣∣∣∣ · 1(Es,a)

30

Algorithm 3 OPVRT: A Prototypical Off-Policy Variance Reduction Template (∞-horizon)
1: Functional input: Integer valued function m : R+ → N. Off-policy estimator zt,gt in function forms that

provides lower confidence bounds (LCB) of the two terms in the bootstrapped value function (2).
2: Static input: Initial value function V (0) and π(0) (which satisfy V (0) ≤ Tπ(0)V (0)). A scalar u(0) satisfies
u(0) ≥ ||V ? − V (0)||∞. Outer loop iterations K. Offline dataset D = {s(i), a(i), r(i), s′(i)}ni=1 from the
behavior policy µ as a data-stream where n ≥

∑K
i=1(1 +R) ·m(u(0) · 2−(i−1)).

3: ——————INNER LOOP ———————
4: function QVI-VR-INF (D1, [D(i)

2]Ki=1, V in
t , π

in, zt,gt, u
in)

5: � Computing reference with D1:
6: Initialize Q(0) ← 0 ∈ RS×A and V (0) = Vin.
7: for each pair (s, a) ∈ S ×A do
8: � Compute an LCB of P>(·|s, a)V in:
9: z ← z(D1, V

in, uin)
10: end for
11: � Value Iterations with D2:
12: for i = 1, ..., R do
13: � Update value function: V (i) = max(VQ(i−1) , V in),
14: � Update policy according to value function:
15: ∀s, if V (i)(s) = V (i−1)(s) set π(s) = πin(s); else set π(s) = πQ(i−1)(s).
16: if t ≥ 1 then
17: � LCB of P>(·|st−1, at−1)[Vt − V in

t]:
18: g(i) ← g(D(i)

2 , V (i), V in, uin).
19: � Update Q function: Q(i) ← r + γz + γg(i)

20: end if
21: end for
22: Return: V (R) and π(R).
23: end function
24: ——————OUTER LOOP ———————
25: for j = 1, ...,K do
26: m(j) →m(u(j−1))

27: Get D1 and D(i)
2 for i = 1, ...,K each with size m(j) from the stream D.

28: V (j), π(j) ←QVI-VR-INF(D1, [D(i)
2]Ki=1, V

(i−1), π(i−1), z,g, u(i−1)).
29: u(j) ← u(j−1)/2.
30: end for
31: Output: V (K), π(K)

Algorithm 4 OPDVR: Off-Policy Doubled Variance Reduction (∞-horizon)
input Offline Dataset D of size n as a stream. Target accuracy ε, δ such that the algorithm does not use up D.
input Estimators z,g in function forms, m′1,m′2,K1,K2.
1: � Stage 1. coarse learning: a “warm-up” procedure
2: Set initial values V (0) := 0 and any policy π(0).
3: Set initial u(0) := (1− γ)−1.
4: Set m(u) = m′1 log(16(1− γ)−1RSA)/u2.
5: Run Algorithm 3 with m, z,g, V (0), π(0), u(0),K1,D and return V intermediate, πintermediate.
6: � Stage 2. fine learning: reduce error to given accuracy
7: Reset initial values V (0) := V intermediate and policy π(0) := πintermediate. Set u(0) :=

√
(1− γ)−1.

8: Reset m(u) by replacing m′1 with m′2, K1 with K2.
9: Run Algorithm 3 with m, z,g, V

(0)
t , π(0), u(0),K2,D and return V final

t , πfinal.
output V final

t , πfinal

≤

(√
2 · σV in(s, a) · log(1/δ)

ns,a
+

2Vmax

3ns,a
log(1/δ)

)
· 1(Es,a)

≤

√
4 · σV in(s, a) · log(1/δ)

m · dµ(s, a)
+

4Vmax

3m · dµ(s, a)
log(1/δ)

where again notation V in(s′(i)|s, a) denotes the value of V in(s′(i)) given s(i) = s and a(i) = a.
The condition V in ≤ Vmax is guaranteed by Lemma B.1. Now we get rid of the conditional

31

on ns,a. Denote A = {z̃(s, a) − P>(·|s, a)V in ≤
√

4 · σV in(s, a) · log(1/δ)/m · dµ(s, a) +
4Vmax

3m·dµ(s,a) log(1/δ)}, then equivalently we can rewrite above result as P(A|ns,a) ≥ 1− δ. Note this
is the same as E[1(A)|ns,a] ≥ 1− δ, therefore by law of total expectation we have

P(A) = E[1(A)] = E[E[1(A)|ns,a]] ≥ E[1− δ] = 1− δ,

i.e. for fixed (s, a) we have with probability at least 1− δ,

∣∣z̃(s, a)− P>(·|s, a)V in
∣∣ ≤√4 · σV in(s, a) · log(1/δ)

m · dµ(s, a)
+

4Vmax

3m · dµ(s, a)
log(1/δ)

Apply the union bound over all s, a, we obtain∣∣z̃ − PV in
∣∣ ≤√4 · σV in · log(SA/δ)

m · dµ
+

4Vmax

3m · dµ
log(SA/δ),

where the inequality is element-wise and this is (37).

Lemma D.3. Let σ̃V in be defined as (35) in Algorithm 3, the off-policy estimator of σV in(s, a) using
m episodic data. Then with probability 1− δ, we have

|σ̃V in − σV in | ≤ 6V 2
max

√
log(4SA/δ)

m · dµ
+

4V 2
max log(4SA/δ)

m · dµ
. (38)

Proof. From the definition we have for fixed (s, a)

σ̃V in(s, a)− σV in(s, a) =

(
1

ns,a

ns,a∑
i=1

V in(s′(i)|s, a)2 − P>(·|s, a)(V in)2

)
1(Es,a)

+

[1

ns,a

ns,a∑
i=1

V in(s′(i)|s, a)

]2

−
[
P>(·|s, a)V in]21(Es,a)

By using the same conditional on ns,a as in Lemma D.2, applying Hoeffding’s inequality and law of
total expectation, we obtain with probability 1− δ/2,(

1

ns,a

ns,a∑
i=1

V in(s′(i)|s, a)2 − P>(·|s, a)(V in)2

)
1(Es,a)

≤ V 2
max

√
2 log(4/δ)

ns,a
· 1(Es,a) ≤ 2V 2

max

√
log(4/δ)

m · dµ(s, a)
,

(39)

and similarly with probability 1− δ/2,(
1

ns,a

ns,a∑
i=1

V in(s′(i)|s, a)− P>(·|s, a)V in

)
1(Es,a) ≤ 2Vmax

√
log(4/δ)

m · dµ(s, a)
. (40)

Again note for a, b, c > 0, if |a− b| ≤ c, then |a2 − b2| = |a− b| · |a+ b| ≤ |a− b| · (|a|+ |b|) ≤
|a− b| · (2|b|+ c) ≤ c · (2|b|+ c) = 2bc+ c2, therefore by (40) we have[1

ns,a

ns,a∑
i=1

V in(s(i)|s, a)

]2

−
[
P>(·|s, a)V in]21(Es,a)

≤4P>(·|s, a)V in · Vmax

√
log(4/δ)

m · dµ(s, a)
+

4V 2
max log(4/δ)

m · dµ(s, a)

≤4V 2
max

√
log(4/δ)

m · dµ(s, a)
+

4V 2
max log(4/δ)

m · dµ(s, a)

(41)

32

where the last inequality comes from |P>(·|s, a)V in| ≤ ||P (·|s, a)||1||V in||∞ ≤ Vmax. Combining
(39), (41) and a union bound, we have with probability 1− δ,

|σ̃V in(s, a)− σV in(s, a)| ≤ 6V 2
max

√
log(4/δ)

m · dµ(s, a)
+

4V 2
max log(4/δ)

m · dµ(s, a)
,

apply again the union bound over s, a gives the desired result.

