
Edge Representation Learning with Hypergraphs

Jaehyeong Jo1∗, Jinheon Baek1∗, Seul Lee1∗,
Dongki Kim1, Minki Kang1, Sung Ju Hwang1,2

KAIST1, AITRICS2, South Korea
harryjo97@kaist.ac.kr, jinheon.baek@kaist.ac.kr,
ellenlee7890@gmail.com, cleverki@kaist.ac.kr,
zzxc1133@kaist.ac.kr, sjhwang82@kaist.ac.kr

Abstract

Graph neural networks have recently achieved remarkable success in representing
graph-structured data, with rapid progress in both the node embedding and graph
pooling methods. Yet, they mostly focus on capturing information from the nodes
considering their connectivity, and not much work has been done in representing
the edges, which are essential components of a graph. However, for tasks such
as graph reconstruction and generation, as well as graph classification tasks for
which the edges are important for discrimination, accurately representing edges
of a given graph is crucial to the success of the graph representation learning.
To this end, we propose a novel edge representation learning framework based
on Dual Hypergraph Transformation (DHT), which transforms the edges of a
graph into the nodes of a hypergraph. This dual hypergraph construction allows
us to apply message-passing techniques for node representations to edges. After
obtaining edge representations from the hypergraphs, we then cluster or drop
edges to obtain holistic graph-level edge representations. We validate our edge
representation learning method with hypergraphs on diverse graph datasets for
graph representation and generation performance, on which our method largely
outperforms existing graph representation learning methods. Moreover, our edge
representation learning and pooling method also largely outperforms state-of-the-
art graph pooling methods on graph classification, not only because of its accurate
edge representation learning, but also due to its lossless compression of the nodes
and removal of irrelevant edges for effective message-passing.1

1 Introduction

The recent demand in representing graph-structured data, such as molecular, social, and knowledge
graphs, has brought remarkable progress in the Graph Neural Networks (GNNs) [44, 37]. Early
works on GNNs [23, 15, 39] aim to accurately represent each node to reflect the graph topology, by
transforming, propagating, and aggregating information from their neighborhoods based on message-
passing schemes [12]. More recent works focus on learning holistic graph-level representations,
by proposing graph pooling techniques that condense the node-level representations into a smaller
graph or a single vector. While such state-of-the-art node embedding or graph pooling methods
have achieved impressive performances on graph-related tasks (e.g., node classification and graph
classification), they have largely overlooked the edges, which are essential components of a graph.

Most existing GNNs, including ones that consider categorical edge features [32, 12], only implicitly
capture the edge information in the learned node/graph representations when updating them. While a

∗Equal contribution
1Code is available at https://github.com/harryjo97/EHGNN

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(a) Tylenol (Beneficial)

(b) NAPQI (Toxic)

HyperCluster

HyperDrop

Input Graph

1

3

2
4A B

C

D

B
A C

D
1

2

3

4

Dual Hypergraph Transformation (DHT)

Output Graph

Global Edge
Representation

Message
Passing Message

Passing
Node-to-Hyperedge
Edge-to-Node DHT

Figure 1: (Left): The two molecular graphs2 have the identical set of nodes, but possess completely different
properties due to the difference in edges. (Right): An illustration of the proposed edge representation learning
framework with two novel edge pooling schemes. The grey box in the center describes the proposed Dual
Hypergraph Transformation, where the numbers (letters) denote the corresponding edges (nodes) in the graph
and nodes (hyperedges) in the hypergraph. The two blue boxes in the right illustrate the proposed edge pooling
methods, HyperCluster which clusters similar edges, and HyperDrop which drops unnecessary edges.

few of them aim to obtain explicit representations for edges [20, 13, 40], they mostly use them only to
augment the node-level representations, and thus suboptimally capture the edge information. This is
partly because many benchmark tasks for GNN performance evaluation, such as graph classification,
do not require the edge information to be accurately preserved. Thus, on this classification task, simple
MLPs without any connectivity information can sometimes outperform GNNs [9, 18]. However, for
tasks such as graph reconstruction and generation, accurately representing the edges of a graph is
crucial to success, as incorrectly reconstructing/generating edges may result in complete failure of
the tasks. For example, the two molecules (a) and (b) in Figure 1 have exactly the same set of nodes
and are only different in their edges (bond types), but exhibit extremely different properties.

To overcome such limitations of existing GNN methods in edge representation learning, we propose
a simple yet effective scheme to represent the edges. The main challenge of handling edges is
the absence or suboptimality of the message-passing scheme for edges. We tackle this challenge
by representing the edges as nodes in a hypergraph, which is a generalization of a graph that can
model higher-order interactions among nodes as one hyperedge can connect an arbitrary number of
nodes. Specifically, we propose Dual Hypergraph Transformation (DHT) to transform edges of the
original graph to nodes of a hypergraph (Figure 1), and nodes to hyperedges. This hypergraph-based
approach is effective since it allows us to apply any off-the-shelf message-passing schemes designed
for node-level representation learning, for learning the representation of the edges of a graph.

However, representing each edge well alone is insufficient in obtaining an accurate representation of
the entire graph. Thus we propose two novel graph pooling methods for the hypergraph to obtain
compact graph-level edge representations, namely HyperCluster and HyperDrop. Specifically, for
obtaining global edge representations for an entire graph, HyperCluster coarsens similar edges into
a single edge under the global graph pooling scheme (see HyperCluster in Figure 1). On the other
hand, HyperDrop drops unnecessary edges from the original graph by calculating pruning scores on
the hypergraph (see HyperDrop in Figure 1). HyperCluster is more useful for graph reconstruction
and generation as it does not result in the removal of any edges, while HyperDrop is more useful for
classification as it learns to remove edges that are less useful for graph discrimination.

