
LSH-SMILE: Locality Sensitive Hashing Accelerated
Simulation and Learning

Chonghao Sima
Department of Computer Science

Purdue University
West Lafayette, IN, USA, 47907

simac@purdue.edu

Yexiang Xue
Department of Computer Science

Purdue University
West Lafayette, IN, USA, 47907

yexiang@purdue.edu

Abstract

The advancement of deep neural networks over the last decade has enabled progress
in scientific knowledge discovery in the form of learning Partial Differential Equa-
tions (PDEs) directly from experiment data. Nevertheless, forward simulation
and backward learning of large-scale dynamic systems requires handling billions
mutually interacting elements, the scale of which overwhelms current computing
architectures. We propose Locality Sensitive Hashing Accelerated Simulation and
Learning (LSH-SMILE), a unified framework to scale up both forward simulation
and backward learning of physics systems. LSH-SMILE takes advantages of (i) the
locality of PDE updates, (ii) similar temporal dynamics shared by multiple elements.
LSH-SMILE hashes elements with similar dynamics into a single hash bucket and
handles their updates at once. This allows LSH-SMILE to scale with respect to
the number of non-empty hash buckets, a drastic improvement over conventional
approaches. Theoretically, we prove a novel bound on the errors introduced by
LSH-SMILE. Experimentally, we demonstrate that LSH-SMILE simulates physics
systems at comparable quality with exact approaches, but with way less time and
space complexity. Such savings also translate to better learning performance due
to LSH-SMILE’s ability to propagate gradients over a long duration.

1 Introduction

Learning-driven scientific discovery has enjoyed rapid progress thanks to the advancement of deep
neural networks over the last decade. Since Partial Differential Equations (PDEs) are widely used to
model physics systems, a fruitful line of research has been developed focusing on learning PDEs from
experimental data, including Finzi et al. [2020], Greydanus et al. [2019], Matsubara et al. [2020].

Nevertheless, successful applications of machine learning for scientific discovery still face multiple
challenges, many of which are computational. Both the forward simulation and backward learning
of large-scale dynamic systems requires handling billions mutually interacting elements, the scale
of which overwhelms current computing architectures. Forward simulation involves simulating the
trajectory of a PDE system from a given starting state. Recent work of Greydanus et al. [2019]
demonstrates such process can be represented using a neural network similar to ResNet. Backward
learning is to discover (the parameters of) the physics model automatically from experimental data,
which also attracts recent attention in Niu et al. [2020] and Xue et al. [2021]. Backward learning
can be achieved by embedding a neural network modeling the forward simulation into the overall
architecture and minimizing a loss function which penalizes the difference between the simulated
result and the observed data via back-propagation. In both forward simulation and backward learning,
billions of mutually interacting elements resulted from applying the finite difference or finite element

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

approaches have to be handled efficiently. Current brute-force approaches which treat each element
as one matrix element do not scale to meet the computational need.

To tackle the computational bottleneck, we propose Locality Sensitive Hashing Accelerated
Simulation and Learning (LSH-SMILE), a unified framework to scale up both forward simula-
tion and backward learning of physics systems represented in a set of PDEs. The method is based on
three key observations. The first is that only a small fraction of elements change while the majority
of elements remain the same in one step forward simulation. The second is that the one-step update
of one element depends on the values of a small set of neighboring elements. The third is that many
elements share similar temporal dynamics. The three observations are shared among the simulations
of a wide variety of physics phenomena, especially in the so-called interface problems that have
applications in fluid dynamics, heat transfer, cracking formation, etc. Motivated by these observations,
LSH-SMILE harnesses Locality Sensitive Hashing (LSH) to boost the computational throughput. By
representing each element as a vector of its value and its neighbor elements’ value, we hash elements
into hash buckets via LSH, where elements with similar self and neighboring element values are
grouped into the same bucket. Then the forward simulation and backward learning are carried out for
all the elements hashed into the same bucket at once. In this way, the time and space complexities
of LSH-SMILE are reduced to be propotional to the number of non-empty hash buckets, a drastic
improvement compared to the number of distinct elements in the brute-force algorithm. We also
prove a novel bound on the quality of the approximation of LSH-SMILE and provide an interface to
control the error rate. LSH-SMILE explores a novel way of using LSH in learning and simulation.
Compared to traditional LSH usage case in the nearest neighbor search where the hash table stays
the same, LSH-SMILE needs to maintain a hash table that changes dynamically over time. New
theoretical and experimental ideas can be sparkled via exploring this new usage of LSH.