Lemma D.4. Fix i ∈ [R]. Let g(i) be the estimator in (36) in Algorithm 3. Then if ||V (i)−V in||∞ ≤
2uin, then with probability 1− δ/R,

0 ≤ P[V (i) − V in]− g(i) ≤ 8uin

√
log(2RSA/δ)

ldµ

Proof. Recall g(i), dµ are vectors. By definition of g(i)(s, a), applying Hoeffding’s inequality we
obtain with probability 1− δ/R,

g(i)(s, a) + f(s, a)− P>(·|s, a)[V (i) − V in]

=

 1

n′s,a

l∑
j=1

[
V (i)(s′(j)|s, a)− V in(s′(j)|s, a)

]
− P>(·|s, a)[V (i) − V in]

 · 1(Es,a)

≤

(
||V (i) − V in||∞

√
2 log(2R/δ)

n′s,a

)
· 1(Es,a)

≤||V (i) − V in||∞

√
4 log(2R/δ)

l · dµ(s, a)

Now use assumption ||V (i) − V in||∞ ≤ 2uin and a union bound over s, a, we have with probability
1− δ/R, ∣∣∣g(i) + f − P[V (i) − V in]

∣∣∣ ≤ 4uin

√
log(2RSA/δ)

ldµ
(42)

use f = 4uin
√

log(2RSA/δ)/ldµ, we obtain the stated result.

D.1 Iterative update analysis for infinite horizon discounted setting

The goal of iterative update is to obtain the recursive relation: Q? −Q(i) ≤ γPπ
?

[Q? −Q(i−1)] + ξ.
Lemma D.5. Let Q? be the optimal Q-value satisfying Q? = r+γPV ? and π? is one optimal policy
satisfying Assumption 2.1. Let π and Vt be the Return of inner loop in Algorithm 3. We have with
probability 1− δ, for all i ∈ [R],

V in ≤ V (i) ≤ Tπ(i)V (i) ≤ V ?, Q(i) ≤ r + γPV (i), and Q? −Q(i) ≤ γPπ
?

[Q? −Q(i−1)] + ξ,

where

ξ ≤8uin

√
log(2RSA/δ)

ldµ
+

√
16 · σV ? · log(4SA/δ)

m · dµ
+

√
16 · log(4SA/δ)

m · dµ
· uin

+Vmax

[
8
√

6 ·
(

log(16SA/δ)

m · dµ

)3/4

+
56 log(16SA/δ)

3m · dµ

]
.

Here Pπ
?

∈ RS·A×S·A with Pπ
?

(s,a),(s′,a′) = dπ
?

(s′, a′|s, a).

Proof. Step1: For any a, b ≥ 0, we have the basic inequality
√
a+ b ≤

√
a +
√
b, and apply to

Lemma D.3 we have with probability 1− δ/4,√
|σ̃V in − σV in | ≤ Vmax ·

(
36 log(16SA/δ)

m · dµ

)1/4

+ 2Vmax ·
√

log(16SA/δ)

m · dµ
. (43)

33

Next, similarly for any a, b ≥ 0, we have
√
a ≤

√
|a− b|+

√
b, conditional on above then apply to

Lemma D.2 (with probability 1− δ/4) and we obtain with probability 1− δ/2,∣∣z̃ − PV in
∣∣

≤
√

4 · σV in · log(4SA/δ)

m · dµ
+

4Vmax

3m · dµ
log(4SA/δ)

≤
(√

σ̃V in +
√
|σ̃V in − σV in |

)√4 · log(4SA/δ)

m · dµ
+

4Vmax

3m · dµ
log(4SA/δ)

=

√
4 · σ̃V in · log(4SA/δ)

m · dµ
+
(√
|σ̃V in − σV in |

)√4 · log(4SA/δ)

m · dµ
+

4Vmax

3m · dµ
log(4SA/δ)

≤
√

4 · σ̃V in · log(4SA/δ)

m · dµ
+ 2
√

6 · Vmax ·
(

log(16SA/δ)

m · dµ

)3/4

+
16Vmax

3m · dµ
log(16SA/δ).

Since e =
√

4 · σ̃V in · log(4SA/δ)/(m · dµ) + 2
√

6 · Vmax · (log(16SA/δ)/(m · dµ))
3/4

+
16Vmax log(16SA/δ)/(3m · dµ), from above we have

z = z̃ − e ≤ PV in, (44)

and
z ≥ PV in − 2e. (45)

Next note √σ(·) is a norm, so by norm triangle inequality (for the second inequality) and
√
a ≤√

b+
√
|b− a| with (43) (for the first inequality) we have

√
σ̃V in ≤√σV in + Vmax

[(
36 log(16SA/δ)

m · dµ

)1/4

+

√
4 log(16SA/δ)

m · dµ

]

≤
√
σV ? +

√
σV ?−V in + Vmax

[(
36 log(16SA/δ)

m · dµ

)1/4

+

√
4 log(16SA/δ)

m · dµ

]

≤
√
σV ? +

√
P(V ? − V in)2 + Vmax

[(
36 log(16SA/δ)

m · dµ

)1/4

+

√
4 log(16SA/δ)

m · dµ

]

≤
√
σV ? + ||V ? − V in||∞ · 1 + Vmax

[(
36 log(16SA/δ)

m · dµ

)1/4

+

√
4 log(16SA/δ)

m · dµ

]

≤
√
σV ? + uin · 1 + Vmax

[(
36 log(16SA/δ)

m · dµ

)1/4

+

√
4 log(16SA/δ)

m · dµ

]

Plug this back to (45) we get

z ≥PV in −
√

16 · σV ? · log(4SA/δ)

m · dµ
−
√

16 · log(4SA/δ)

m · dµ
· uin

−Vmax

[
8
√

6 ·
(

log(16SA/δ)

m · dµ

)3/4

+
56 log(16SA/δ)

3m · dµ

]
.

(46)

To sum up, so far we have shown that (44), (46) hold with probability 1− δ/2 and we condition on
that.

Step2: Next we prove

Q(i) ≤ r + γPV (i), V in ≤ V (i) ≤ V ?, ∀i ∈ [R] (47)

using backward induction.

First of all, V (0) = V in implies V in ≤ V (0) ≤ V ? and Q(0) := 0 ≤ r + γPV (0) so the results hold
for the base case.

34

Now for certain i, using induction assumption we can assume with probability at least 1− (i−1)δ/R,
for all i′ = 0, ..., i− 1,

Q(i′) ≤ r + γPV (i′) V in ≤ V (i′) ≤ V ? (48)

In particular, since V in ≤ V ? ≤ V in + uin1, so combine this and (48) for i′ = i− 1 we get

V ? − V (i−1) ≤ V ? − V in ≤ u1.
By Lemma D.4, with probability 1− δ/R,

P[V (i) − V in]− 8uin

√
log(2RSA/δ)

ldµ
≤ g(i) ≤ P[V (i) − V in]. (49)

By the right hand side of this and (44) we acquire with probability 1− iδ/R,

Q(i) = r + γz + γg(i) ≤ r + γPV in + γP[V (i) − V in] = r + γPV (i)

where the second equality already gives the proof of the first part of claim (47). Moreover, by
induction assumption V (i−1) ≤ V ? we have

Q(i−1) ≤ r + γPV (i−1) ≤ r + γPV ? = Q?,

which implies VQ(i−1) ≤ VQ? = V ?, therefore we have

V (i) = max(VQ(i−1) , V (i−1)) ≤ V ?t ,
this completes the proof of the second part of claim (47).