We first experimentally validate the effectiveness of the DHT with HyperCluster, on the reconstruction
of synthetic and molecular graphs. Our method obtains extremely high performance on these
tasks, largely outperforming baselines, which shows its effectiveness in accurately representing the
edges. Then, we validate our method on molecular graph generation tasks, and show that it largely
outperforms base generation methods, as it allows us to generate molecules with more correct bonds
(edges). Further, we validate HyperDrop on 10 benchmark datasets for graph classification, on which
HyperDrop outperforms all hierarchical pooling baselines, with larger gains on social graphs, for
which the edge features are important. Our main contributions are summarized as follows:

• We introduce a novel edge representation learning scheme using Dual Hypergraph Transforma-
tion, which exploits the dual hypergraph whose nodes are edges of the original graph, on which we
can apply off-the-shelf message-passing schemes designed for node-level representation learning.

• We propose novel edge pooling methods for graph-level representation learning, namely Hyper-
Cluster and HyperDrop, to overcome the limitations of existing node-based pooling methods.

• We validate our methods on graph reconstruction, generation, and classification tasks, on
which they largely outperform existing graph representation learning methods.

2We depict only the heavy atoms, as conventional preprocessing of molecular graphs drops hydrogen atoms.

2

2 Related Work

Graph neural networks Graph neural networks (GNNs) mostly use the message-passing
scheme [12] to aggregate features from their neighbors. Particularly, Graph Convolutional Net-
work (GCN) [23] generalizes the convolution operation in the spectral domain of graphs, and updates
the representation of each node by applying the shared weights on it and its neighbors’ representations.
Similarly, GraphSAGE [15] propagates the features of each node’s neighbors to itself, based on
simple aggregation operations (e.g., mean). Graph Attention Network (GAT) [34] considers the
relative importance on neighboring nodes with attention, to update each node’s representation as
the weighted combination of its neighbors’. Xu et al. [39] show that a simple sum on neighborhood
aggregation makes GNNs as powerful as the Weisfeiler-Lehman (WL) test [36], which is effective
for distinguishing different graphs. While GNNs have achieved impressive success on graph-related
tasks, most of them only focus on learning node-level representations, with less focus on the edges.

Edge-aware graph neural networks Some existing works on GNNs consider edge features while
updating the node features [32, 33], however, they only use the edges as auxiliary information and
restrict the representation of edges as the discrete features with categorical values. While a few
methods [20, 12, 13, 40] explicitly represent edges by introducing edge-level GNN layers, they use the
obtained edge features solely for enhancing node features. Also, existing message-passing schemes
for nodes are not directly applicable to edge-level layers, as they are differently designed from the
node-level layers, which makes it challenging to combine them with graph pooling methods [41] for
graph-level representation learning. We overcome these limitations by proposing a dual hypergraph
transformation scheme, to obtain a hypergraph whose nodes are edges of the original graph, which
allows us to apply any message-passing layers designed for nodes to edges.

Graph transformation Recently, some works [21, 27] propose to transform the original graph into
a typical graph structure, to apply graph convolution for learning the edge features. Specifically, they
construct a line graph [16], where the nodes of the line graph correspond to the edges of the original
graph, and the nodes of the line graph are connected if the corresponding edges of the original graph
share the same endpoint. However, the line graph transformation has obvious drawbacks: 1) the
transformation is not injective, thus two different graphs may be transformed into the same line
graph; 2) the transformation is not scalable; 3) node information in the original graph may be lost
during the transformation. Instead of using such a graph structure, we use hypergraphs, which can
model higher-order interactions among nodes by grouping multi-node relationships into a single
hyperedge [3]. Using the hypergraph duality [31], edges of the original graph are regarded as the
nodes of a hypergraph. For example, Lugo-Martinez and Radivojac [26] cast a hyperlink prediction
task as an instance of node classification from the dual form of the original hypergraph. On the
other hand, Kajino [22] uses the duality to extract useful rules from the hypergraph structures by
transforming molecular graphs, for their generation. However, none of the existing works exploit the
relation between the original graph and the dual hypergraph for edge representation learning.

Graph pooling Graph pooling methods aim to learn accurate graph-level representation by com-
pressing a graph into a smaller graph or a vector with pooling operations. The simplest pooling
approaches are using mean, sum or max over all node representations [1, 39]. However, they treat all
nodes equally, and cannot adaptively adjust the size of graphs for downstream tasks. More advanced
methods, such as node clustering methods, coarsen the graph by clustering similar nodes based on
their embeddings [41, 4], whereas the node pruning methods reduce the number of nodes from the
graph by dropping unimportant nodes based on their scores [11, 24]. Ranjan et al. [29] combine both
node pruning and clustering approaches, by dropping meaningless clusters after grouping nodes. Baek
et al. [2] propose to use attention-based operations for considering relationships between clusters.
Note that all of those pooling schemes not only ignore edge representations, but also alter the node
set by dropping, clustering, or merging nodes, which result in an inevitable loss of node information.

3 Edge Representation Learning with Hypergraphs

In this section, we first introduce our novel edge representation learning framework with dual
hypergraphs, which we refer to as Edge HyperGraph Neural Network (EHGNN), and then propose
two novel edge pooling schemes for holistic graph-level representation learning: HyperCluster and
HyperDrop. We begin with the descriptions of graph neural networks for node representation learning.

3

(a) (b)

(d) (c)

Dual Hypergraph TransformationInput Graph 𝑮 Dual Hypergraph 𝑮∗

(a) Edge-to-Node
(d) Node-to-Edge

(b) Node-to-Hyperedge
(c) Hyperedge-to-Node

B

3

42A

1 D

5 C

Hyperedge

𝑬∗ = 𝑿

Node

𝑿∗ = 𝑬

Incidence

𝑴∗ = 𝑴𝑻

A B C D

Edge

𝑬

A
B
C
D

Node

X

1
2
3
4
5

Incidence

𝑴

1 2 3 4 1

3

2

4A B

C

D

5

5
A
B
C
D

1
2
3
4
5

1
2
3
4
5

A
B
C
D

5

1

3

2
4A B

C

D

Figure 2: Dual Hypergraph Transformation. Illustration of the proposed graph-to-hypergraph transformation.