Experimentally, LSH-SMILE is able to simulate and learn physics systems represented in PDEs at a
comparable quality with the exact methods while saving drastically in computation. We focus our
attention on systems in nano-physics, where we simulate and learn the grain growth in materials
(Fan and Chen [1997]) and model the spatial temporal dynamics of void shaped defects, namely
nanovoids, in materials under high temperature and irradiation (Millett et al. [2011]). The proposed
LSH-SMILE reduces the overall simulation time compared to an exact Torch implementation by
70% in the grain growth simulation, and by 95% in the nanovoid simulation. In terms of precision,
LSH-SMILE matches the ground truth results to the scale of 10−5 in both the nanovoid and the
grain growth simulations after 100 simulation steps. Such savings directly translate to better learning
performance. In our experiment which uses LSH-SMILE to learn the physics parameters governing a
grain growth process, LSH-SMILE-based learning approach can successfully identify the correct
model parameters while brute-force baseline approaches cannot, The success is due to a longer
forward simulation (30 time steps) embedded in the backward learning process enabled by the
computational savings of LSH-SMILE. Baseline approaches can only embed 10 forward simulation
steps with similar computational budget. One related approach is the Fast Multi-pole Method (Rokhlin
[1985]) used in astrophysics. FMM is used to calculate long-ranged forces in the n-body problem, by
grouping elements which are close in distance into a single source. However, LSH-SMILE groups
elements based on their similarity in future updates. We believe this is a key difference. Overall, the
computational innovation of LSH-SMILE opens the door for faster and better scientific discoveries.

2 Preliminaries

Energy-based systems represented in Partial Differential Equations (PDEs). The dynamics of
many physics systems can be described with first or second-order Partial Differential Equations
(PDEs) modeling the system energy. Given the state ~u(~p, t) = (u1(~p, t), . . . , um(~p, t))T , where
~p = (x1, . . . , xd)

T denotes the spatial coordinates and t denotes time, such PDEs are in the form:

∂~u(~p, t)

∂t
= D(~u) +G(~u)∇F (~u) + I(~u)∇2H(~u). (1)

Here, F and H are functions that map Rm to R. ∇ = (∂
∂x1

, . . . , ∂
∂xd

)T represents the gradient
operator, ∇2 = ∇ · ∇ is the Laplace operator. D is a function that maps Rm to Rm. G(~u) is an
m-by-d matrix and I(~u) is a m-by-1 vector.

Many notable physics systems can be represented using PDEs in Equation 1. The widely used Allen-
Cahn and Cahn-Hilliard Equations in phase field modeling are good examples. The Cahn–Hilliard

2

Figure 1: A toy example showing the forward simulation of grain growth. Here, the state ~u(~p, t) is
represented using a triple (u1(~p, t), u2(~p, t), u3(~p, t)). ~u vary over location ~p and time t according to
a specific form of Equation 4. u1 (u2, u3) is 1 if inside the first (second, third) grain and 0 outside.
Values between 0 and 1 for u1, u2, u3 can be found at the boundary.

equation and Allen-Cahn equation are used to describes the physics process of field variables in
nano-scale materials. The values of the field variables represent the micro-structure composition at
different spatial coordinates. The Cahn–Hilliard equation has the general form:

∂u

∂t
= ∇ ·

(
M∇ 1

N

δF

δu

)
. (2)

The Allen-Cahn equation has the general form:

∂v

∂t
= −L δF

δv
. (3)

Here u and v are the field variables of interest and they are assumed to be continuous and changing
rapidly across the inter-facial regions. t is time. M , N , L are physics parameters that are related to
the changing process. F is the energy function which is different in different applications. More
details are left in the supplementary materials.

Discretization with finite difference. Finite difference methods allow us to simulate and learn PDEs
using the forward and backward propagation of a neural network. It has attracted recent attentions
in recent works, e.g., Wang et al. [2020], Dong and Simos [2017], Forsythe and Wasows [1963]
and Shojaei et al. [2019]. More specifically, let {xi,1, xi,2, . . . , xi,R} be a finite discretization of the
domain of xi, where each xi,k is called a discretization point. {t1, t2, . . . , tS} is the discretization
of the time. Let ~i = (i1, i2, . . . , id). We use ~u(~i, j) as a shorthand for ~u evaluated at position
~i = (x1,i1 , . . . , xd,id)

T and time tj , i.e., ~u(~i, j) = ~u(x1,i1 , . . . , xd,id , tj). Each discretized position
~i is also called an element. The left-hand side of Equation 1 can be discretized using the finite
difference: ∂~u(~i,j)

∂t ≈ ~u(~i,j+1)−~u(~i,j)
tj+1−tj . Similarly, notice ∇F (~u) = (∂F (~u)

∂x1
, . . . , ∂F (~u)

∂xd
)T , where

∂F (~u)
∂xl

=
∑m
k=1

∂F (~u)
∂uk

∂uk
∂xl

. We need ∂uk(~i,j)
∂xl

to compute ∇F and ∂uk(~i,j)
∂xl

can be approximated

by uk(~i+1l,j)−uk(~i,j)
xl,il+1−xl,il

. Here,~i + 1l means to move the l-th coordinate of~i, namely il, to the next

discretization point il+1. Repeating this type of calculations for the second-order derivatives∇2H(~u),
the PDE in Equation 1 can be approximated in the following general form:

