
A Proof of Theorem 1

Lemma 1 (c.f. Lemma 1 [17]). Let wt+1, wt, and wmd
t be updated as in Algorithm 1. Then for any

w ∈ {w : ‖w‖ ≤ B}

γt
〈
gt(w

md
t ), wt+1 − wmd

t

〉
≤ γt

〈
gt(w

md
t ), w − wmd

t

〉
+

1

2
‖w − wt‖2 −

1

2
‖w − wt+1‖2 −

1

2
‖wt+1 − wt‖2

Proof. First, we show that

wt+1 = arg min
w:‖w‖≤B

γt
〈
gt(w

md
t ), w − wmd

t

〉
+

1

2
‖w − wt‖2 (22)

Let ŵ be this arg min, which is unique since the objective is strongly convex. The KKT optimality
conditions for ŵ are that there exists λ such that

‖ŵ‖ ≤ B (23)
λ ≥ 0 (24)

λ(‖ŵ‖ −B) = 0 (25)

γtgt(w
md
t ) + ŵ − wt + λŵ = 0 ⇐⇒ ŵ =

wt − γtgt(wmd
t )

1 + λ
(26)

Let
λ =

1

min
{

1, B
‖w̃t+1‖

} − 1 (27)

We will now show that wt+1 and this λ satisfy these KKT conditions. Since wt+1 =

min
{

1, B
‖w̃t+1‖

}
w̃t+1, we have primal feasibility ‖wt+1‖ ≤ B. Also, because 1

min
{

1, B
‖w̃t+1‖

} ≥
1
1 , we have dual feasibility λ ≥ 0. Next, if ‖wt+1‖ < B, then it must be the case that

min
{

1, B
‖w̃t+1‖

}
= 1, which implies λ = 0, which establishes the complementary slackness

condition. Finally, we have stationarity because

wt+1 = min

{
1,

B

‖w̃t+1‖

}
w̃t+1 =

wt − γtgt(wmd
t )

1 + λ
(28)

From here, we let p(w) = γt
〈
gt(w

md
t ), w − wmd

t

〉
, sowt+1 = arg minw:‖w‖≤B p(w)+ 1

2‖w−wt‖
2.

The first-order optimality condition for wt+1 is that for all w ∈ {w : ‖w‖ ≤ B},
〈∇p(wt+1) + wt+1 − wt, w − wt+1〉 ≥ 0 (29)

This, combined with the convexity of p implies

p(w) +
1

2
‖w − wt‖2

= p(w) +
1

2
‖wt+1 − wt‖2 +

1

2
‖w − wt+1‖2 + 〈wt+1 − wt, w − wt+1〉 (30)

≥ p(wt+1) +
1

2
‖wt+1 − wt‖2 +

1

2
‖w − wt+1‖2 + 〈∇p(wt+1) + wt+1 − wt, w − wt+1〉 (31)

≥ p(wt+1) +
1

2
‖wt+1 − wt‖2 +

1

2
‖w − wt+1‖2 (32)

Substituting the definition of p and rearranging completes the proof.

Lemma 2. Let `(·; z) be H-smooth, convex, and non-negative for each z, let the stochastic gradient
variance at w∗ be bounded E‖∇`(w∗; z)−∇L(w∗)‖2 ≤ σ2

∗ , and let g(wmd
t ) = 1

b

∑b
i=1∇`(wmd

t ; zi)
be a minibatch stochastic gradient of size b. Then

E
∥∥g(wmd

t )−∇L(wmd
t )
∥∥2 ≤ 8H2B2

bβ2
t

+
8H

b
E[L(wag

t )− L∗] +
4σ2
∗
b
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Proof. By the independence of the stochastic gradients ∇`(wmd
t , zi) and the inequality ‖a+ b‖2 ≤

2‖a‖2 + 2‖b‖2, we can upper bound

E‖g(wmd
t )−∇L(wmd

t )‖2

= E

∥∥∥∥∥1

b

b∑
i=1

∇`(wmd
t ; zi)−∇L(wmd

t )

∥∥∥∥∥
2

(33)

=
1

b2

b∑
i=1

E‖∇`(wmd
t ; zi)−∇L(wmd

t )‖2 (34)

≤ 1

b
E‖∇`(wmd

t ; z1)‖2 (35)

≤ 2

b
E‖∇`(wmd

t ; z1)−∇`(wag
t ; z1)‖2 +

2

b
E‖∇`(wag

t ; z1)‖2 (36)

≤ 2H2

b
E‖wmd

t − w
ag
t ‖2 +

4

b
E‖∇`(wag

t ; z1)−∇`(w∗; z1)‖2 +
4

b
E‖∇`(w∗; z1)‖2 (37)

For the final inequality, we used that `(·; z) is H-smooth, so∇`(·; z) is H-Lipschitz.

