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A Proof of our main theorem

We start by restating the setup in which our algorithm operates. The type of ICA considered in our
work assumes the following generative model. There are d sources recorded T times forming the
columns of S := [s1, . . . , sT ] ∈ Rd×T whose components s1t , . . . , s

d
t are assumed non-Gaussian and

independent. Without loss of generality, we assume that each source has zero-mean, unit variance,
and finite and distinct kurtosis, a common assumption among kurtosis-based ICA methods [12]. The
kurtosis of a random variable v is defined as kurt[v] = E

[
(v − E(v))4

]
/
(
E
[
(v − E(v))2

])2. Finally,
sources are assumed to be mixed through a linear system, i.e., there exists a full rank mixing matrix,
A ∈ Rd×d, producing the d-dimensional mixture, xt, expressed as

xt = Ast ∀t ∈ {1, . . . , T} . (S.1)

The goal of ICA algorithms is then to determine a signal, yt, obtained from a fixed linear transforma-
tion of the observed signal, xt, i.e., ∃WICA ∈ Rd×d, such that

yt = ΞΠst and yt := WICAxt, ∀t ∈ {1, . . . , T} , (S.2)

where Ξ is a diagonal matrix with ±1’s on the diagonal, and Π a permutation matrix. As a result, yt

represents the ideally recovered unknown sources.

We now recall our objective function for ICA

min
Y∈Rd×T

1
T YY>=Id

∥∥∥∥∥∥X>C−1/2x

[
1

T

T∑
t=1

‖C−1/2x xt‖2C−1/2x xtx
>
t C−1/2x

]−1
C−1/2x X−Y>Λ2Y

∥∥∥∥∥∥
2

F

.

(S.3)

and finally our main theorem which is proved in the following.
Theorem 1. Given that the sources are independent, centered, have unit variance, and distinct
kurtosis (c.f. Sec 2 of the main text), then the global optimal solution for our objective (S.3), denoted
by Y∗ satisfies

Y∗ = ΞΠS (S.4)

where Ξ and Π, defined in (S.2), represents the sign and permutation ambiguity of the solution, and
is thus a solution to the ICA problem.

We propose an outline of the proof.

• Proof of the FOBI procedure
• Proof that Cz and C−1z lead to the same solution of the eigenvalue problem solving FOBI.

• Note that C−1z and C
−1/2
z ChC

−1/2
z are equivalent by whitening properties.

• Identify the Gramian associated with C
−1/2
z ChC

−1/2
z , which is H>C−1z H.

• Use the Similarity matching formulation of principal component analysis on the aforemen-
tioned Gramian to finalize the proof.

A.1 Statements and Proofs of FIBO

We redefine important notations, i.e., the whitened data denoted by ht is defined as

ht = C−1/2x xt .

Now the weighted whitened data, scaled by its norm, denoted by zt, is defined as

zt = ‖ht‖ · ht .
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We have defined the sample covariance matrix of xt and zt as Cx and Cz respectively.

Before, demonstrating our theorem, we need to demonstrate the main results of the FOBI procedure,
i.e., we must show that when the whitened data, ht are projected onto the eigenvectors of the weighted
data, zt they recover the sources. This results is stated and proved using the following theorem from
[4, 22].
Theorem 2. Let s, h, and z be random vectors such that h = Bs, where B is an orthogonal
matrix, and z = ‖h‖ · h. Suppose additionally s has zero-mean independent components and these
components have distinct finite kurtosis. Then the orthogonal matrix U which gives the principal
components of z performs ICA on h.