Step3: Next we prove V (i) ≤ Tπ(i)V (i).

For a particular s, on one hand, if π(i)(s) = argmaxaQ
(i−1)(s, a), by Q(i−1) ≤ r + γPV (i−1) we

have in this case:

V (i)(s) = max
a

Q(i−1)(s, a) = Q(i−1)(s, π(i)(s)) ≤ r(s, π(i)(s)) + γP>(·|s, π(i)(s))V (i−1)

≤r(s, π(i)(s)) + γP>(·|s, π(i)(s))V (i) = (Tπ(i)V (i))(s),

where the first equal sign comes from the definition of V (i) when VQ(i−1)(s) ≥ V in(s) and the first
inequality is from Step2.

On the other hand, if π(i)(s) = π(i−1)(s), then

V (i)(s) = V (i−1)(s) ≤ (Tπ(i−1)V (i−1))(s) ≤ (Tπ(i−1)V (i))(s) = (Tπ(i)V (i))(s).

Step4: It remains to check Q? −Q(i) ≤ γPπ
?

[Q? −Q(i−1)] + ξ. Indeed, using the construction of
Q(i), we have

Q? −Q(i) = Q? − r − γz − γg(i) = γPV ? − γz − γg(i)

=γ[PV ? − P(V (i) − V in)− PV in] + ξ = γPV ? − γPV (i) + ξ,
(50)

where the second equation uses Bellman optimality equation and the third equation uses the definition
of ξ = γ[P(V (i) − V in)− g(i) + PV in − z]. By (46) and (49),

ξ ≤8uin

√
log(2RSA/δ)

ldµ
+

√
16 · σV ? · log(4SA/δ)

m · dµ
+

√
16 · log(4SA/δ)

m · dµ
· uin

+Vmax

[
8
√

6 ·
(

log(16SA/δ)

m · dµ

)3/4

+
56 log(16SA/δ)

3m · dµ

]
.

Lastly, note PV ? = Pπ
?

Q? and from V (i) ≥ VQ(i−1) , we have PV (i) ≥ PVQ(i−1) =

PπQi−1Q(i−1) ≥ Pπ
?

Q(i−1), the last inequality holds true since πQ(i−1) is the greedy policy over
Q(i−1). Threfore (50) becomes Q? −Q(i) = γPV ? − γPV (i) + ξ ≤ γPπ

?

Q? − γPπ
?

Q(i−1) + ξ.
This completes the proof.

35

Lemma D.6. Suppose the input V in of Algorithm 3 satisfies V in ≤ TπinV in and V in ≤ V ? ≤
V in + uin1. Let V out, πout be the return of inner loop of Algorithm 3 and choose m = l(i) :=
m′ · log(16RSA)/(uin)2, where m′ is a parameter will be decided later. Then in addition to the
results of Lemma D.5, we have with probability 1− δ,

• if uin ∈ [
√

1/(1− γ), 1/(1− γ)], then:

0 ≤ V ? − V out ≤

≤
(

12/(1− γ)2

√
m′

∥∥∥∥∥dπ
?

t

√
1

dµ

∥∥∥∥∥
∞

+
4√
m′

∥∥∥∥∥
∞∑
t=0

γtdπ
?

t

√
σV ?

dµ

∥∥∥∥∥
∞

+
8
√

6(1/(1− γ))
10
4

(m′)3/4

∥∥∥∥∥dπ
?

t

[
1

dµ

] 3
4

∥∥∥∥∥
∞

+
56/(1− γ)3

3m′

∥∥∥∥dπ
?

t

1

dµ

∥∥∥∥
∞

)
uin · 1 +

uin

4
1.

• if uin ≤
√

1/(1− γ), then

0 ≤ V ? − V out ≤

≤
(

12
√

(1/(1− γ))3

√
m′

∥∥∥∥∥dπ
?

t

√
1

dµ

∥∥∥∥∥
∞

+
4√
m′

∥∥∥∥∥
∞∑
t=0

γtdπ
?

t

√
σV ?

dµ

∥∥∥∥∥
∞

+
8
√

6(1/(1− γ))
9
4

(m′)3/4

∥∥∥∥∥dπ
?

t

[
1

dµ

] 3
4

∥∥∥∥∥
∞

+
56(1/(1− γ))

5
2

3m′

∥∥∥∥dπ
?

t

1

dµ

∥∥∥∥
∞

)
uin · 1 +

uin

4
1.

where dπ
?

t ∈ RS·A×S·A is a matrix represents the multi-step transition from time 0 to t, i.e.
dπ

?

(s,a),(s′,a′) = dπ
?

0:t(s
′, a′|s, a) and recall 1/dµ is a vector. dπ

?

t
1
dµ is a matrix-vector multiplica-

tion. For a vector dt ∈ RS×A, norm || · ||∞ is defined as ||dt||∞ = maxt,s,a dt(s, a).

Proof. By Lemma D.5, we have with probability 1− δ, for all t ∈ [H],

V in ≤ V (i) ≤ Tπ(i)V (i) ≤ V ?, Q(i) ≤ r + γPV (i), and Q? −Q(i) ≤ γPπ
?

[Q? −Q(i−1)] + ξ,

where

ξ ≤8uin

√
log(2RSA/δ)

ldµ
+

√
16 · σV ? · log(4SA/δ)

m · dµ
+

√
16 · log(4SA/δ)

m · dµ
· uin

+Vmax

[
8
√

6 ·
(

log(16SA/δ)

m · dµ

)3/4

+
56 log(16SA/δ)

3m · dµ

]
.

Applying the recursion repeatedly, we obtain

Q? −Q(R) ≤ γRPπ
?

[Q? −Q(0)] +

R∑
i=0

γi
(

Pπ
?
)i
ξ ≤ γRPπ

?

[Q? −Q(0)] +

∞∑
i=0

γi
(

Pπ
?
)i
ξ

Note (Pπ
?

)i ∈ RS·A×S·A represents the multi-step transition from time 0 to i, i.e. (Pπ
?

)i(s,a),(s′,a′) =

dπ
?

i (s′, a′|s, a). Recall R = ln(4/uin(1− γ)), then

γRPπ
?

[Q? −Q(0)] ≤ γR||Q? −Q(0)||∞ ≤ γRVmax = γR/(1− γ) ≤ uin/4.