Graph neural networks A graph G with n nodes and m edges, is defined by its node features
X ∈ Rn×d, edge features E ∈ Rm×d′

, and the connectivity among the nodes represented by
an adjacency matrix A ∈ Rn×n. Here, d and d′ are the dimensions of node and edge features,
respectively. Then, given a graph, the goal of a Graph Neural Network (GNN) is to learn the
node-level representation with message-passing between neighboring nodes [12] as follows:

X(l+1)
v = UPDATE

(
X(l)

v ,AGGREGATE
({

X(l)
u : ∀u ∈ N (v;A)

}))
, (1)

where X(l) is the node features at l-th layer, AGGREGATE is the function that aggregates messages
from a set of neighboring nodes of the node v, UPDATE is the function that updates the representation
of the node v from the aggregated messages, and N (v;A) is the set of neighboring nodes for the
node v, obtained from the adjacency matrix A. Such message-passing schemes can incorporate the
graph topology into each node by updating its representation with the representation of its neighbors.

3.1 Edge representation learning with dual hypergraph transformation

Edge representation learning To reflect the edge information on message-passing, some works
on GNNs first obtain the categorical edge features between nodes, and then use them on the AGGRE-
GATE function in equation 1, by adding or multiplying the edge features to the neighboring node’s
features [12, 32] (see Section A.1 of the supplementary file for more details). Similarly, few recent
works aim to obtain explicit edge representations, but only to use them as auxiliary information to
augment the node features, by adding or multiplying edge features to them [13, 40]. Thus, existing
works only implicitly capture the edge information in the learned node representations. Although this
might be sufficient for most benchmark graph classification tasks, many real-world tasks of graphs
(e.g., graph reconstruction and generation) further require the edges to be accurately represented as
the information on edges could largely affect the task performance.

Table 1: Transformation and message-passing
complexities of edge-aware GNNs, line graph, and
our EHGNN for the star graph, in which one hub
node is connected to n other nodes.

Models Complexity
Transformation Message-passing

Edge-aware GNNs O(n2) O(n)
Line graph O(n2) O(n2)

EHGNN (Ours) O(n) O(n)

Even worse, to define a message-passing function
for edge representation learning, existing works pro-
pose to additionally create the adjacency matrix for
edges, either by defining the edge neighborhood struc-
ture [40] or using the line graph transformation [20].
However, these are highly suboptimal as obtaining
the adjacency of edges requiresO(n2) time complex-
ity (see Section A.3 of the supplementary file for
detailed descriptions), as shown in Table 1. This is
the main obstacle for directly applying existing message-passing schemes for nodes to edges. To this
end, we propose a simple yet effective method to represent the edges of a graph, using a hypergraph.

Hypergraph A hypergraph is a generalization of a graph that can model graph-structured data with
higher-order interactions among nodes, wherein a single hyperedge connects an arbitrary number
of nodes, unlike in conventional graphs where an edge can only connect two nodes. For example,
in Figure 2, the hyperedge B defines the relation among three different nodes. To denote such
higher-order relations among arbitrary number of nodes defined by a hyperedge, we use an incidence
matrix M ∈ {0, 1}n×m, which represents the interaction between n nodes and m hyperedges,
instead of using an adjacency matrix A ∈ {0, 1}n×n that only considers interactions among n nodes.
Each entry in the incidence matrix indicates whether the node is incident to the hyperedge. We can
formally define a hyperagraph G∗ with n nodes and m hyperedges, as a triplet of three components
G∗ = (X∗,M∗,E∗), where X∗ ∈ Rn×d is the node features, E∗ ∈ Rm×d′

is the hyperedge
features, and M∗ ∈ {0, 1}n×m is the incidence matrix of the hypergraph. We can also represent
conventional graphs in the form of a hypergraph, G = (X,M ,E), in which a hyperedge in the

4

incidence matrix M is associated with only two nodes. In the following paragraph, we will describe
how to transform the edges of a graph into nodes of a hypergraph, for edge representation learning.

Dual Hypergraph Transformation If we can change the role of the nodes and edges of the graph
with a shared connectivity pattern across the nodes and edges, while accurately preserving their
information, then we can use any node-based message-passing schemes for learning edges. To
achieve this, inspired by the hypergraph duality [3, 31], we propose to transform an edge of the
original graph into a node of a hypergraph, and a node of the original graph into a hyperedge of
the same hypergraph. We refer to this graph-to-hypergraph transformation as Dual Hypergraph
Transformation (DHT) (see Figure 2). To be more precise, during the transformation, we interchange
the structural role of nodes and edges from the given graph, obtaining the incidence matrix for the new
dual hypergraph simply by transposing the incidence matrix of the original graph (see the incidence
matrix in Figure 2). Along with the structural transformation through the incidence matrix, the DHT
naturally interchanges node and edge features across G and G∗ (see the feature matrices in Figure 2).
Formally, given a triplet representation of a graph, DHT is defined as the following transformation:

DHT : G =
(
X,M ,E

)
7→ G∗ =

(
E,MT ,X

)
, (2)

where we refer to the transformed G∗ as the dual hypergraph of the input graph G. Since the dual
hypergraph G∗ = (E,MT ,X) retains all the information of the original graph, we can recover the
original graph from the dual hypergraph with the same DHT operation as follows:

DHT : G∗ =
(
E,MT ,X

)
7→ G =

(
X,M ,E

)
. (3)

This implies that DHT is a bijective transformation. DHT is simple to implement, does not incur the
loss of any features or topological information of the input graph, and does not require additional
memory for feature representations. Moreover, DHT can be sparsely implemented using the edge list,
which is the sparse form of the adjacency matrix, by only reshaping the edge list of the original graph
into the hyperedge list of the dual hypergraph (see Section A.2 of the supplementary file for details),
which is highly efficient in terms of time and memory. Thanks to DHT, we define the message-passing
between edges of the original graph as the message-passing between nodes of its dual hypergraph.