Proof. Let s = [s1, . . . , sd]> , U = [u1, . . . ,ud], and C = [c1, . . . , cd] = [cij ]d×d = UB. Since
B is orthogonal, we have ‖h‖ = ‖Bs‖ = ‖s‖. The second-order moment of the projection of z on
ui is

E(u>i z)2 = E(u>i ‖h‖ · h)2 = E(‖s‖2 · (u>i Bs)2) = E(

d∑
k=1

(c>i s)2 · s2k)

=
d∑

k=1

c2ikE(s4k) +

d∑
k=1

d∑
p=1,p6=k

c2ipE(s2ps
2
k) +

d∑
k=1

d∑
p=1,p6=k

d∑
q=1,q 6=p

cipciqE(spsqs
2
k)

(S.5)

When q 6= p, at least one of q and p is different from k. Suppose q 6= k. We then have E(spsqs
2
k) =

E(sq)E(sps
2
k) = 0 since si are independent and zero-mean. We also have

∑d
k=1 c

2
ik = 1 since C is

orthogonal. Equation (S.5) then becomes

E(u>i z)2 =

d∑
k=1

c2ikE(s4k) +

d∑
k=1

d∑
p=1,p6=k

c2ipE(s2ps
2
k)

=

d∑
k=1

c2ikE(s4k) +

d∑
k=1

d∑
p=1,p6=k

c2ip

=

d∑
k=1

c2ik kurt(sk) + d+ 2 (S.6)

Therefore E(u>i z)2 is the weighted average of kurt(si) plus a constant. As si are assumed to have
different kurtosis, without loss of generality, we assume kurt(s1) > kurt(s2) > · · · > kurt(sn).
From Equation (S.6) we can see that maximization of E(u>1 z)2 gives c1 = [±1, 0, . . . , 0]> , which
means that y1 = u>1 h = u>1 Bs = c>1 s = ±s1. After finding u1, under the constraint that u2 is
orthogonal to u1, the maximum of E(u>2 z)2 is obtained at c2 = [0,±1, 0, . . . , 0]>. Consequently
y2 = u>2 h = c>2 s = ±s2. Repeating this procedure, finally all independent components can be
estimated as yi = u>i h = ±si where ui maximizes E(u>i z)2. In other words, the orthogonal matrix
U performing PCA on z (without centering of z) actually performs ICA on h.

We have thus proved that the information about the eigenvectors of zt are enough for finding the
sources after whitening.

A.2 Eigenvalue Formulation

Now that we have clarified that the FOBI procedure consists of projecting the input data using
Theorem 2, we can rephrase it as a generalized eigenvalue problem where W is the solution of the
following problem

WW> = I and WCzW = D , (S.7)

with D a diagonal matrix with distinct nonnegative diagonal elements. This problem is equivalent to

W̃W̃> = I , W̃C−1z W̃> = D−1 , (S.8)
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With H and ht, Z and zt define as in the main text. This results from the fact that Cz is assumed full
rank and have distinct eigenvalue, the problem WCzW = D has the same solution as WC−1z W =
D−1 under orthogonality constraint.

Now we note that by definition Ch = 1
T HH> = Id, and that C−1z is positive semi-definite thus

admits a square-root. We can then rephrase the problem (S.8) as

arg max
Ŵ>Ŵ=Id

Tr(Ŵ>C−1/2z ChC−1/2z Ŵ) = arg max
Ŵ>Ŵ=Id

Tr(Ŵ>C−1/2z

1

T
HH>C−1/2z Ŵ) (S.9)

A.3 From the covariance matrix to the Gram matrix

In the final step we need to consider the following matrix K = HC
−1/2
z , which is a simple but

essential rewriting of the eigenvalue problem (S.9) as

arg max
ŴŴ>=Id

Tr(ŴKK>Ŵ>)

Now we really on the result from Mardia et al.[11] for multidimensional scaling. Their results
connects the eigenvalue and eigenvectors of the Gram matrix, i.e., matrix of similarity with that of
the covariance matrix. This result was recently popularized by the similarity matching framework
[17, 20] that states that the principal subspace projection can equivalently be obtained by

arg min
Ỹ

‖K>K− Ỹ>Ỹ = ‖2F = arg min
Ỹ

‖H>C−1z H− Ỹ>Ỹ‖2F

However this solution does the projection onto the principal subspace but does not recover the perfect
sources as it is invariant by rotation which is a problem for ICA. Thus we include Λ2 to break the
symmetry as was done in [13]. The resulting objective function then leads to the same solution as the
FOBI procedure.

arg min
Y∈Rd×T

1
T YY>=Id

‖H>C−1z H−Y>Λ2Y‖2F

which is exactly our objective function (S.3)

arg min
Y∈Rd×T

1
T YY>=Id

∥∥∥∥∥∥X>C−1/2x

[
1

T

T∑
t=1

‖C−1/2x xt‖2C−1/2x xtx
>
t C−1/2x

]−1
C−1/2x X−Y>Λ2Y

∥∥∥∥∥∥
2

F

.

thus concluding the proof of Theorem 1.