Therefore

Q? −Q(R) ≤ uin

4
+

∞∑
t=0

γtdπ
?

t ξ

≤
∞∑
t=0

γtdπ
?

t

(
8uin

√
log(2RSA/δ)

ldµ
+

√
16 · σV ? · log(4SA/δ)

m · dµ
+

√
16 · log(4SA/δ)

m · dµ
· uin

+Vmax

[
8
√

6 ·
(

log(16SA/δ)

m · dµ

)3/4

+
56 log(16SA/δ)

3m · dµ

])
+
uin

4
,

(51)

36

Now by our choice of m = l(i) := m′ · log(16RSA/δ)/(uin)2, then the first term of (51) is further
less than

≤
∞∑
t=0

γtdπ
?

t

(
12uin
√
m′dµ

uin +

√
16 · σV ?
m′ · dµ

uin + Vmax

[
8
√

6 ·
(

(uin)2/3

m′ · dµ

)3/4

+
56uin

3m′ · dµ

]
· uin

)
(52)

Case1. If uin ≤
√

1/(1− γ), then (52) is less than

≤
∞∑
t=0

γtdπ
?

t

(
12
√

1/(1− γ)√
m′dµ

+

√
16 · σV ?
m′ · dµ

+ Vmax

[
8
√

6 ·
(

(1/(1− γ))1/3

m′ · dµt′

)3/4

+
56(1/(1− γ))1/2

3m′ · dµt′

])
uin

≤
(

12
√

(1/(1− γ))3

√
m′

∥∥∥∥∥dπ
?

t

√
1

dµ

∥∥∥∥∥
∞

+
4√
m′

∥∥∥∥∥
∞∑
t=0

γtdπ
?

t

√
σV ?

dµ

∥∥∥∥∥
∞

+
8
√

6(1/(1− γ))
9
4

(m′)3/4

∥∥∥∥∥dπ
?

t

[
1

dµ

] 3
4

∥∥∥∥∥
∞

+
56(1/(1− γ))

5
2

3m′

∥∥∥∥dπ
?

t

1

dµ

∥∥∥∥
∞

)
uin · 1.

(53)

Case2. If uin ≥
√

1/(1− γ), then (52) is less than

≤
∞∑
t=0

γtdπ
?

t

(
12/(1− γ)√

m′dµ
+

√
16 · σV ?
m′ · dµ

+ Vmax

[
8
√

6 ·
(

(1/(1− γ))2/3

m′ · dµt′

)3/4

+
56/(1− γ)

3m′ · dµt′

])
uin

≤
(

12/(1− γ)2

√
m′

∥∥∥∥∥dπ
?

t

√
1

dµ

∥∥∥∥∥
∞

+
4√
m′

∥∥∥∥∥
∞∑
t=0

γtdπ
?

t

√
σV ?

dµ

∥∥∥∥∥
∞

+
8
√

6(1/(1− γ))
10
4

(m′)3/4

∥∥∥∥∥dπ
?

t

[
1

dµ

] 3
4

∥∥∥∥∥
∞

+
56/(1− γ)3

3m′

∥∥∥∥dπ
?

t

1

dµ

∥∥∥∥
∞

)
uin · 1.

(54)

Next, let us first finish the proof the Algorithm 3.
Lemma D.7. For convenience, define:

A 1
2

= sup
t

∥∥∥∥∥dπ
?

0:t

√
1

dµ

∥∥∥∥∥
∞

, A2 = sup
t

∥∥∥∥∥
∞∑
t=0

γtdπ
?

0:t

√
σV ?

dµ

∥∥∥∥∥
∞

, A 3
4

= sup
t

∥∥∥∥∥dπ
?

0:t

[
1

dµ

] 3
4

∥∥∥∥∥
∞

, A1 =

∥∥∥∥dπ
?

0:t

1

dµ

∥∥∥∥
∞
.

Recall ε is the target accuracy in the outer loop of Algorithm 3 and R = ln(4/ε(1− γ)). Then:

• If u(0) >
√

(1− γ)−1, then let m(j) = l(i,j) = m′ log(16(1 − γ)−1SARK)/(u(i−1))2,
where

m′1 = max

[
962(1− γ)−4A2

1
2
, 322A2

2,
(

64
√

6A 3
4

) 4
3

(1− γ)−
10
3 ,

448

3
(1− γ)−3A1

]
,

K1 = log2((1− γ)−1/ε),

• If u(0) ≤
√

(1− γ)−1, then let m(j) = l(i,j) = m′ log(16(1− γ)−1SARK/δ)/(u(j−1))2,
where

m′2 = max

[
962(1− γ)−3A2

1
2
, 322A2

2,
(

64
√

6A 3
4

) 4
3

(1− γ)−3,
448

3
(1− γ)−5/2A1

]
,

K2 = log2(
√

(1− γ)−1/ε),

Algorithm 3 obeys that, with probability 1 − δ,the output π(K) is an ε-optimal policy, i.e. ||V ?1 −
V π

(K)

1 ||∞ < ε with total sample complexity:

O

(
m′ log(16(1− γ)−1SARK/δ)

ε2
RK

)

37

for both cases. Moreover, m′ can be simplified as:

• If u(0) ≤
√

(1− γ)−1,then m′ ≤ c(1− γ)−3/dm;

• If u(0) >
√

(1− γ)−1, then m′ ≤ c(1− γ)−4/dm.

Proof. The proof of this lemma follows the same logic as Lemma B.10. Note there is additional
logarithmic factor R since the Inner loop of Algorithm 3 has an extra For loop. Also, A2 can be
bounded by O((1− γ)−3/2) due to the following counterpart result of Lemma G.5:

∞∑
t′=t

γt
′
Eπ

?

st′ ,at′
[σV ?(st′ , at′)|st, at] ≤ Varπ?

[∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st, at
]

which reduces the dependence from (1− γ)−3 to (1− γ)−2.

D.2 Proof of Theorem 4.3

Proof. Again the proof relies on the two stages of Algorithm 4 where the first stage reduces the error
to the level below

√
(1− γ)−1 and the next stage decrease the error to given accuracy. Moreover,

bounding the event {ns,a ≤ 1
2md

µ(s, a)} using Lemma G.2 is valid since data D is i.i.d. and
ns,a =

∑m
i=1 1[s(i) = s, a(i) = a] follows binomial distribution with E[ns,a] = mdµ(s, a).

E Proof of Theorem 4.2

We prove the offline learning lower bound (best policy identification in the offline regime) of
Ω(H2/dmε

2) for stationary transition case. Our proof consists of two steps: we will first show a
minimax lower bound (over all MDP instances) for learning ε-optimal policy is Ω(H2SA/ε2); next
we can further improve the lower bound (over problem classMdm) for learning ε-optimal policy to
Ω(H2/dmε

2) by a reduction of the first result.

There are numerous literature that provide information theoretical lower bounds under different
setting, e.g. Dann and Brunskill [2015], Jiang et al. [2017], Krishnamurthy et al. [2016], Jin et al.
[2018], Sidford et al. [2018a], Domingues et al. [2020], Yin et al. [2021], Zanette [2020], Duan and
Wang [2020], Wang et al. [2020], Jin et al. [2020]. However, to the best of our knowledge, Yin
et al. [2021] is the only one that gives the lower bound for explicit parameter dependence in offline
case. Concretely, their lower bound Ω(H3/dmε

2) (for non-stationary setting) includes dm which is
an inherent measure of offline problems. In the stationary transition setting, by a modification of
their construction (which again originated from Jiang et al. [2017]) we can prove the lower bound of
Ω(H2/dmε

2).

E.1 Information theoretical lower sample complexity bound over all MDP instances for
identifying ε-optimal policy.

Theorem E.1. Given H ≥ 2, A ≥ 2, 0 < ε < 1
48
√

8
and S ≥ c1 where c1 is a universal constant.

Then for any algorithm and any n ≤ cH2SA/ε2, there exists a non-stationary H horizon MDP with
probability at least p, the algorithm outputs a policy π̂ with v? − vπ̂ ≥ ε.