Message-passing on the dual hypergraph for edge representation learning After transforming
the original graph into its corresponding dual hypergraph using DHT, we can perform the message-
passing between edges of the input graph, by performing the message-passing between nodes of its
dual hypergraph G∗ = (E,MT ,X), which is formally denoted as follows:

E(l+1)
e = UPDATE

(
E(l)

e ,AGGREGATE
({

E
(l)
f : ∀f ∈ N (e;MT)

}))
, (4)

where E(l) is the node features of G∗ at l-th layer, the AGGREGATE function summarizes the
neighboring messages of the node e of the dual hypergraph G∗, and the UPDATE function updates
the representation of the node e from the aggregated messages. Here N (e;MT) is the neighboring
node set of the node e in G∗, which we obtain using the incidence matrix MT of G∗. Furthermore,
instead of using the dense incidence matrix, we can sparsely implement the message-passing on the
dual hypergraph with the hyperedge list, from which the complexity of message-passing on the dual
hypergraph reduces to O(m), which is equal to the complexity of message-passing between nodes on
the original graph (See Section A.3 of the supplementary file for details). Note that, since the form of
equation 4 is the same as the form of equation 1, we can use any graph neural networks which realize
the message-passing operation in equation 1, such as GCN [23], GAT [34], GraphSAGE [15], and
GIN [39], for equation 4. In other words, to learn the edge representations E of the original graph,
we do not require any specially designed layers, but simply need to perform DHT to directly apply
existing off-the-shelf message-passing schemes to the transformed dual hypergraph.

To simplify, we summarize the equation 1 as follows: X(l+1) = GNN
(
X(l),M ,E(l)

)
, and the

equation 4 as follows: E(l+1) = GNN
(
E(l),MT ,X(l)

)
= EHGNN

(
X(l),M ,E(l)

)
, where

EHGNN indicates our edge representation learning framework using DHT. After updating the edge
features E(L) with EHGNN, E(L) is returned to the original graph by applying DHT on the dual
hypergraph G∗. Then, the remaining step is how to make use of these edge-wise representations to
accurately represent the edges of the entire graph, which we describe in the next subsection.

5

3.2 Graph-level edge representation learning with edge pooling

Existing graph pooling methods do not explicitly represent edges. To overcome this limitation, we
propose two novel edge pooling schemes: HyperCluster and HyperDrop.

Graph pooling The goal of graph pooling is to learn a holistic representation of the entire graph.
The most straightforward approach for this is to aggregate all the node features with mean or sum
operations [1, 39], but they treat all nodes equally without consideration of which nodes are important
for the given task. To tackle this limitation, recent graph pooling methods propose to either cluster and
coarsen nodes [41, 4] or drop unnecessary nodes [11, 24]. While they yield improved performances
on graph classification tasks, they suffer from an obvious drawback: inevitable loss of both node
and edge information. The node information is lost as nodes are dropped and coarsened, and the
edge information is lost as edges for the dropped nodes or internal edges for the coarsened nodes are
removed. To overcome this limitation, we propose a graph-level edge representation learning scheme.

HyperCluster We first introduce HyperCluster, which is a novel edge clustering method to coarsen
similar edges into a single edge, for obtaining the global edge representation. Generally, a clustering
scheme for nodes of the graph [41, 4] is defined as follows:

Xpool = CTX′, Mpool = CTM , (5)

where Xpool ∈ Rnpool×d and Mpool ∈ Rnpool×m denote the pooled representations, X′ =
GNN (X,M ,E) ∈ Rn×d is the updated node features, and C ∈ Rn×npool is the cluster assignment
matrix that is generated from the X′. Following this approach, the proposed HyperCluster clusters
similar edges into a single edge, by clustering nodes of the dual hypergraph obtained from the
original graph via DHT. In other words, we first obtain the node representation of the dual hypergraph
E′ = EHGNN (X,M ,E) ∈ Rm×d′

, and then cluster the nodes of the dual hypergraph as follows:

Epool = CTE′ , (Mpool)T = CTMT (6)

where Epool ∈ Rmpool×d′
and Mpool ∈ Rn×mpool denote the pooled edge representation and the

incidence matrix of the input graph respectively, and C ∈ Rm×mpool is the cluster assignment
matrix generated from the input edge features E′. Since HyperCluster coarsens the edges rather than
dropping them, this edge pooling method is more appropriate for tasks such as graph reconstruction.

HyperDrop We propose another edge pooling scheme, HyperDrop, which drops unnecessary edges
to identify task-relevant edges, while performing lossless compression of nodes. Conventional node
drop methods [11, 24] remove less relevant nodes based on their scores, as follows:

Xpool = Xidx , M
pool = Midx ; idx = topk(score(X)), (7)

where idx is the row-wise (i.e., node-wise) indexing vector, score(·) computes the score of each node
with learnable parameters, and topk(·) selects the top k elements in terms of the score. However,
this approach results in the inevitable loss of node information, as it drops nodes. Thus, we propose
to coarsen the graph by dropping edges instead of nodes, exploiting edge representations obtained
from our EHGNN. HyperDrop selects the top-ranked edges of the original graph, by selecting the
top-ranked nodes of the dual hypergraph. The pooling procedure for HyperDrop is as follows:

Epool = Eidx , (M
pool)T = (MT)idx ; idx = topk (score(E)). (8)

Then, we can obtain the pooled graph Gpool = (X,Mpool,Epool) by applying DHT to the pooled
dual hypergraph. HyperDrop is most suitable for graph classification tasks, as it identifies discrim-
inative edges for the given task. Since HyperDrop preserves the nodes intact, it can also be used
for node-level classification tasks, which is impossible with exiting graph pooling methods that
modify nodes. In another point of view, the proposed HyperDrop can be further considered as a
learnable graph rewiring operation, which optimizes the graph for the given task by deciding whether
to drop or maintain the nodes. Finally, a notable advantage of such HyperDrop is that it alleviates
the over-smoothing problem in deep GNNs [25] (i.e., the features of all nodes converge to the same
values when stacking a large number of GNN layers). As HyperDrop learns to remove unnecessary
edges, the message-passing only happens across relevant nodes, which alleviates over-smoothing.