B Details of the illustrative example

We present the parameters used for our illustrative example for FOBI. We use a sinusoid waveform
and a sawtooth signal as the independent sources. Each data source was then shuffled to remove
possible temporal correlation, leading to fake dependence. We showed in Fig.1B 5000 datapoints.
The mixing matrix A was randomly chosen, and in the example is

A =

[
0.10054428 0.81736508
0.75216771 0.44640104

]
It is then the observed data that are shown as x = As. The rest is described in the
main text. The code used to produce the figure can be found attached to the submission,
NeurIPS_Fig_1A_procedure.ipynb.

C Numerics

C.1 Detailed experimental figures

We propose zoomed in version of Fig.2B and 2C of the main showing respectively the speech
separation and image separation tasks. We show in Fig. 1 the results obtained by our offline algorithm
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on the speech separation tasks as reported in the main text. We show in Fig. 2 the results obtained by
our offline algorithm on the image separation tasks as reported in the main text. The codes used to
produce the respective figures can be found attached to the submission, NeurIPS_Fig_2B_audio,
NeurIPS_Fig_2C_image.
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Figure 1: Illustration of the performance of our algorithm on the speech separation task. Our algorithm
recovers the sources from mixed signals. It shows a zoomed in version of the results obtained for the
speech separation task Fig.2.B of the main text. We show in black the mixed signals and in red (resp.
blue) the recovered (resp. true) sources, and in green their difference called Residual. We also show
the histogram of the associated distributions.
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Figure 2: Illustration of the performance of our algorithm on the image separation task. Our algorithm
recovers the sources from mixed images. It shows a zoomed in version of the results obtained for
the image separation task Fig.2.C of the main text. We show in each row respectively the original
sources, the mixed images, and the recovered alongside their histograms.
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C.2 Online algorithm results

We show in Fig. 3 the results obtained by our online algorithm as defined in the main text. We also
show in Fig. 4 the results obtained by our online algorithm on the image separation tasks as reported
in the main text.

The results are almost identical to what we obtained in the offline case which confirms the relevance
of our algorithm. Interestingly, in the speech separation task the noise is not entirely removed from
one of the two voices which explains a “constant” value of the residual in green. However, for the
image separation tasks the results are nearly identical.

The learning parameters are presented in the following subsection, and the codes used to pro-
duce the respective figures can be found attached to the submission, NeurIPS_Fig_2B_audio,
NeurIPS_Fig_2C_image.
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Figure 3: Performance of our online algorithm on the speech separation task. Our algorithm again
recovers the sources from mixed signals. As was done for the offline version of our algorithm we
show in black the mixed signals and in red (resp. blue) the recovered (resp. true) sources, and in
green their difference called Residual. We also show the histogram of the associated distributions.
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Figure 4: Performance of our online algorithm on the image separation task. Our algorithm again
recovers the sources from mixed images. As was done for the offline algorithm we show in each row
respectively the original sources, the mixed images, and the recovered alongside their histograms.
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C.3 Experimental details

We implemented both the offline and online version of our similarity-preserving algorithm, Algo-
rithm 1 of the main text. We initialized W to be a random matrix with i.i.d. mean-zero normal
entries with variance 1. We initialized M to be the identity matrix Id. We used fixed learning
rates for η and τ . The use of time-varying learning did not appear to change the results signif-
icantly and might instead lead to over-parameter tuning, which is arguably biologically implau-
sible. We nonetheless performed grid-search to find the optimal hyperparameters, we performed
a grid search over η0 ∈ {10−2, 10−3, 10−4, 10−5}, each multiplied by 1, 2 or 5. For we used
τ ∈ {2, 1.5, 1, 0.9, 0.85, 0.75, 0.5, 0.1}. The best performing parameters are reported in Table 1. The
results obtained with these parameters are presented in the main text, for Offline SM-ICA Fig.2A,2B
and 2C. And the online SM-ICA Fig.3ABC below.