~u(~i, j + 1) = ~u(~i, j) + δtQ({~u(~i′, j),~i′ ∈ N(~i)}). (4)

Here, we intentionally use function Q to abstract out the actual form, because its derivation is pure
arithmetic and is only marginally related to the main purpose of this paper. One important fact to
notice: Q depends on a small set of ~u(~i′, j)’s, in which~i′ is a neighboring element of~i. We use
N(~i) to represent the set of neighbors of~i. In the two applications we consider in this paper, N(~i) is
actually small and only consists of the first and second order neighbors. Two elements are first or
second order neighbors if and only if they differ in one dimension within two discretization points, or
they differ in two dimensions, each dimension within one discretization point.

Forward simulation. By discretizing PDEs with finite difference approach (Equation 4), we can
simulate future states of a physics system from an initial state by updating the left-hand side with
values from the right-hand side of Equation 4 repeatedly. Interestingly, such a process can be

3

Figure 2: Intuitions that motivates LSH-SMILE. The updates of grain growth (difference between
two consecutive frames, shown in the second row) only happens at the grain boundaries (show in red
dots). Also, notice from the first and the second rows, elements with similar values of themselves and
their neighbors share the same temporal dynamics. Hence in the third row, they can be hashed into
the same hash bucket using LSH. The colors represent the hash buckets of the elements.

implemented as a multi-layer convolutional neural network (see, e.g., Xue et al. [2021]). See Figure 1
for a demonstration of the forward simulation process. Here we use the grain growth as an example.

Backward Learning. Backward learning allows us to learn the parameters of the PDE that governs
the dynamics of a physics system from experiment data. It is developed with a series of work,
e.g. Wen et al. [2021], Dupont et al. [2019], Xue et al. [2021] and Rubanova et al. [2019]. During
backward learning, physics rules are expressed in the form of Equation 4 initialized with random
parameters. The dataset consists of the observed pairs of states: ~u(~p, t) and ~u(~p, t + T), where
~u(~p, t) is the state of physics system at time t and ~u(~p, t+ T) is the state at time t+ T . Here T is a
constant set manually. Starting with ~u(~p, t), a repeated evaluation of Equation 4 of T times will yield
the simulated state ~u′(~p, t + T). A loss function is defined to penalize the difference between the
simulated state ~u′(~p, t+ T) and observed state ~u(~p, t+ T). In our experiment, we use the L2 loss
function. Back-propagation (Rumelhart et al. [1986], Robbins and Monro [1951]) is then applied to
minimize the difference. Upon convergence, correct physics parameters are learned which yield the
same temporal dynamics as the observed data.

Locality Sensitive Hashing (LSH). For a domain S with distance measure D, a LSH family is:

Definition 1. H = {h : S → U} is called a (r1, r2, p, q)-sensitive LSH function family for D if for
any two points x, y ∈ S, one function h chosen uniformly at random fromH satisfies:

• if D(x, y) ≤ r1, then Ph∈H[h(x)=h(y)] ≥ p,
• if D(x, y) ≥ r2, then Ph∈H[h(x)=h(y)] ≤ q.

In this paper, Euclidean distance is used as the distance measure D. In this case, a function in the
LSH hash function family has the following form ha,b(v) =

⌊ a·v+b
r

⌋
, where a is a d-dimensional

vector with entries chosen independently at random from a standard Gaussian distribution and b is
a real number chosen uniformly from the range [0, r]. r is a hyper-parameter denoting the size of
the hash bucket. We refer the reader to Datar et al. [2004] for the selection of r and the resulting
performance (i.e., the values of r1, r2, p, q).

3 Intuition

The intuitions behind the development of LSH-SMILE is inspired by the following three observations.
Notice that these observations apply to a wide range of physics systems beyond the applications
considered in this paper. Hence, we believe our method can be applied in a broad context.

4

Figure 3: The spatial local dependency of the updates also motivates LSH-SMILE. The left picture
(from Bremmert et al. [2019]) shows a nanovoid, enlarged in the middle. The update of one element
of the nanovoid (shown in the red box) only depends on the values of itself and its neighboring
elements (shown in the blue boxes in the right). This local dependency implies elements with similar
values of themselves and their neighbors will share similar dynamics.

Concentrated updates. Our first observation is that most element updates are concentrated in small
area. For example, consider our application of grain growth (Fan and Chen [1997]). As shown in
Figure 2 (first and second rows), the updates are concentrated in rather small boundary area (shown
in yellow in the first row). There are no updates inside the grains (shown in green, purple, blue
of the first row). From our calculation, the boundary area where significant updates reside makes
up under 1% of the entire image. Notice this phenomenon is prevalent in many physics systems,
especially among the so-called interface problems. Such concentrated updates makes it wasteful to
spread computation resources over the entire area. An algorithm focused on area of real updates can
potentially save a lot of computation.