6

Figure 3: Edge reconstruction results on the ZINC molecule
dataset by varying the pooling ratio. Solid lines denote the mean,
and shaded areas denote the standard deviation of 5 runs.

1 5 10 15
Pooling ratio (%)

70

80

90

100 Accuracy (%)

1 5 10 15
Pooling ratio (%)

40

60

80

100 Validity (%)

1 5 10 15
Pooling ratio (%)

0

50

100 Exact Match (%)

EGCN+GMPool
MPNN+GMPool

RGCN+GMPool
EGNN+GMPool

HyperCluster (ours)

Figure 4: Edge reconstruction results of
the synthetic two-moon graph. The edge fea-
tures are represented by colors.

(a) Original

(d) R-GCN + GMPool

(b) EGCN + GMPool

(e) EGNN + GMPool

(c) MPNN + GMPool

(f) HyperCluster (Ours)

1 5 10 15
Pooling ratio (%)

70

80

90

100 Accuracy (%)

1 5 10 15
Pooling ratio (%)

40

60

80

100 Validity (%)

1 5 10 15
Pooling ratio (%)

0

25

50

75
Exact Match (%)

EGCN+GMPool
MPNN+GMPool

RGCN+GMPool
EGNN+GMPool

HyperCluster (ours)

Figure 5: Graph reconstruction results on the ZINC molecule
dataset by varying the pooling ratio. Solid lines denote the mean,
and shaded areas denote the standard deviation of 5 runs.

(a) Original (b)R-GCN + GMPool

(c.1) Ours (c.2) Ours : clustered

Figure 6: Graph reconstruction examples.
Red dashed circles and squares indicate the
incorrectly predicted edges and nodes, re-
spectively. (c.2) shows the assigned clusters
of edges as colors using our method.

4 Experiments
We experimentally validate the effectiveness of EHGNN coupled with either HyperCluster or Hyper-
Drop on four different tasks: graph reconstruction, generation, classification, and node classification.

4.1 Graph reconstruction

Accurately reconstructing the edge features is crucial for graph reconstruction tasks, and thus we
validate the efficacy of our method on graph reconstruction tasks first.

Experimental setup We first validate our EHGNN with HyperCluster on the edge reconstruction
tasks, where the goal is to reconstruct the edge features from their compressed representations. Then,
we evaluate our method on the graph reconstruction tasks to validate the effectiveness of ours in
holistic graph-level learning. We start with edge reconstruction of a synthetic two-moon graph, where
node features (coordinates) are fixed and edge features are colors. For edge and graph reconstruction
of real-world graphs, we use the ZINC dataset [19] that consists of 12K molecular graphs [7], where
node features are atom types and edge features are bond types. We use accuracy, validity, and exact
match as evaluation metrics. For more details, please see Section C.1 of the supplementary file.

Implementation details and baselines We compare the proposed EHGNN framework against
edge-aware GNNs, namely EGCN [17], MPNN [12], R-GCN [32], and EGNN [13], which use the
edge features as auxiliary information for updating node features. We further combine them with
an existing graph pooling method, namely GMPool [2], to obtain a graph-level edge representation
for a given graph. In contrast, for our method, we first obtain edge representations with EHGNN,
using GCN [23] as the message-passing function, and then coarsen the edge-wise representations
using HyperCluster, whose cluster assignment matrices are obtained using GMPool [2]. For node
reconstruction, we set message-passing to GCN and graph pooling to GMPool [2] for all models. We
provide further details of the baselines and our model in Section C.1 of the supplementary file.

Edge reconstruction results Figure 4 shows the original two-moon graph and edge-reconstructed
graphs, where edge features are represented as colors, exhibiting clustered patterns. The baselines
fail to reconstruct the edge colors, since they implicitly learn edge representations by using edge
features as auxiliary information to update nodes, hence mixing the colors of the neighboring edges.
On the other hand, our method distinguishes each edge cluster, which shows that our method can
capture meaningful edge information by clustering similar edges. Moreover, as shown in Figure 3,
our model obtains significantly higher performance over all baselines on the edge reconstruction task
of molecular graphs, in all evaluation metrics. The performance gain of our method over baselines
is notably large in exact match, which demonstrates that explicit learning of edge representation is
essential for the accurate encoding of the edge information.

7

0 500 1000 1500
Discriminator Iteration

0.0

0.1

0.2

0.3

SA

MolGAN
MolGAN+GMPool
MolGAN+EHGNN (Ours)

0 500 1000 1500
Discriminator Iteration

0.0

0.2

0.4

0.6

QE
D

MolGAN
MolGAN+GMPool
MolGAN+EHGNN (Ours)

Figure 7: Graph generation results on MolGAN.
Solid lines denote the mean, and shaded areas denote
the standard deviation of 3 different runs.

Dataset Metrics MARS [38] MARS + EHGNN (Ours)

ZINC15

Success Rate 59.53 ± 2.11 64.30 ± 1.54
QED (≥ 0.67) 95.71 ± 0.09 96.36 ± 0.49

GSK3β (≥ 0.6) 86.52 ± 1.67 90.63 ± 2.57
JNK3 (≥ 0.6) 71.52 ± 4.15 73.60 ± 1.29

Table 2: Graph generation results on MARS. The
results are the mean and standard deviation of 3 differ-
ent runs. Best performance and its comparable results
(p > 0.05) from the t-test are highlighted in bold.

Graph reconstruction results To verify the effectiveness of learning accurate edge representations
for reconstructing both the node and edge features, we now validate our method on the molecular
graphs in Figure 5. Combining our edge representation learning method (EHGNN + HyperCluster)
with the existing node representation learning method (GCN + GMPool) yields incomparably high
reconstruction performance compared to the baselines in exact match, which demonstrates that
learning accurate edge representation, as well as node representation, is crucial to the success of the
graph representation learning methods on graph reconstruction.