Algorithm parameters synthetic audio image
Offline

SM-ICA
η , τ 5 · 10−3, 0.75 5 · 10−4, 0.85 5 · 10−3, 0.75

Λ [1.0, 1.5, 1.8, 6.07] [1.8, 6.15, 19.7] [2.48, 3.06, 6.64]
Online

SM-ICA
η , τ 2 · 10−5, 1.5 2 · 10−5, 1.5 2 · 10−5, 1.5

Λ [1.0, 1.5, 1.8, 6.07] [1.8, 6.15, 19.7] [2.48, 3.06, 6.64]
Table 1: Training parameters for comparing our model.

D Comparison to other models on the synthetic dataset

In this section, we compare numerically the performance of our algorithm against competing models
on four different scenarios.

D.1 Experimental details

Metrics. First of all we define the metric used to quantitatively compare the ICA algorithms. As
defined in Sec. 2 of the main text, the task of ICA algorithms is to extract the source signals up to
a permutation and sign-flipping (Eq. (2)). Therefore, all results are measured by considering all
possible pairings of predicted signals and source signals, and measuring the mean-squared error εMSE
defined as

εMSE(t) = min
Ξ,P

1

td

t∑
t′=1

‖st′ −ΞPyt′‖2 (S.10)

Dataset. We evaluate our algorithm on a synthetic dataset generated by independent and identically
distributed samples. The data are generated from meaningful signals, i.e., square-periodic, sine-wave,
saw-tooth, and Laplace random noise. The data were chosen with the purpose of including both
super- and sub-Gaussian distribution known respectively as leptokurtic (“spiky”, e.g., the Laplace
distribution) and platykurtic (“flat-topped”, the three other source signal).

Scenarios. We designed four scenarios: scenario 1, data are white and composed of 3 independent
sub-Gaussian sources; scenario 2, data are colored and again composed of only 3 sub-Gaussian
sources; scenario 3, data are white and composed of 2 sub-Gaussian sources and 1 super-Gaussian
source; scenario 4, Data are colored and composed of 2 sub-Gaussian sources and 1 super-Gaussian
source.

Competing algorithms. To quantitatively measure the performance we present in Appendix D a
numerical comparison of our algorithm with competing algorithms, namely, Herault Jutten algorithm
[7], EASI algorithm [9, 5], Bell and Sejnowski’s algorithm [3], the Amari algorithm [1], and finally
nonlinear Oja algorithm [8, 15], on the synthetic data set, on three different scenarios. These models
were designed with NNs in mind and are seminal works on neural ICA algorithms. However, like
nonlinear Oja algorithm, which we mentioned in Section 5.3.1, these models suffer from biological
implausibility.
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Algo param. Scenario 1 Scenario 2 Scenario 3 Scenario 4
Online

SM-ICA (ours)
η , τ 5 · 10−3, 0.75 5 · 10−4, 0.85 5 · 10−3, 0.75 5 · 10−4, 0.85
Λ−1 [1.0, 1.5, 1.8] [1.0, 1.5, 1.8] [1.0, 1.5, 6.07] [1.0, 1.5, 6.07]

HJ [7] η 10−4 10−4 10−4 10−4

EASI [5] η 10−4 10−4 10−4 10−4

Nonlin. Oja [15] η 10−3 10−3 10−3 10−3

Infomax[3] η 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Amari [1] η 5 · 10−4 5 · 10−4 5 · 10−4 5 · 10−4

Table 2: Training parameters of the different models on the four different scenarios.

D.2 Results

We show in Fig. 5a the comparison between our model and competing algorithm on Scenario 1.
Scenario 1 consists of a mixture of sub-Gaussian distribution, which has been pre-whitened. Naturally,
in scenario 1, all models perform the task perfectly, with Nonlinear Oja and Amari algorithm being
the fastest, our model also performs competitively.

We show in Fig. 5b the comparison between our model and competing algorithm on Scenario 2.
Scenario 2 consists of a mixture of sub-Gaussian distribution, which has not been pre-whitened.
In scenario 2, our algorithm is more competitive as it does not require pre-whitening, unlike the
algorithms that fail at the task.
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Figure 5: Comparison of the models on mixture of sub-Gaussian distribution, with (a) whitened data,
and (b) colored data.