Spatial local dependency. Out second observation is that updating one element only depends on the
values of the element itself and its small set of neighboring elements. Notice this property is a direct
consequence of applying the finite difference method on PDEs. See, e.g., applying finite difference on
Equation 1 results in Equation 4, in which the updates depend on a small set of elements in N(~i). As
a consequence, this observation applies to a wide range of PDE systems. A more intuitive illustration
is shown in Figure 3 for the nanovoid evolution application we consider. Here the update of one
element (shown in the red box) depends on its first and second-order neighbors (shown in blue boxes).

Elements share similar dynamics. Our third observation is that many elements share similar
temporal dynamics. Notice that this is a direct consequence of the spatial local dependency. Because
the temporal update of one element depends on its own value and those of its neighbors, the temporal
update of two elements will be the same if their own value and their neighbors’ values meet. For
example in Figure 2, the temporal dynamics of elements inside each grain are basically the same.

4 The LSH-SMILE Algorithm

Our proposed LSH-SMILE algorithm harnesses locality sensitive hashing to accelerate both the
forward simulation and the backward learning of physics systems represented in PDEs. We first
hash every element into a hash table based on LSH computed from the values of the element and its
neighbors. Because of previous observations, the elements hashed into the same bucket share similar
dynamics. The key idea behind LSH-SMILE is to handle all the elements in each hash bucket at
once, hence reducing the complexity from proportional to the number of elements to proportional
to the number of non-empty hash buckets, a drastic improvement. For example, the third row of
Figure 2 colors elements of different hash buckets with different colors. We can see that elements
inside each grain are hashed into a single hash bucket (shown in red, blue and pink), while elements
on the boundary are hashed into many different hash buckets. In this way, only three operations
suffice to handle the updates of all elements inside the three grains. In this section, we will first
describe LSH-SMILE algorithm for forward simulation, then will discuss LSH-SMILE for backward
learning. The pseudo code of LSH-SMILE for forward simulation is in Figure 4.

Notation. We first introduce the notation used in LSH-SMILE in Figure 4. Bt is the hash table
at time t. I is the initial state. r,K,L are LSH parameters. r0 is a threshold. N is the number of
simulation steps.

5

1 Func Forward(N, I, r,K,L):
2 B0 ← EncodeInitState(I,K,L);
3 for t = 1, . . . , N do
4 Bt ← OneStep(Bt−1, r,K, L);
5 end
6 return BN ;
7 end
8 Func OneStep(Bt, r,K, L):
9 ActiveL← ∅;

10 for Bt,i ∈ Bt do
11 Bt,i.vold ← Bt,i.v;
12 Bt,i.v ←
13 Eval(Bt,i.v,NeighborV (i,Bt));
14 Update Bt,i.LSH1, . . . , .LSHL;
15 if |Bt,i.v −Bt,i.vold| > r0 then
16 ActiveL← ActiveL ∪Bt,i.N
17 end
18 end
19 Bt+1 ← Bt;
20 for a ∈ ActiveL do
21 Remove a from the original bucket

that contains a in Bt+1;
22 Ba ←

CreateBucketElem(a,K,L);
23 Bt+1 ← Bt+1 ∪ {Ba};
24 end
25 Bt+1 ←MergeBuckets(Bt+1);
26 return Bt+1;
27 end

1 Func MergeBuckets(B,K, L):
2 B′ = ∅;
3 for B ∈ B do
4 for l ∈ {1, . . . , L} do
5 if there exists B′ ∈ B′, such that

B.LSHl = B′.LSHl then
6 B′ ← B′ \ {B′};
7 B ←Merge(B,B′);
8 end
9 end

10 B′ ← B′ ∪ {B};
11 end
12 for B ∈ B′ do
13 for l ∈ {1, . . . , L} do
14 B.LSHl ←

LSHl(B.v,NeighborV (B.rep,B′))
15 end
16 end
17 return B′;
18 end
19 Func EncodeInitState(I,K,L):
20 B0 = ∅;
21 for a ∈ I do
22 Ba ←

CreateBucketElem(a,K,L);
23 B0 ← B0 ∪ {Ba};
24 end
25 return MergeBuckets(B0);
26 end

Figure 4: The forward simulation algorithm of N steps using locality sensitive hashing. The main
function is Forward, which calls children functions OneStep, MergeBuckets, and EncodeInitState.