Qualitative analysis We visualize the original and reconstructed molecular graphs in Figure 6. As
shown in Figure 6 (b), the baseline cannot reconstruct the ring structures of the molecule, whereas
our method perfectly reconstructs the rings as well as the atom types. The generated edge clusters in
Figure 6 (c.2) further show that our method captures the detailed substructures of the molecule, as
we can see the cluster patterns of hexagonal and pentagonal rings. More reconstruction examples of
molecular graphs are shown in Figure 3 of the supplementary file.

2.5 5.0 7.5 10.0
Number of Edges (103)

50

100
Re

la
tiv

e
Si

ze
 to

 th

e
Or

ig
in

al
 G

ra
ph

 (%
) Original

GMT
Ours (>95%)
Ours (>75%)

Figure 8: Graph compression results.
For ours, we report the relative size to
the original graph where the edge recon-
struction accuracy is higher than 95%
and 75%, respectively.

Graph compression To validate the effectiveness of our
method in large and dense graph compression, we further ap-
ply EHGNN with HyperCluster to the Erdos-Renyi random
graph [8] having six discrete edge features, where the number
of nodes is fixed to 103 while the number of edges increases
from 103 to 104. In Figure 8, we report the relative mem-
ory size of the compressed graph after pooling the features,
against the size of the original graph. We compare our method
which compresses both the nodes and edges, against the node
pooling method, namely GMT [2]. As the number of edges
increases, we observe that compressing only the node features
is insufficient for obtaining compact representations, whereas
our method is able to obtain highly compact but accurate rep-
resentation which can be assured from the sufficiently high edge reconstruction accuracy. We believe
that our proposed framework can not only learn accurate representations of nodes and edges, but
also effectively compress their features, especially for large-scale real-world graphs, such as social
networks or protein-protein interaction (PPI) graphs.

4.2 Graph generation

As shown in Figure 1 (left), graph generation depends heavily on the edge representations, as the
model may generate incorrect graphs (e.g., toxic chemicals rather than drugs) if the edge information
is inaccurate. Thus, we further validate our EHGNN on the graph generation tasks.

Experimental setup We directly forward the edge representation from the EHGNN to molecule
generation networks, namely MolGAN [5] and MArkov moleculaR Sampling (MARS) [38]. Mol-
GAN uses the Generative Adversarial Network (GAN) [14], to generate the molecular graph by
balancing weights between its generator and discriminator. MolGAN uses R-GCN [32] for node-level
message-passing, whereas, for ours, we first obtain the edge representations using EHGNN, and
use them with mean pooling in the graph encoder. For evaluation metrics, we use the Synthetic
Accessibility (SA) and Druglikeness (QED) scores. We further apply EHGNN to MARS [38] that
generates the molecule by sequentially adding or deleting its fragment, with MCMC sampling. While
the original model uses MPNN [12] to implicitly obtain edge representations for adding and deleting
actions, we use EHGNN to explicitly learn edge representations. We train models to maximize four

8

Table 3: Graph classification results. The results are the mean and standard deviation over 10 different runs.
Best performance and its comparable results (p > 0.05) from the t-test are highlighted in bold. Hyphen (-)
denotes out-of-resources that take more than 10 days. The results for the baselines are taken from Baek et al. [2].

TU : Biochemical TU : Social OGB : Molecule Average
D&D PROTEINS MUTAG IMDB-B IMDB-M COLLAB HIV Tox21 ToxCast BBBP

graphs 1178 1113 188 1000 1500 5000 41127 7831 8576 2039
classes 2 2 2 2 3 3 2 12 617 2
Avg # nodes 284.32 39.06 17.93 19.77 13.00 74.49 25.51 18.57 18.78 24.06
Avg # edges 715.66 72.82 19.79 96.53 65.94 2457.78 27.47 19.27 19.26 25.95

Set DeepSet 77.39 ± 0.67 68.95 ± 0.92 72.56 ± 1.09 72.42 ± 0.36 50.24 ± 0.32 75.27 ± 0.21 71.20 ± 1.26 72.25 ± 0.23 59.44 ± 0.39 63.64 ± 0.62 68.34

Naive GNN GCN 72.05 ± 0.55 73.24 ± 0.73 69.50 ± 1.78 73.26 ± 0.46 50.39 ± 0.41 80.59 ± 0.27 76.81 ± 1.01 75.04 ± 0.80 60.63 ± 0.51 65.47 ± 1.73 69.70
GIN 70.79 ± 1.17 71.46 ± 1.66 81.39 ± 1.53 72.78 ± 0.86 48.13 ± 1.36 78.19 ± 0.63 75.95 ± 1.35 73.27 ± 0.84 60.83 ± 0.46 67.65 ± 3.00 70.04

Global SortPool 75.58 ± 0.72 73.17 ± 0.88 71.94 ± 3.55 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 71.82 ± 1.63 69.54 ± 0.75 58.69 ± 1.71 65.98 ± 1.70 68.49
GMT 78.72 ± 0.59 75.09 ± 0.59 83.44 ± 1.33 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 77.56 ± 1.25 77.30 ± 0.59 65.44 ± 0.58 68.31 ± 1.62 73.07

Hierarchical

DiffPool 77.56 ± 0.41 73.03 ± 1.00 79.22 ± 1.02 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 75.64 ± 1.86 74.88 ± 0.81 62.28 ± 0.56 68.25 ± 0.96 71.40
SAGPool 74.72 ± 0.82 71.56 ± 1.49 73.67 ± 4.28 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 71.44 ± 1.67 69.81 ± 1.75 58.91 ± 0.80 63.94 ± 2.59 68.49
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.61 ± 3.36 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 72.27 ± 0.91 69.39 ± 2.02 58.42 ± 0.91 65.19 ± 2.30 67.47
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 79.17 ± 1.64 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 75.37 ± 2.05 75.11 ± 0.69 62.48 ± 1.33 65.97 ± 1.13 71.56
ASAP 76.58 ± 1.04 73.92 ± 0.63 77.83 ± 1.49 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 72.86 ± 1.40 72.24 ± 1.66 58.09 ± 1.62 63.50 ± 2.47 69.73
EdgePool 75.85 ± 0.58 75.12 ± 0.76 74.17 ± 1.82 72.46 ± 0.74 50.79 ± 0.59 - 72.66 ± 1.70 73.77 ± 0.68 60.70 ± 0.92 67.18 ± 1.97 -
HaarPool - - 66.11 ± 1.50 73.29 ± 0.34 49.98 ± 0.57 - - - - 66.11 ± 0.82 -