We show in Fig. 6a the comparison between our model and competing algorithm on Scenario 3.
Scenario 3 consists of a mixture of both sub-Gaussian and super-Gaussian distribution, which has
been pre-whitened. Again, our algorithm is more competitive as it has the ability to separate sources
from a different sign of kurtosis, as explained in the main body of the paper.

We show in Fig. 6b the comparison between our model and competing algorithm on Scenario 4.
Scenario 4 consists of a mixture of both sub-Gaussian and super-Gaussian distributions, which have
not been pre-whitened. In this scenario, our algorithm performs one of the best as it does not require
pre-whitening and can separate sources with a different sign of kurtosis.

In brief, our model outperforms either outperforms or is competitive with other models on scenarios
2-3-4. Out of the other algorithms, EASI performs well on scenarios 1-2 but fails on tasks 3-4, where
data are composed of both sub-Gaussian and super-Gaussian distributions. The other models are
known to require pre-whitening and fail on scenarios 2 and 4, naturally. We have prepared a log-log
plot of convergence with error bars that illustrate the results mentioned above. These results also
confirm that our algorithm performs perfect separation with both whitened and colored data and
simultaneously with both sub and super-Gaussian sources.
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Figure 6: Comparison of the models on mixture of both sub- and super-Gaussian distribution, with
(a) whitened data, and (b) colored data.

E Contrasting reconstruction and similarity-preservation NNs

We mention in Section 2 and Section 5 of the paper that neural networks trained with Oja’s rule lack
biological plausibility, unlike NNs resulting from the similarity matching framework. This statement
can be unclear for people not too familiar with the approach. For that purpose, we recall the critical
distinction between the similarity matching framework and the reconstruction-based approach from
which Oja’s results. A more detailed description can be found in [18, 2].

To introduce our notation, the input to the NN is a set of vectors, xt ∈ Rn, t = 1, . . . , T , with
components represented by the activity of n upstream neurons at time, t. In response, the NN outputs
an activity vector, yt ∈ Rm, t = 1, . . . , T , where m is the number of output neurons.

Reconstructive Approach: The reconstruction approach starts with minimizing the squared recon-
struction error:

min
W,yt=1...T∈Rm

∑
t

||xt −Wyt||2 = min
W,yt=1...T∈Rm

T∑
t=1

[
‖xt‖2 − 2x>t Wyt + y>t W>Wyt

]
.

(S.11)
This objective is optimized offline by a projection onto the principal subspace of the input data.

In an online setting, the objective can be optimized by alternating minimization [16]. After the arrival
of data sample, xt: firstly, the objective (S.11) is minimized with respect to the output, yt, while the
weights, W, are kept fixed, secondly, the weights are updated according to the following learning
rule derived by a gradient descent with respect to W for fixed yt:

ẏt = W>
t−1xt −W>

t−1Wt−1yt, Wt ←−Wt−1 + η (xt −Wt−1yt) y>t , (S.12)

In the NN implementations of the algorithm (S.12), the elements of matrix W are represented by
synaptic weights and principal components by the activities of output neurons yj , Fig. 7a [14].

However, implementing update (S.12)right in the single-layer NN architecture, Fig. 7a, requires
non-local learning rules making it biologically implausible. Indeed, the last term in (S.12)right
implies that updating the weight of a synapse requires the knowledge of output activities of all other
neurons which are not available to the synapse. Moreover, the matrix of lateral connection weights,
−W>

t−1Wt−1, in the last term of (S.12)left is computed as a Gramian of feedforward weights; a
non-local operation. This problem is not limited to PCA and arises in nonlinear NNs as well [16, 10].