Data structure. Bt is the hash table at time t, each entry of which is a hash bucket. In one hash
bucket Bt,i ∈ Bt, there is a representative value Bt,i.v, a representative element Bt,i.rep, a list of
its elements’ coordinates Bt,i.P and a list of neighbor elements’ coordinates Bt,i.N . Here we use
union-find-delete data structure (Ben-amram and Yoffe [2011]) to organize Bt,i.P , which ensures
that we can perform the union of the elements of two hash buckets and deleting one element from
a hash bucket in nearly constant time. The idea of building such a hash bucket is that, using LSH,
every element ~u(~i, j) that shares almost the same values for itself and for its neighbors N(~i) shall be
hashed into the same bucket with high probability. We intentionally give all elements in one bucket a
single value, namely Bt,i.v. We use Bt,i.P to track all the elements in the bucket and Bt,i.N to track
all the elements that neighbor elements in Bt,i.P but are not in Bt,i.P . According to Equation 4,
the elements in one hash bucket have similar updates. Hence, we can update the value Bt,i.v for all
elements in this bucket following Equation 4 in one step, thus saving computation time.

Encode initial state. The first step of LSH-SMILE is to encode the input data into the data structure
described above. At the beginning, since we do not have any prior information of the input data,
we use a brute-force method which iterates all elements in the input data and construct a hash table
where each hash bucket only contain one element. Then we perform MergeBucket which merges
those buckets whose elements share colliding LSH codes.

Forward and OneStep functions. The main function for the forward simulation is Forward, which
calls OneStep N times to simulate forward simulation of N time steps. Each OneStep simulates one
step. In OneStep, first it iterates every hash bucket to perform an one-step update given in Equation 4.
The update is carried out using function Eval(·). After the update, it updates its LSH hash code and
sees if the update is bigger than a threshold r0. If so, all elements in the bucket needs to be re-hashed.
We do so by updating their LSH code. Notice this is an operation that is carried out at once for all
elements in the bucket. Also notice that the value updates of the elements in the bucket may affect

6

the LSH codes of neighboring elements, namely those in Bt,i.N . We put these elements into ActiveL
for later processing. After iterating all hash buckets, LSH-SMILE handles ActiveL, rehashing the
elements inside one by one to make sure that they are in their correct buckets. Finally, it merges all
the buckets with colliding LSH hash codes.

Invariants. LSH-SMILE strives to maintain the following invariants: (i) every element is in one and
only one hash bucket. (ii) The LSH code computed for every element residing in a bucket collides
with the LSH code of the representative element of the bucket. (iii) The LSH code of different hash
buckets do not collide. (i) is guaranteed because we only move elements between buckets. (ii) is
ensured because the change of the LSH code of one element can only happen if either the value of
the element changes or the values of its neighboring elements change. When r0 is set small, its own
value change will trigger the exceeding of r0 threshold and hence the element is rehashed. The values
change of its neighbors will put the element in ActiveL and hence is rehashed. (iii) is guaranteed
because of the MergeBuckets operation, since buckets with colliding LSH codes are merged.

AND of OR LSH. We introduce multi-probe LSH techniques from Lv et al. [2007] to guarantee high
probabilities that two elements within the distance of r will be hashed into the same hash bucket.
Consider a series of LSH functions hi,j constructed in the form hi,j(v) =

⌊
ai,j ·v+bi,j

r

⌋
where ai,j

and bi,j are sampled in the way described in Section 2. Construct gi(p) = [hi,1(p), . . . , hi,K(p)],
select L different functions g1, . . . , gL. For one element p, hash p into all L buckets, denoted by
g1, . . . , gL. p and q “collides” if they collide under any of the g1, . . . , gL values. We refer to the next
section on how to choose K,L, r and the corresponding guarantees we can have.

Merge Buckets. During simulation, the values of the representative element and neighbors may
change, leading to several hash buckets colliding on the LSH codes. To avoid duplicative computation,
we use MergeBuckets to merge those buckets with colliding LSH codes.

ActiveL. TheActiveL is a list of elements whose neighbors’ values are updated which can potentially
lead to their own LSH updates. We maintain this list during simulation and process these elements
one by one in the end of OneStep.

Backward learning. The described forward simulation process can be embedded in the backward
learning which learns the parameters of the PDEs from experimental data. The high-level idea is to
harness stochastic gradient descend to adjust the PDE parameters so as to minimize the difference
between the simulated results of T steps and the experiment data after T steps. Notice in the forward
simulation, we do not retain the hash table for every time stamp. Otherwise there is a large overhead
copying hash buckets between hash tables. However, elements values in previous time stamps are
needed for back propagation. In this case, we slightly modify Equation 4, namely, replacing ~u(~i′, j)
with ~u(~i′, j + 1), when used in back-propagation.