Ours HyperDrop 78.74 ± 0.68 75.30 ± 0.45 84.00 ± 0.69 73.96 ± 0.41 51.68 ± 0.41 81.29 ± 0.25 76.79 ± 0.86 76.95 ± 0.32 64.21 ± 0.70 69.04 ± 0.86 73.20
HyperDrop + GMT 78.39 ± 0.33 75.39 ± 0.26 85.72 ± 0.61 74.45 ± 0.61 51.45 ± 0.28 80.59 ± 0.33 77.84 ± 0.37 77.58 ± 0.43 65.15 ± 0.65 69.16 ± 1.04 73.57

molecule properties: inhibition scores against two proteins, namely GSK3β and JNK3 (biological);
QED and SA scores (non-biological). Then we report the success rate at which the molecule satisfies
all the properties. For more details, please see Section C.2 of the supplementary file.

MolGAN results Figure 7 shows the SA and QED scores of the generated molecules, of the Mol-
GAN architecture with different encoders. Our EHGNN framework obtains significantly improved
generation performance, over the original MolGAN which uses the R-GCN encoder and the MolGAN
with GMPool, a state-of-the-art global node pooling encoder. This is because EHGNN learns explicit
edge representation which enhances the ability of the discriminator to distinguish between real and
generated graphs. The improvement in the discriminator also leads to notably more stable results
compared to the baselines, which show a large variance in the quality of the generated molecules.

MARS results To perform correct editing actions to generate graphs with MARS, we need accurate
edge representations, as edges determine the structure of the generated molecule. Table 2 shows that
using our EHGNN achieves significantly higher generation performance over original MARS, which
uses edges as auxiliary information only to enhance node representations. Notably, performance
gain on the GSK3β inhibition score for which structural binding is important, suggests that accurate
learning of edges leads to generating more effective molecules that interact with the target protein.

4.3 Graph and node classification

Now, we validate the performance of our EHGNN with HyperDrop on classification tasks. Our
approach is effective for the classification of graphs with or without edge features, since it allows
lossless compression of nodes, and drops edges to allow message-passing only across relevant nodes.

Experimental setup Following the experimental setting of Baek et al. [2], we use the GCN as the
node-level message-passing layers for all models, and compare our edge pooling method against
the existing graph pooling methods. For this experiment, our HyperDrop uses SAGPool [24] on the
hypergraph, which is a node drop pooling method based on self-attention. We use 6 datasets from the
TU datasets [28] including three from the biochemical domains (i.e., DD, PROTEINS, MUTAG) and
the remaining half from the social domains (i.e., IMDB-BINARY, IMDB-MULTI, COLLAB). Also,
we further use the 4 molecule datasets (i.e., HIV, Tox21, ToxCast, BBBP) from the recently released
OGB datasets [17]. We evaluate the accuracy of each model with 10-fold cross validation [43] on the
TU datasets, and use ROC-AUC as the evaluation metric for the OGB datasets. For both datasets,
we follow the standard experimental settings, from the feature extraction to the dataset splitting. We
provide additional details of the experiments in Section C.3 of the supplementary file.

Baselines We compare our EHGNN with HyperDrop, against the set encoding (DeepSet [42]),
GNNs with naive pooling baselines (GCN and GIN [23, 39]), and state-of-the-art hierarchical pooling
methods (DiffPool [41], SAGPool [24], TopKPool [11], MinCutPool [4], ASAP [29], EdgePool [6],
and HaarPool [35]) that drop or coarsen node representations. We also additionally compare or
combine the state-of-the-art global node pooling methods (SortPool [43], GMT [2]) with our model,
for example, HyperDrop + GMT. For more details, see Section C.3 of the supplementary file.

9

Model MUTAG PROTEINS Tox21

HyperDrop 84.00 ± 0.69 75.30 ± 0.45 76.95 ± 0.32
HyperCluster 84.50 ± 1.50 72.76 ± 1.12 76.68 ± 0.56

w/ RandDrop 83.06 ± 1.15 74.92 ± 0.51 76.39 ± 0.47
w/o HyperDrop 83.06 ± 1.20 75.08 ± 0.37 76.60 ± 0.45
w/o EHGNN 69.50 ± 1.78 73.24 ± 0.73 75.04 ± 0.80

Table 4: Ablation study of Hyper-
Drop on the MUTAG, PROTEINS,
and Tox21 datasets for classification.

Figure 9: Edge pooling results on
the COLLAB dataset. Colors de-
note connected components.

2 3 4 5 6 7 8 9 10
of layers

25

50

75

Te
st

 A
cc

 (%
) Cora

2 3 4 5 6 7 8 9 10
of layers

20

40

60

Te
st

 A
cc

 (%
) Citeseer

GCN
DropEdge (Random Drop)

GCN with BatchNorm
HyperDrop (Ours)

Figure 10: Node classification re-
sults. Lines denote means over 10
runs and shades denote variances.

Classification results Table 3 shows that the proposed EHGNN with HyperDrop significantly
outperforms all hierarchical pooling baselines. This is because HyperDrop not only retains nodes
by removing edges that are less useful for graph discrimination, but also explicitly uses the edge
representations for graph classification. Since HyperDrop does not remove any nodes on the graph, it
can be jointly used with any node pooling methods, and thus, we pair HyperDrop with GMT. This
model largely outperforms GMT, obtaining the best performance on most of the datasets, which
demonstrates that accurate learning of both the nodes and edges is important for classifying graphs.
We further visualize the edge pooling process of HyperDrop in Figure 9, which shows that our method
accurately captures the substructures of the entire graph, which leads to dividing the large graph into
several connected components, thus adjusting the graph topology for more effective message-passing.
We provide more visual examples of edge drop procedures in Section D.3 of the supplementary file.