The proof relies on embedding Θ(S) independent multi-arm bandit problems into a family of hard-to-
learn MDP instances so that any algorithm that wants to output a near-optimal policy needs to identify
the best action in Ω(S) problems. By standard multi-arm bandit identification result Lemma G.1 we
need O(SA) episodes. To recover the H2 factor, we only assign reward 1 to “good” states in the
latter half of the MDP and all other states have reward 0.

Proof of Theorem E.1. We construct a non-stationary MDP with S states per level, A actions per
state and has horizon 2H . States are categorized into three types with two special states g, b and the
remaining S − 2 “bandit” states denoted by si, i ∈ [S − 2]. Each bandit state has an unknown best
action a?i that provides the highest expected reward comparing to other actions.

The transition dynamics are defined as follows:

38

• for h = 1, ..., 2H − 1,

– For bandit states bi, there is probability 1− 1
H to transition back to itself (bi) regardless

of the action chosen. For the rest of 1
H probability, optimal action a?i have probability

1
2 + τ or 1

2 − τ transition to g or b respectively and all other actions a will have
equal probability 1

2 for either g or b, where τ is a parameter will be decided later. Or
equivalently,

P(·|si, a?i) =


1− 1

H if · = si
(1

2 + τ) · 1
H if · = g

(1
2 − τ) · 1

H if · = b

P(·|si, a) =


1− 1

H if · = si
1
2 ·

1
H if · = g

1
2 ·

1
H if · = b

– g always transitions to g and b always transitions to b, i.e. for all a ∈ A,

P(g|g, a) = 1, P(b|b, a) = 1.

We will determine parameter τ at the end of the proof.

• Reward assignment: the instantaneous reward is 1 if and only if state s = g and the current
time t ∈ {H, . . . , 2H − 1}. In all other cases, the reward is 0. i.e.,{

r(st, a) = 1 iff st = g and t ≥ H,
r(st, a) = 0 o.w.

• The initial distribution is decided by:

P(si) =
1

S
, ∀i ∈ [S − 2], P(g) =

1

S
, P(b) =

1

S
(55)

By this construction the optimal policy must take a?i for each bandit state si for at least the first half
of the MDP (when t ≤ H). In other words, this construction embeds (S − 2) independent best arm
identification problems that are identical to the stochastic multi-arm bandit problem in Lemma G.1
into the MDP for the following two reasons: 1. the transition is stationary (the optimal arm a?i for
state si is identical across all time t) so instead of H(S− 2) (for non-stationary case) MAB problems
we only have S − 2 of them; 2. all S − 2 problems are independent since each state si can only
transition to themselves or g, b.

Notice for any time h with h ≤ H , any bandit state si, the difference of the expected reward between
optimal action a?i and other actions is:

(
1

2
+ τ) · 1

H
· E[r(h+1):2H |g] + (

1

2
− τ) · 1

H
· E[r(h+1):2H |b] + (1− 1

H
) · E[r(h+1):2H |si]

− 1

2H
· E[r(h+1):2H |g]− 1

2H
· E[r(h+1):2H |b]− (1− 1

H
) · E[r(h+1):2H |si]

=(
1

2
+ τ) · 1

H
· E[r(h+1):2H |g] + (

1

2
− τ) · 1

H
· E[r(h+1):2H |b]

− 1

2H
· E[r(h+1):2H |g]− 1

2H
· E[r(h+1):2H |b]

=(
1

2
+ τ)

1

H
·H + (

1

2
− τ)

1

H
· 0− 1

2H
·H +

1

2H
· 0 = τ

(56)
so it seems by Lemma G.1 one suffices to use the least possible A

72(τ)2 samples to identify the best

action a?i . However, note observing
∑2H
t=1 rt = H is equivalent as observing

∑H
t=1 rt = 1 (since∑H

t=1 rt = 1 is equivalent to sH = g and is equivalent to
∑H
t=1 rt = 1). Therefore, for the bandit

states in the first half the samples that provide information for identifying the best arm is up to time
H . Or in other words, identify best arm in stationary transition setting can be decided in each single
stage after t ≥ H . As a result, the difference of the expected reward between optimal action a?h,i and
other action for identifying the best arm should be corrected as:

(
1

2
+ τ) · 1

H
· E[r(h+1):H |g] + (

1

2
− τ) · 1

H
· E[r(h+1):H |b] + (1− 1

H
) · E[r(h+1):H |si]

39

− 1

2H
· E[r(h+1):H |g]− 1

2H
· E[r(h+1):H |b]− (1− 1

H
) · E[r(h+1):H |si]

=(
1

2
+ τ)

1

H
· 1 + (

1

2
− τ)

1

H
· 0− 1

2H
· 1 +

1

2H
· 0 =

τ

H

or one can compute any bandit state in latter half (h ≥ H):

(
1

2
+ τ) · 1

H
· E[rh:h+1|g] + (

1

2
− τ) · 1

H
· E[rh:h+1|b] + (1− 1

H
) · E[rh:h+1|si]

− 1

2H
· E[rh:h+1|g]− 1

2H
· E[rh:h+1|g]− (1− 1

H
) · E[rh:h+1|si]

=(
1

2
+ τ)

1

H
· 1 + (

1

2
− τ)

1

H
· 0− 1

2H
· 1 +

1

2H
· 0 =

τ

H
,

which yields the same result. Now by Lemma G.1, unless A
72(τ/H)2 samples are collected from that

bandit state, the learning algorithm fails to identify the optimal action a?i with probability at least 1/3.

After running any algorithm, let C be the set of bandit states for which the algorithm identifies the
correct action. Let D be the set of bandit states for which the algorithm collects fewer than A

72(τ/H)2

samples. Then by Lemma G.1 we have

E[|C|] = E

[∑
i

1[ai = a?i]

]
≤ (S − 2)− |D|+ E

[∑
i∈D

1[ai = a?i]

]

≤ ((S − 2)− |D|) +
2

3
|D| = (S − 2)− 1

3
|D|.

If we have n ≤ (S−2)
2 × A

72(τ/H)2 , by pigeonhole principle the algorithm can collect A
72(τ/H)2

samples for at most half of the bandit problems, i.e. |D| ≥ (S − 2)/2. Therefore we have

E[|C|] ≤ (S − 2)− 1

3
|D| ≤ 5

6
(S − 2).

Then by Markov inequality

P
[
|C| ≥ 11

12
(S − 2)

]
≤ 5/6

11/12
=

10

11

so the algorithm failed to identify the optimal action on 1/12 fraction of the bandit problems with
probability at least 1/11. Note for each failure in identification, the reward is differ by at least τ in
terms of the value for v̂π (see (56)), therefore under the event {|C ′| ≥ 1

12 (S − 2)}, the suboptimality
of the policy produced by the algorithm is

ε : = v? − vπ̂ = P[visit C ′]× τ + P[visit C]× 0 ≥ P[
⋃
i∈C′

visit(i)]× τ

=
∑
i∈C′

P[visit(i)]× τ =
∑
i∈C′

1

S
τ =

S − 2

S
τ := c1τ

(57)

where the third equal sign uses all best arm identification problems are independent. Now we set
τ = min(

√
1/8, ε/c1) and under n ≤ cH2SA/ε2, we have

n ≤ cH2SA/ε2 ≤ c′H2SA/τ2 = c′72S · A

72(τ/H)2
:= c′′S · A

72(τ/H)2
≤ S − 2

2
· A

72(τ/H)2
,

the last inequality holds as long as S ≥ 2/(1− 2c′′). Therefore in this situation, with probability at
least 1/11, v? − vπ̂ ≥ ε. Finally, we can use scaling to reduce the horizon from 2H to H .