5 Analysis

Algorithm running time analysis. Let n be the size of input I , b be the largest number of buckets
in any Bt, g be the size of largest neighbor list for one bucket during simulation. The merging of two
buckets Merge(B,B′) has to merge the element list B.P and B′.P as well as updating the neighbor’s
list. Merging element list is conducted using the union-find-delete data structure and is handled in
near constant time. The bottleneck is to update the neighbor list, which scales O(g log g) using sorted
list merge. For MergeBuckets, at most bL Merge operations can happen and hence the complexity
is O(bKL + bLg log g). In function EncodeInitState(·), line 21 to 24 iterates every element in
I , line 25 calls MergeBuckets, thus this function have time complexity O(n+ bKL+ bLg log g).
In function OneStep(·), line 10 to 18 iterates on B, the time complexity is O(bKL). Line 20 to
24 iterates on ActiveL, which has size smaller than bg. Line 25 calls MergeBuckets. Hence
the time complexity of OneStep is O(bKL + bLg log g). In function Forward(·), line 2 calls
EncodeInitState(·), line 3 to 5 calls OneStep(·) for N steps. The time complexity of Forward(·)
is O(bNKL+ bNLg log g + n). In comparison, a brute-force method has time complexity O(nN).
Our LSH-SMILE will be faster than the brute-force method when bKL+ bLg log g << n.

Error bound introduced by LSH-SMILE. When quantifying the approximation quality of LSH-
SMILE, we assume all the elements during simulation are naturally clustered. Naturally clustered
means that there exists c > 1 and r > 0, for any two elements x and y, either they belong to the same

7

Figure 5: LSH-SMILE simulation results (the first and the third rows) closely match the ground truth
(the second and the fourth rows). First two rows are initialized with condition 1. Last two rows are
initialized with condition 2.

cluster and hence their distance ||x− y|| ≤ r, or they belong to different clusters and ||x− y|| ≥ cr.
Here x and y refer to the vectors containing the values of the corresponding elements and their
neighbors. Naturally clustering well describes the observed data in practice. In the grain growth
example, the elements inside each grain share similar values (hence having small pairwise distances),
while the elements of different grains or in the boundaries are different (hence having large pairwise
distances). Under the natural clustering assumption, we can build a LSH function which guarantees
with high probabilities that elements inside each cluster are hashed to the same bucket while elements
of different clusters are hashed to different buckets, as reflected in the following theorem:
Theorem 1. For 0 < ε < 0.5, let C = logε(1− ε), then 0 < C < 1. Suppose each hi,j is sampled
from a (r, cr, p, q)-sensitive LSH function family. Pick K = max{1, dlogp/q Ce}, L = 1

logε(1−pK)
.

Build L LSH functions in the way described in “AND of OR LSH”, we have

• For all elements x, y satisfying ||x− y|| ≤ r, i.e., they belong to the same cluster, we have
Pr(x collide with y) ≥ 1− ε.

• For all elements x, y satisfying ||x− y|| ≥ cr, i.e., they belong to different clusters, we have
Pr(x collide with y) ≤ ε.

We will show the proof in the supplementary materials. A consequence of this theorem is to bound
the approximation errors introduced in one-step LSH-SMILE simulation. Because of theorem 1,
the pairwise distance among elements in one hash bucket is bounded by r with high probability.
LSH-SMILE uses the update of one representative element (shown in Equation 4) in replacement of
the updates of all the elements in the bucket. Let us assume one step update based on Equation 4
magnifies this difference by M . In other words, for two elements whose distance bounded by r, the
value distance of these two elements after one step update from Equation 4 becomes Mr. As a result,
if we choose the parameters of the LSH functions according to theorem 1, we know after one call of
OneStep(·), the errors will be bounded by Mr with high probability (a union bound argument is
needed). In experiment we found the magnitude of M is around 10. We can hence control the error
introduced by LSH-SMILE by setting r to be small. We will show the forward simulation result in
experiment to support this idea.

6 Experiments

Forward simulation. We first examine the proposed LSH-SMILE algorithm in forward simulation.
We apply LSH-SMILE on two physics models for nano-structure evolution in materials. One is to
model the grain growth (Fan and Chen [1997]), and the other is to model nanovoids evolution (Millett

8

Figure 6: LSH-SMILE simulation results of nanovoids closely match the ground truth. The first two
rows are initialized with condition 1. The last two rows are initialized with condition 2.

Figure 7: LSH-SMILE is able to learn the dynamics of grain growth, while the brute-force baseline
cannot. The first row is the ground truth data. The second row shows the simulated dynamics of the
physics model learned by LSH-SMILE, which matches the ground-truth well. The third row uses
brute-force approach to learn, resulting in a physics model with incorrect dynamics.

et al. [2011]). In each experiment, two forward simulation algorithms are applied. One is the brute
force method coded up using the Torch framework (Paszke et al. [2019] under Modified BSD license).
The other is our LSH-SMILE simulation. The physics rules of the two applications are implemented
in the Eval(·) function in the pseudo code in Figure 4.