Similarity Matching Approach: To address these difficulties, [19] derived NNs from similarity-
preserving objectives, as presented in Section 3. Such objectives require that similar input pairs, xt

and xt′ , evoke similar output pairs, yt and yt′ . If the similarity of a pair of vectors is quantified by
their scalar product, one such objective is similarity matching (SM):

min
∀t∈{1,...,T}:yt∈Rm

1
2

T∑
t,t′=1

(xt · xt′ − yt · yt′)
2. (S.13)
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This offline optimization problem is also solved by projecting the input data onto the principal
subspace [21, 6, 11]. Remarkably, the optimization problem (S.13) can be converted algebraically to
a tractable form by introducing variables W and M [20]:

min
{yt∈Rm}Tt=1

min
W∈Rn×m

max
M∈Rm×m

[

T∑
t=1

(−2x>t Wyt + y>t Myt) + T Tr(W>W)− T

2
Tr(M>M)].

(S.14)
In the online setting, first, we minimize (S.14) with respect to the output variables, yt, by gradient
descent while keeping W, M fixed [19]:

ẏt = W>xt −Myt. (S.15)

To find yt after presenting the corresponding input, xt, (S.15) is iterated until convergence. After the
convergence of yt, we update W and M by gradient descent and gradient ascent respectively [19]:

Wij ←Wij + η (xiyj −Wij) , Mij ←Mij + η (yiyj −Mij) . (S.16)

Algorithm (S.15), (S.16) can be implemented by a biologically plausible NN, Fig. 7b. As before,
activity (firing rate) of the upstream neurons encodes input variables, xt. Output variables, yt, are
computed by the dynamics of activity (S.15) in a single layer of neurons. The elements of matrices W
and M are represented by the weights of synapses in feedforward and lateral connections respectively.
The learning rules (S.16) are local, i.e. the weight update, ∆Wij , for the synapse between ith input
neuron and jth output neuron depends only on the activities, xi, of ith input neuron and, yj , of jth
output neuron, and the synaptic weight. Learning rules (S.16) for synaptic weights W and −M (here
minus indicates inhibitory synapses, see Eq.(S.15)) are Hebbian and anti-Hebbian respectively.
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Figure 7: Single-layer NNs performing online (a) reconstruction error minimization (S.11) [14, 16],
(b) similarity matching (SM) (S.13) [19].

Comparison between the two approaches: We now compare the objective functions of the two
approaches. After dropping invariant terms, the reconstructive objective function has the following
interactions among input and output variables: −2x>t Wyt + y>t W>Wyt (Eq S.11). The SM
approach leads to −2x>t Wyt + y>t Myt, ( Eq S.14). The term linear in yt, a cross-term between
inputs and outputs, −2x>t Wyt, is common in both approaches and is responsible for projecting the
data onto the principal subspace via the feedforward connections in Fig.1ab. The terms quadratic in
yt’s decorrelate different output channels via a competition implemented by the lateral connections
in Fig.1ab and are different in the two approaches. In particular, the inhibitory interaction between
neuronal activities yj in the reconstruction approach depends upon W>W, which is tied to trained
W in a non-local way. In contrast, in the SM approach the inhibitory interaction matrix M is learned
for yj’s via a local anti-Hebbian rule.

F Paper Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:
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• Did you include the license to the code and datasets? [Yes] See Section 6
• Did you include the license to the code and datasets? [No] The code and the data will be

made publicly available but for now are included with the submission.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Yes, we clearly state the setup in which we work,i.e.,
kurtosis-based linear ICA with sources with finite distinct kurtosis and search for a
biologically plausible neural network.

(b) Did you describe the limitations of your work? [Yes] Yes, we describe extensively the
limitations of our model in Sec 7. We also mention possible future research direction

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not forsee any negative impact rather positive one, it can have wide-ranging benefits
for helping to manage the adverse effects of neurological disorders.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Yes.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Yes.
(b) Did you include complete proofs of all theoretical results? [Yes] We left the proofs in

the supplementary materials but gave some intuitions illustrated with toy examples as
in Fig. 1B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
code to the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, we explain how data are generated, and where the datasets
used are available as well as training parameters.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] For Figs. in the supplementary material for comparison
with existing non-biologically plausible models.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We only run on a basic computer as
the model is online and is designed to not require much computing power and memory.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Sec 6
(b) Did you mention the license of the assets? [No] All data used either synthetic data or

publicly available.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

No new assets aside from our code of the new algorithm.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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