Remark E.2. The suboptimality gap calculation (57) does not use the construction that each si has
1− 1

H probability going back to itself so if we only need Theorem E.1 then one can assign all the
probability to just g or b, which reduces to the construction of Theorem 2 in Dann and Brunskill
[2015]. However, our construction is essential for proving the following offline lower bound.

40

E.2 Information theoretical lower sample complexity bound over problems inMdm for
identifying ε-optimal policy.

For all 0 < dm ≤ 1
SA , let the class of problems be

Mdm :=
{

(µ,M)
∣∣ min
t,st,at

dµt (st, at) ≥ dm
}
.

Theorem E.3 (Restate Theorem 4.2). Under the condition of Theorem E.1. In addition assume
0 < dm ≤ 1

SA . There exists another universal constant c such that when n ≤ cH2/dmε
2, we always

have
inf
vπalg

sup
(µ,M)∈Mdm

Pµ,M (v∗ − vπalg ≥ ε) ≥ p.

g

b

J − 2
bandit
states

w.p. 1

w.p. 1

w.p.
1 − #

'

w.p. (#(+ N)
#
' if

choose #⋆

!#

w.p.
1 − #

'w.p. (#(− N)
#
' if

choose #⋆

!*"(

!+

!%,

!-./
##

#(

w.p. 1

Figure 2: An illustration of transition diagram for Theorem E.3

Proof. The proof is mostly identical to Yin et al. [2021] except we concatenate all state together to
ensure transition is stationary. The hard instances (µ,M) we used rely on Theorem E.1 as follow:

• for the MDP M = (S + 3,A, r, P, d1, 2H),

– There are three extra states s0, syes, sno in addition to Theorem E.1. Initial distribution
d1 will always enter state s0, and there are two actions with action a1 always transitions
to syes and action a2 always transitions to sno. The reward at the first time r1(s, a) = 0
for any s, a.

– For state sno, it will always transition back to itself regardless of the action and receive
reward 0, i.e.

Pt(sno|sno, a) = 1, rt(sno, a) = 0, ∀t, ∀a.
– For state syes, it will transition to the MDP construction in Theorem E.1 with horizon

2H and syes always receives reward zero (see Figure 2).
– For t = 1, choose µ(a1|s0) = 1

2dmSA and µ(a2|s0) = 1 − 1
2dmSA. For all other

states, choose µ to be uniform policy, i.e. µ(at|st) = 1/A.

Based on this construction, the optimal policy has the form π? = (a1, . . .) and therefore the MDP
branch that enters sno is uninformative. Hence, data collected by that part is uninformed about
the optimal policy and there is only 1

2dmSA proportion of data from syes are useful. Moreover,
by Theorem E.1 the rest of Markov chain succeeded from syes requires Ω(H2SA/ε2) episodes
(regardless of the exploration strategy/logging policy), so the actual data complexity needed for the
whole construction (µ,M) is Ω(H2SA/ε2)

dmSA
= Ω(H2/dmε

2).

41

It remains to check this construction µ,M stays withinMdm . The checking is mostly the same as
Theorem G.2. in Yin et al. [2021] so we don’t state here. We only highlight the checking for bandit
state at different time steps. Indeed, for all i ∈ [S − 2],

dµt+1(si) ≥ Pµ(si, si, . . . , si︸ ︷︷ ︸
t times

, syes, s0) =

(
t∏

u=1

Pµ(si|si)

)
Pµ(si|syes)Pµ(syes|s0)

= (1− 1

H
)t
(

1

S

)(
1

2
dmSA

)
≥ cdmA,

now by µ is uniform we have dµt+1(st+1,i, a) ≥ Ω(dmA) · 1
A = Ω(dm) for all a. So the condition is

satisfied in the stationary transition case. This concludes the proof.

F More details for Discussion Section 5

F.1 Proof of Lemma 5.1

Proof. Note data D comes from the logging policy µ, therefore we can use extra n(≥ 1/dm ·
log(HSA/δ)) episodes to construct direct on-policy estimator as:

d̂µt = nst,at/n.

Since nst,at is binomial, by the multiplicative Chernoff bound (Lemma G.2), we have

P

[
nst,at <

1

2
dµt (st, at)n

]
≤ e−

d
µ
t (st,at)·n

8 , P

[
nst,at ≥

3

2
dµt (st, at)n

]
≤ e−

d
µ
t (st,at)·n

12 .

this implies that for any (st, at) such that dµt (st, at) > 0, when n ≥ 1/dm · log(1/δ) ≥ 1/dµt (st, at) ·
log(1/δ), we have with probability 1− δ that

1

2
dµt (st, at) ≤ d̂µt (st, at) ≤

3

2
dµt (st, at).

Applying a union bound, we have the above is true for all (t, st, at) when n ≥ 1/dm · log(HSA/δ).
Finally, take d̂m := min(t,st,at):d̂

µ
t (st,at)>0 d̂

µ
t (st, at). On the above concentration event, we get

1

2
dm ≤ d̂m ≤

3

2
dm,

by taking min on all sides.

F.2 On relationship between 1/dm and βµ, C

In the function approximation regime, roughly speaking, the concentration coefficient assumption
requires Munos [2003], Le et al. [2019], Chen and Jiang [2019], Xie and Jiang [2020b]

βµ = sup
π∈F

∥∥∥∥dπ(s, a)

dµ(s, a)

∥∥∥∥
∞
<∞,

where F is the policy class induced by approximation functions. In the tabular case, since we want to
maximize over all policies, F = {all policies}, therefore above should be interpreted as:

sup
π arbitrary

∥∥∥∥dπt (s, a)

dµt (s, a)

∥∥∥∥
∞
<∞⇒ ||dµt (s, a)||∞ > 0,

since F is the largest possible class, if the transition kernel P (s′|s, a) is able to reach some s′ ∈ S
given s, a, then that implies dπt (s′) > 0. Next one can always pick πt+1(s′) = a′ such that
dπt+1(s′, a′) = dπt (s′) > 0, for all a′ ∈ A. This means µ has the chance to explore all states and
actions whenever the transition P can transition to all states (from some previous s, a).

42

On the other hand, our Assumption 2.1 only require µ to trace at least one optimal policy π? and it is
fine for µ to never visit certain state-action s, a that is not related to µ.

As a result, since βµ or C are explicitly incorporated, the upper bounds in Le et al. [2019], Chen
and Jiang [2019], Xie and Jiang [2020b] may degenerate to +∞ under our setting (Assumption 2.1),
regardless of the dependence on horizon.

Nevertheless, we point out that function approximation+concentrability assumption is a powerful
framework for handling realizability/agnostic case and related concepts (e.g. inherent Bellman error)
and easier to scale the setting to general continuous case.

F.3 Improved dependence on (1− γ)−1 than prior work

The sample complexity bound Õ((1− γ)−3/dmε
2) in Theorem 4.3 can be compared with the line

of recent works on offline RL with function approximation. For example, Le et al. [2019] consider
doing batch learning based on fitted Q-iteration with constraints and in their Theorem 4.3 the sample
complexity should be translated as Õ((1−γ)−6βµ/ε

2), where βµ is the “concentration factor” similar
to 1/dm, but with stronger assumption that µ explores all s, a that can be visited by the function
approximation class. Chen and Jiang [2019], Xie and Jiang [2020b] also consider using FQI in
different ways and prove εVmax-optimal policy with sample complexity Õ((1 − γ)−4C/ε2) and
Õ((1− γ)−2C/ε2), where C is again the “concentration-type coefficient”. Their result should be
translated as Õ((1− γ)−6C/ε2) and Õ((1− γ)−4C/ε2) for ε-optimal policy.