Ablation study To see how much each component contributes to the performance gain, we conduct
an ablation study on EHGNN with HyperDrop. Table 4 shows that, compared with a model that only
uses node features (i.e., w/o EHGNN), learning explicit edge representations significantly improves
performance. Our model EHGNN with HyperCluster, or without HyperDrop, or the model with
random edge drop obtains decent performance, but substantially underperforms HyperDrop.

Over-smoothing with deep GNNs Lastly, we demonstrate that our EHGNN with HyperDrop
alleviates the over-smoothing problem of deep GNNs on semi-supervised node classification tasks,
which is not possible for the existing node-based pooling methods. We follow the settings of existing
works [23, 34, 10] and provide the experimental details in Section C.4 of the supplementary file. As
shown in Figure 10, HyperDrop retains the accuracy as the number of layers increases, whereas the
naive GCN or random drop [30] results in largely degraded performance, since HyperDrop identifies
and preserves the task-relevant edges while the sampling-based methods randomly drop the edges.
Further, our method outperforms BatchNorm which alleviates over-smoothing by yielding differently
normalized feature distribution at each batch. This is because HyperDrop splits the given graph into
smaller subgraphs that capture meaningful message-passing substructures as shown in Figure 9.

5 Conclusion

We tackled the problem of accurately representing the edges of a graph, which has been relatively
overlooked over node representation learning. To this end, we proposed a novel edge representation
learning framework using Dual Hypergraph Transformation (DHT), which transforms the edges of
the original graph into nodes on a hypergraph. This allows us to apply a message-passing scheme
for node representation learning, for edge representation learning. Further, we proposed two edge
pooling methods to obtain a holistic edge representation for a given graph, where one clusters similar
edges into a single edge for graph reconstruction and the other drops unnecessary edges for graph
classification. We validated our edge representation learning framework on graph reconstruction,
generation, and classification tasks, showing its effectiveness over relevant baselines.

6 Acknowledgements and Disclosure of Funding

We thank the anonymous reviewers for their constructive comments and suggestions. This work was
supported by Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-0-00075, Artificial Intelligence Graduate
School Program (KAIST), and No.2021-0-02068, Artificial Intelligence Innovation Hub), and the
Engineering Research Center Program through the National Research Foundation of Korea (NRF)
funded by the Korean Government MSIT (NRF-2018R1A5A1059921).

10

References
[1] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances

in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 1993–2001, 2016.

[2] Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations
with graph multiset pooling. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[3] Claude Berge. Graphs and hypergraphs. 1973.

[4] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. arXiv preprint, arXiv:1907.00481, 2019.

[5] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint, arXiv:1805.11973, 2018.

[6] Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

[7] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint, arXiv:2003.00982, 2020.

[8] P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION OF THE
MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, pages
17–61, 1960.

[9] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[10] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[11] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 2083–2092. PMLR, 2019.

[12] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.

[13] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 9211–9219. Computer Vision Foundation / IEEE, 2019.

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint,
arXiv:1406.2661, 2014.

[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pages 1024–1034, 2017.

[16] Frank Harary and R. Z. Norman. Some properties of line digraphs. Rendiconti del Circolo
Matematico di Palermo, 9:161–168, 1960.

11

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint, arXiv:2005.00687, 2020.

[18] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label
propagation and simple models out-performs graph neural networks. In International Conference
on Learning Representations, 2021.

[19] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 52(7):1757–1768,
2012.

[20] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 2656–2662.
ijcai.org, 2019.

[21] Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 2656–2662. ijcai.org, 2019.

[22] Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 3183–3191. PMLR, 2019.

[23] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[24] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3734–3743.
PMLR, 2019.

[25] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 3538–3545. AAAI Press, 2018.

[26] Jose Lugo-Martinez and Predrag Radivojac. Classification in biological networks with hyper-
graphlet kernels. arXiv preprint, arXiv:1703.04823, 2017.

[27] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann,
and Michael M. Bronstein. Dual-primal graph convolutional networks. arXiv preprint,
arXiv:1806.00770, 2018.

[28] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 2014–2023. JMLR.org, 2016.

[29] Ekagra Ranjan, Soumya Sanyal, and Partha P. Talukdar. ASAP: adaptive structure aware
pooling for learning hierarchical graph representations. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 5470–5477.
AAAI Press, 2020.

[30] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

12

[31] Edward Scheinerman and Daniel Ullman. Fractional graph theory: a rational approach to the
theory of graphs. Courier Coporation, 2011.

[32] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
Proceedings, volume 10843 of Lecture Notes in Computer Science, pages 593–607. Springer,
2018.

[33] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. Composition-based
multi-relational graph convolutional networks. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[35] Yu Guang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, and Yanan Fan.
Haarpooling: Graph pooling with compressive haar basis. arXiv preprint arXiv:1909.11580,
2019.

[36] B. Yu. Weisfeiler and A. A. Leman. Reduction of a graph to a canonical form and an algebra
arising during this reduction. 1968.

[37] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[38] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.
Mars: Markov molecular sampling for multi-objective drug discovery. arXiv preprint,
arXiv:2103.10432, 2021.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[40] Yulei Yang and Dongsheng Li. NENN: incorporate node and edge features in graph neural
networks. In Proceedings of The 12th Asian Conference on Machine Learning, ACML 2020,
18-20 November 2020, Bangkok, Thailand, volume 129 of Proceedings of Machine Learning
Research, pages 593–608. PMLR, 2020.

[41] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 4805–
4815, 2018.

[42] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 3391–3401, 2017.

[43] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4438–4445. AAAI Press,
2018.

[44] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph
neural networks: A review of methods and applications. arXiv preprint, arXiv:1812.08434,
2018.

13

	Introduction
	Related Work
	Edge Representation Learning with Hypergraphs
	Edge representation learning with dual hypergraph transformation
	Graph-level edge representation learning with edge pooling

	Experiments
	Graph reconstruction
	Graph generation
	Graph and node classification

	Conclusion
	Acknowledgements and Disclosure of Funding