Grain growth simulation. We evaluated the forward simulation for grain growth system (Fan and
Chen [1997]). In this application, the i-th grain is represented using a phase field variable ηi(~p, t). ηi
changes over time and evaluates to 1 when ~p inside the i-th grain and 0 outside the grain. The value
of ηi on the grain boundary is between 0 and 1. After discretizing the PDEs governing ηi’s dynamics
using finite difference, the update rule for each grain is expressed in the following equation. More
details can be found in the supplementary materials.

ηi(~p, t+ 1) = ηi(~p, t)− Lidt

−Aηi(~p, t) +Bη3i (~p, t) + 2ηi(~p, t)

N∑
i6=j

η2j (~p, t)− κi∇2ηi(~p, t)

 .

9

Algorithms Runtime (hr) Memory Usage(mb)

GG-Sim LSH-SMILE 3.86 870
GG-Sim Baseline 16.84 1135
NN-Sim LSH-SMILE 2.13 2735
NN-Sim Baseline 53.13 3294
GG-Sim Learn LSH-SMILE 4.5 889
GG-Sim Learn Baseline 17.29 1212

Table 1: Running times of different approaches. LSH-SMILE needs less time and space compared to
baseline methods.

Using the finite difference approach, ∇2 is expressed using a convolutional layer with the fixed 3x3
kernel [0 1 0, 1 -4 1, 0 1 0]. We set dt to 0.05 in this simulation. The image size is 128 by 128.
For LSH parameter, r and r0 are set to be 0.01, K is 3 and L is 10. The simulation results is in
Figure 5, where LSH-SMILE simulates the physics process similarly compared to the ground truth
computed by the brute-force approach. To measure the difference, we subtract the simulated result
from LSH-SMILE with the ground truth. The difference is at the level of 10−5 after 180 steps.

Nanovoid simulation. We evaluated the forward simulation of nanovoid dynamics in materials under
high temperature and irradiation (Millett et al. [2011]). The system is described using three phase
field variables, cv(~p, t), ci(~p, t) and η(~p, t). cv(~p, t) represents the fraction of void defects in unit
volume of the material located at ~p, while ci(~p, t) represents the fraction of interstitial concentration
at ~p. η(~p, t) is the indicator function that evaluates to 1 if ~p is inside a void cluster, and 0 outside. The
update function for field variable cv is:

cv(~p, t+ 1) = cv(~p, t) + dtMv∇2

(
h(η)

∂fs(cv, ci)

∂cv
+ j(η)

∂fv(cv, ci)

∂cv
− κv∇2cv

)
.

In this equation, cv, ci and η mean cv(~p, t), ci(~p, t) and η(~p, t) when (~p, t) are omitted. The actual
definition of fs, fv and the PDE equations for ci and η are left to the supplementary materials. We
start the simulation with two different starting state, shown in the first column of Figure 6. We set dt
to 0.1 in this simulation. The image size is 128 by 128. For LSH parameter, r is set to be 0.0001, K
is 3 and L is 10. The results is in Figure 6. It shows that LSH-SMILE simulate the physics process at
comparable quality to the ground truth (difference at the level of 10−5 after 100 steps).

Grain growth learning. We examined the performance of LSH-SMILE in backward learning as well.
The dataset is synthetic and contains 1700 frames of grain growth ground truth simulation results.
The time and memory savings brought by LSH-SMILE allows the learning algorithm to match the
predicted outcomes and the ground-truth outcomes that are T=30 steps away from the starting states,
while the baseline method (embedding a brute-force forward approach) can only match the outcomes
T=10 steps away, under the same computational budget. LSH-SMILE uses stochastic gradient
descent, while the baseline use the Adam optimizer in our experiment. The ground truth parameter to
be learned is all Li’s=5.0, A=B=1.0, all κi’s=0.1. After 10 epochs of training, LSH-SMILE learned
all Li’s=11.6504, A=1.98483, B=2.01454, all κi’s=0.0834962, close to the ground-truth. At the
same time, baseline method learned L=9.0462, A=1.9431, B=8.8226, κ=0.8431, far away from the
ground-truth. We also simulated grain growth from the same initial condition using the parameters
learned. The simulation is shown in Figure 7, verifying that LSH-SMILE learned parameters lead to
similar dynamics as the groundtruth, while the baseline model learned an implausible model.

Running time and memory comparison. We examine the running time of both algorithms in
simulation and learning. The forward simulation steps is 1700×10×30 = 510000 for both baseline
and LSH-SMILE. For the learning task, both algorithms train for 10 epoch. Our LSH-SMILE embeds
forward simulation for T = 30 steps while baseline embeds T = 10 steps. The results is shown
in Table 1. Here GG stands for grain growth and NN stands for nanovoid. We can see that our
LSH-SMILE method drastically reduces the running time and memory usage in the same setting
compared to baseline method implemented in Torch.