F.4 The doubling procedure overcomes the small defect in Sidford et al. [2018a]

Sidford et al. [2018a] first uses variance reduction technique to provide provable guarantee for identi-
fying the ε-optimal policy. However, their complexity may fail to be optimal under their initialization.
In fact, in their Proof of Proposition 5.4.1. (page 23 of https://arxiv.org/pdf/1806.01492.pdf), they
use the inequality (

(1− γ)3u2

C ′′(1− γ)8/3

)3/4

= C ′′(1− γ)1/4u3/2 ≤ u

16
,

which is equivalent to u ≤ O(
√

1/(1− γ)) (or u ≤
√
H) and based on their initialization v(0) = 0

they cannot guarantee ‖v?‖ =
∥∥v(0) − v?

∥∥
∞ := u ≤ (1−γ)−1/2. Actually,

∥∥v(0) − v?
∥∥
∞ ≤ (1−

γ)−1/2 is never guaranteed even when choosing v(0) = (1− γ)−1 (since the true v? could be small).
Hence, to achieve the optimality Sidford et al. [2018a] essentially requires an additional stringent
assumption

∥∥v(0) − v?
∥∥
∞ ≤ (1 − γ)−1/2, which is usually not enjoyed by practical applications

since we could not observe v? beforehand. On the other hand, given that they consider only the
sub-problem class where it always holds ‖v?‖ = ‖0− v?‖∞ ≤ (1− γ)−1/2, then (1− γ)−3SA/ε2

is no longer the minimax sample complexity due to the scaling (reward is scaled by (1− γ)−1/2 and
the sample complexity is (1− γ)−5/2SA/ε2). Considering minimaxity are the worst case guarantees,
this issue makes their algorithm has no improvement over the standard simulation lemma-based
analysis or Hoeffding-style analysis (Õ((1 − γ)−4SA/ε2) see Agarwal et al. [2019]) in the worst
case sense.

Our Doubled Variance Reduction addresses this issue completely so that minimaxity is preserved for
the offline learning with arbitrary initialization.

G Technical lemmas

Lemma G.1 (Best arm identification lower bound Krishnamurthy et al. [2016]). For any A ≥ 2 and
τ ≤

√
1/8 and any best arm identification algorithm that produces an estimate â, there exists a

multi-arm bandit problem for which the best arm a? is τ better than all others, but P[â 6= a?] ≥ 1/3
unless the number of samples T is at least A

72τ2 .
Lemma G.2 (Multiplicative Chernoff bound Chernoff et al. [1952]). Let X follows Binomial distri-
bution, i.e. X ∼ Binom(n, p). For any 1 ≥ δ > 0, we have that

P[Z < (1− δ)pn] < e−
δ2pn

2 . and P[Z ≥ (1 + δ)pn] < e−
δ2pn

3

43

https://arxiv.org/pdf/1806.01492.pdf

Lemma G.3 (Bernstein’s Inequality). Let X1, ..., Xn be independent random variables such that
E[Xi] = 0 and |Xi| ≤ C. Let σ2 = 1

n

∑n
i=1 Var[Xi], then we have

1

n

n∑
i=1

Xi ≤
√

2σ2 · log(1/δ)

n
+

2C

3n
log(1/δ)

holds with probability 1− δ.

Lemma G.4 (Freedman’s inequality Tropp et al. [2011]). Let X be the martingale associated
with a filter F (i.e. Xi = E[X|Fi]) satisfying |Xi − Xi−1| ≤ M for i = 1, ..., n. Denote
W :=

∑n
i=1 Var(Xi|Fi−1) ≤ σ2 then we have

P(|X − E[X]| ≥ ε) ≤ 2e
− ε2

2(σ2+Mε/3) .

Or equivalently, with probability 1− δ,

|X − E[X]| ≤
√

8σ2 · log(1/δ) +
2M

3
· log(1/δ).

Lemma G.5. Let r(1)
t , s

(1)
t , a

(1)
t denotes random variables. Then the following decomposition holds:

Varπ

[
H∑
t=h

r
(1)
t

∣∣∣∣∣s(1)
h = sh, a

(1)
h = ah

]
=

H∑
t=h

(
Eπ
[
Var

[
r

(1)
t + vπt+1(s

(1)
t+1)

∣∣∣s(1)
t , a

(1)
t

]∣∣∣s(1)
h = sh, a

(1)
h = ah

]
+ Eπ

[
Var

[
E[r

(1)
t + vπt+1(s

(1)
t+1)|s(1)

t , a
(1)
t]
∣∣∣s(1)
t

]∣∣∣s(1)
h = sh, a

(1)
h = ah

])
.

(58)

Remark G.6. This is a conditional version of Lemma 3.4 in Yin and Wang [2020]. It can be proved
using the identical trick as Lemma 3.4 in Yin and Wang [2020] except the law of total variance is
replaced by the law of total conditional variance.

H Summary of the fictitious estimators

To assist the readers following the design framework, we use a section to summarize the design of
the fictitious estimators.

H.1 finite horizon, non-stationary case

Now let us introduce our estimators zt and gt in the finite-horizon non-stationary case (the choices
for the stationary case and the infinite-horizon case will be introduced later).

Given an offline dataset D, we define LCB zt(st, at) = z̃t(st, at)− e(st, at) where z̃t(st, at) is an
unbiased estimator and e(st, at) = O(

√
σ̃V in

t+1
(st, at)) is an “error bar” that depends on σ̃V in

t+1
(st, at)

— an estimator of the variance of z̃t(st, at). z̃t(st, at) and σ̃V in
t+1

(st, at) are plug-in estimators at
(st, at) that use the available offline data (rt, s

′
t+1) to estimate the transition and rewards only if the

number of visitations to (st, at) (denoted by nst,at) is greater than a statistical threshold. Let m be
the episode budget, we write:

z̃t(st, at) = P>t (·|st, at)V in
t+1 · 1(Ecm,t) +

1

nst,at

m∑
i=1

V in
t+1(s

(i)
t+1) · 1

[s
(i)
t ,a

(i)
t =st,at]

· 1(Em,t),

σ̃V in
t+1

(st, at) = σV in
t+1

(st, at)1(Ecm,t) +
[1

nst,at

m∑
i=1

[V in
t+1(s

(i)
t+1)]2 · 1

[s
(i)
t ,a

(i)
t =st,at]

− z̃2
t (st, at)

]
1(Em,t),

e(st, at) =

√
4σ̃V in

t+1
ι

mdµt (st, at)
+ 2
√

6Vmax

(ι

mdµt (st, at)

)3/4
+ 16

Vmaxι

mdµt (st, at)
(59)

44

where Em,t = {nst,at > 1
2m · d

µ
t (st, at)} and nst,at is the number of episodes visited (st, at) at

time t. We also note that we only aggregate the data at the same time step t, so that the observations
are from different episodes and thus conditional independent given the current time step8.

Similarly, our estimator gt(st, at) = g̃t(st, at) − f(st, at) where g̃t(st, at) estimates
P>t (·|st, at)[Vt+1 − V in

t+1] using l independent episodes (let n′st,at denote the visitation count from
these l episodes) and f(st, at) is an error bar:

g̃t(st, at) =P>t (·|st, at)[Vt+1 − V in
t+1] · 1(Ecl,t)

+
1

n′st,at

l∑
j=1

[Vt+1(s
′(j)
t+1)− V in

t+1(s
′(j)
t+1)] · 1

[s
′(j)
t ,a

′(j)
t =st,at]

1(El,t)
(60)

Here, El,t = {n′st,at > 1
2 l · d

µ
t (st, at)} and f(st, at, u) := 4u

√
ι/ldµt (st, at). Notice that

f(st, at, u) depends on the additional input uin which measures the certified suboptimality of the
input.

Fictitious vs. actual estimators. Careful readers must have noticed that that the above estimators zt
and gt are infeasible to implement as they require the unobserved (population level-quantities) in
some cases. We call them fictitious estimators as a result. Readers should rest assured since by the
following proposition we can show their practical implementations (summarized in Figure 3.2) are
identical to these fictitious estimators with high probability:
Proposition H.1 (Summary of Section B.4). Under the condition of Theorem 3.2, we have

P

 ⋃
i∈[K1],t∈[H]

(
E

(i)c
l,t ∪ E

(i)c
m,t

) ⋃
j∈[K2],t∈[H]

(
E

(j)c
l,t ∪ E

(j)c
m,t

) ≤ δ/2,
this means with high probability 1 − δ/2, fictitious estimators z̃t, g̃t, σ̃ are all identical to their
practical versions (summarized in Figure 3.2). Moreover, under the same high probability events, the
empirical version of the “error bars” et(st, at) and f(st, at, u) are at most twice as large than their
fictitious versions that depends on the unknown dµt (st, at).

These fictitious estimators, however, are easier to analyze and they are central to our extension of the
Variance Reduction framework previously used in the generative model setting [Sidford et al., 2018a]
to the offline setting. The idea is that it replaces the low-probability, but pathological cases due to
random nst,at with ground truths. Another challenge of the offline setting is due to the dependence
of data points within a single episode. Note that the estimators are only aggregating the data at
the same time steps. Since the data pair at the same time must come from different episodes, then
conditional independence (given data up to current time steps, the states transition to the next step are
independent of each other) can be recovered by this design (59), (60).

H.2 Finite horizion, Stationary case

Indeed, we modify the fictitious estimators (59) and (60) into the following:

z̃t(s, a) = P>(·|s, a)V in
t+1 · 1(Ecm) +

1

ns,a

m∑
i=1

H∑
u=1

V in
t+1(s

(i)
u+1) · 1

[s
(i)
u =s,a

(i)
u =a]

1(Em),

σ̃V in
t+1

(s, a) = σV in
t+1

(s, a)1(Ecm) + [
1

ns,a

m∑
i=1

H∑
u=1

[V in
t+1(s

(i)
u+1)]2 · 1

[s
(i)
u =s,a

(i)
u =a]

− z̃2
t (s, a)]1(Em),

et(s, a) =

√
4σ̃V in

t+1
ι

m
∑H
t=1 d

µ
t (s, a)

+ 2
√

6Vmax

(ι

m
∑H
t=1 d

µ
t (s, a)

)3/4
+ 16Vmax

ι

m
∑H
t=1 d

µ
t (s, a)

,

(61)
whereEm = {ns,a > 1

2m·
∑H
t=1 d

µ
t (s, a)} and ns,a =

∑m
i=1

∑H
t=1 1[s

(i)
t = s, a

(i)
t = a] is the num-

ber of data pieces visited (s, a) over ALL m episodes. Moreover, ft(s, a, u) = 4u
√

ι
l

∑H
t=1 d

µ
t (s, a)

8This is natural for the non-stationary transition setting; for the stationary transition setting we have an
improved way for defining this estimators. See Section 4.

45

and

g̃t(s, a) = P>(·|s, a)[Vt+1 − V in
t+1]1(Ecl) +

1

n′s,a

l∑
j=1

H∑
u=1

[Vt+1(s
′(j)
u+1)− V in

t+1(s
′(j)
u+1)] · 1

[s
′(j)
u ,a

′(j)
u =s,a]

1(Ecl).

(62)

In this case, we collect all the data that enter the same state action (s, a) to calculate ns,a across
different times (compare nst,at in the non-stationary transition case). By this design we can further
tighten the horizon dependence and improve the sample efficiency by preforming careful analysis.
Note in this case the conditional independence property is wrecked.

H.3 Infinite horizion, discounted case

An infinite-horizon discounted MDP is denoted by (S,A, P, r, γ, d0), where γ is discount factor
and d0 is initial state distribution. Given a policy π, the induced trajectory s0, a0, r0, s1, a1, r1, ...
follows: s0 ∼ d0, at ∼ π(·|st), rt = r(st, at), st+1 ∼ P (·|st, at). The corresponding value
function (or state-action value) function is defined as: V π(s) = Eπ[

∑∞
t=0 γ

trt|s0 = s], Qπ(s) =
Eπ[
∑∞
t=0 γ

trt|s0 = s, a0 = a]. Moreover, define the normalized marginal state distribution as
dπ(s) := (1− γ)

∑∞
t=0 γ

tP[st = s|s0 ∼ d0, π] and the state-action counterpart follows dπ(s, a) :=
dπ(s)π(s|a). For the offline/batch learning problem, we adopt the same assumption of Chen and
Jiang [2019], Xie and Jiang [2020b] that data D = {s(i), a(i), r(i), s′(i)}i∈[n] are i.i.d off-policy
pieces with (s, a) ∼ dµ and s′ ∼ P (·|s, a). Under a fast-mixing assumption when rolling out with
the logging policy µ, such a data set that approximately satisfy this assumption can be constructed by
taking one data point (s, a, r, s′) once in a while within a single trajectory.

Algorithm 1 and 2 are slighted modified to cater to the infinite horizon setting (detailed pseudo-code
in Algorithm 3 and 4 in the appendix). Then the corresponding estimators are set to be:

The corresponding estimators in Algorithm 3 are defined as:

z̃(s, a) =

{
P>(·|s, a)V in, if ns,a ≤ 1

2m · d
µ(s, a),

1
ns,a

∑m
i=1 V

in(s′(i)) · 1[s(i)=s,a(i)=a], if ns,a >
1
2m · d

µ(s, a).

σ̃V in(s, a) =

{
σV in(s, a), if ns,a ≤ 1

2m · d
µ(s, a),

1
ns,a

∑m
i=1[V in(s′(i))]2 · 1[s(i)=s,a(i)=a] − z̃2(s, a), otherwise.

(63)

where ns,a :=
∑n
i=1 1[s(i) = s, a(i) = a] is the number of samples start at (s, a). Similarly,

P>(·|s, a)[V − V in] is later updated using different l episodes (n′s,a is the number count from l
episodes):

g(i)(s, a) =

{
P>(·|s, a)[V (i) − V in]− f(s, a), if n′s,a ≤ 1

2 l · d
µ(s, a),

1
n′s,a

∑l
j=1[V (i)(s′(j))− V in(s′(j))] · 1[s′(j),a′(j)=s,a] − f(s, a), o.w.

(64)

where f = 4uin
√

log(2RSA/δ)/ldµ and R = ln(4/uin(1− γ)).

From technical perspective, this is the easiest setting to analyze due to the i.i.d. assumption on data
D.

46