7 Conclusion
We propose LSH-SMILE, a unified framework to accelerate the forward simulation and backward
learning of physics models, taking advantages of locality sensitive hashing. We show both theoreti-
cally and experimentally that LSH-SMILE simulates and learns physics models in a precise fashion
and with reduced time and space complexity.

10

Acknowledgements

This research was supported by NSF grants IIS-1850243, CCF-1918327. We thank anonymous
reviewers for their comments and suggestions. C. S. acknowledges additional financial support for an
internship at SenseTime. Y. X. discloses additional support Award No. W81XWH-18-1-0769 from
the office of the assistant secretary of defense for health affairs.

References
Amir Ben-amram and Simon Yoffe. A simple and efficient union–find–delete algorithm. Theoretical

Computer Science, 412(4):487–492, 2011. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2010.11.005.

Stefanie Bremmert, Laurence Gregoriades, Kay Wurdinger, Thomas Vágó, Tobias Bernhard, Frank
Bruning, and Roger Massey. Developments in electroless copper processes to improve performance
in amsap mobile applications. 2019.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, page 253–262, New York, NY, USA, 2004. Association
for Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.997857. URL https:
//doi.org/10.1145/997817.997857.

Ming Dong and Theodore E. Simos. A new high algebraic order efficient finite difference method for
the solution of the schrödinger equation. Filomat, 31:4999–5012, 2017.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Danan Fan and Longqing Chen. Computer simulation of grain growth using a continuum field model.
Acta Materialia, 45:611–622, 1997.

Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying hamiltonian and la-
grangian neural networks via explicit constraints. Advances in Neural Information Processing
Systems, 33, 2020.

George E. Forsythe and Wolfgang R. Wasows. Finite-difference methods for partial differential equa-
tions. Canadian Mathematical Bulletin, 6(1):137–139, 1963. doi: 10.1017/S0008439500026400.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh: Efficient
indexing for high-dimensional similarity search. In Proceedings of the 33rd International Con-
ference on Very Large Data Bases, VLDB ’07, page 950–961. VLDB Endowment, 2007. ISBN
9781595936493.

Takashi Matsubara, Ai Ishikawa, and Takaharu Yaguchi. Deep energy-based modeling of discrete-
time physics. In Advances in Neural Information Processing Systems 33, 2020.

Paul C Millett, Anter El-Azab, Srujan Rokkam, Michael Tonks, and Dieter Wolf. Phase-field
simulation of irradiated metals: Part i: Void kinetics. Computational Materials Science, 50(3):
949–959, 2011.

T. Niu, M. Nasim, R. Annadanam, C. Fan, Jin Li, Zhongxia Shang, Y. Xue, Anter El-Azab, H. Wang,
and X. Zhang. Recent studies on void shrinkage in metallic materials subjected to in situ heavy ion
irradiations. JOM, 72, 09 2020. doi: 10.1007/s11837-020-04358-3.

11

https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-
cal Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586.

V Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Computational
Physics, 60(2):187–207, 1985. ISSN 0021-9991. doi: https://doi.org/10.1016/0021-9991(85)
90002-6.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations by
Back-propagating Errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

Arman Shojaei, Ugo Galvanetto, Timon Rabczuk, Ali Jenabi, and Mirco Zaccariotto. A generalized
finite difference method based on the peridynamic differential operator for the solution of problems
in bounded and unbounded domains. Computer Methods in Applied Mechanics and Engineering,
343:100–126, 2019. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2018.08.033.

Yuanyuan Wang, Yan Gu, and Jianlin Liu. A domain-decomposition generalized finite difference
method for stress analysis in three-dimensional composite materials. Applied Mathematics Letters,
104:106226, 2020. ISSN 0893-9659. doi: https://doi.org/10.1016/j.aml.2020.106226.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M. Benson. U-fno –
an enhanced fourier neural operator based-deep learning model for multiphase flow, 2021.

Yexiang Xue, Md Nasim, Maosen Zhang, Cuncai Fan, Xinghang Zhang, and Anter El-Azab. Physics
knowledge discovery via neural differential equation embedding. In Yuxiao Dong, Nicolas
Kourtellis, Barbara Hammer, and Jose A. Lozano, editors, Machine Learning and Knowledge
Discovery in Databases. Applied Data Science Track, pages 118–134, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-86517-7.

12

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section XXX.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] see section 6 and 5
(b) Did you describe the limitations of your work? [Yes] see section 5
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] see section 5
(b) Did you include complete proofs of all theoretical results? [No] they will be uploaded

in supplementary material
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] they will be
provided in the supplementary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] they will be provided in the supplementary material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] they will be provided in the supplementary material

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use Torch as our

baselien implementation
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use our own synthetic data
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Preliminaries
	Intuition
	The LSH-SmiLe Algorithm
	Analysis
	Experiments
	Conclusion