For the first term on the right hand side, we note that due to the algorithm’s projections, all of the
iterates wmd

t , wag
t , and wt lie within the set {w : ‖w‖ ≤ B}. Therefore,

wmd
t = β−1

t wt + (1− β−1
t )wag

t =⇒ ‖wmd
t − w

ag
t ‖ = β−1

t ‖wt − w
ag
t ‖ ≤ 2Bβ−1

t (38)

For the second term, we apply [Theorem 2.1.5 27]:

E‖∇`(wag
t ; z1)−∇`(w∗; z1)‖2

≤ 2HE
[
`(wag

t ; z1)− `(w∗; z1)−
〈
∇`(w∗; z1), wag

t − w∗
〉]

(39)

= 2HE
[
L(wag

t )− L∗
]

(40)

For the third term, we use the variance bound at w∗:

E‖∇`(w∗; z1)‖2 = E‖∇`(w∗; z1)−∇L(w∗)‖2 ≤ σ2
∗ (41)

Combining these with (37) completes the proof.

Lemma 3. Let `(·; z) be H-smooth and non-negative for all z and let L∗ = minw L(w). Then

E‖∇`(w∗; z)‖2 = E‖∇`(w∗; z)−∇L(w∗)‖2 ≤ 2HL∗

Proof. This follows almost immediately from [Theorem 2.1.5 27]. For each z, let w∗z ∈
arg minw `(w; z), then

E‖∇`(w∗; z)‖2 = E‖∇`(w∗; z)−∇`(w∗z ; z)‖2 (42)
≤ 2HE[`(w∗; z)− `(w∗z ; z)− 〈∇`(w∗z ; z), w∗ − w∗z〉] (43)
= 2HL∗ − 2HE`(w∗z ; z) (44)
≤ 2HL∗ (45)

For the final inequality, we used that ` is non-negative.

Theorem 1. Let ` and L satisfy Assumptions 1 and 2, then Algorithm 1 guarantees for a universal
constant c

EL(wag
T )− L∗ ≤ c ·

(
HB2

T 2
+
HB2

bT
+

√
HB2L∗

bT

)

Proof. This proof is based on similar ideas as the proof of Lemma 5 and Theorem 2 due to Lan [17].
The key difference is that Lan considers a setting in which the variance of the stochastic gradients are
uniformly bounded, while in our setting, we do not directly assume any bound on this quantity.

Let dt = wt+1 − wt, it can be easily seen that

wag
t+1 − wmd

t = β−1
t wt+1 + (1− β−1

t )wag
t − wmd

t = β−1
t dt (46)
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The above observation, along with the H-smoothness of L implies

βtγtL(wag
t+1) ≤ βtγt

[
L(wmd

t ) +
〈
∇L(wmd

t ), wag
t+1 − wmd

t

〉
+
H

2

∥∥wag
t+1 − wmd

t

∥∥2
]

(47)

= βtγt
[
L(wmd

t ) +
〈
∇L(wmd

t ), wag
t+1 − wmd

t

〉]
+
Hγt
2βt
‖dt‖2 (48)

Using the convexity of L, we can upper bound:

βtγt
[
L(wmd

t ) +
〈
∇L(wmd

t ), wag
t+1 − wmd

t

〉]
= βtγt

[
L(wmd

t ) +
〈
∇L(wmd

t ), β−1
t wt+1 + (1− β−1

t )wag
t − wmd

t

〉]
(49)

= (βt − 1)γt
[
L(wmd

t ) +
〈
∇L(wmd

t ), wag
t − wmd

t

〉]
+ γt

[
L(wmd

t ) +
〈
∇L(wmd

t ), wt+1 − wmd
t

〉]
(50)

≤ (βt − 1)γtL(wag
t ) + γt

[
L(wmd

t ) +
〈
gt(w

md
t ), wt+1 − wmd

t

〉]
− γt

〈
δt, wt+1 − wmd

t

〉
(51)

where δt := gt(w
md
t ) − ∇L(wmd

t ). We now apply Lemma 1 to conclude that for any w ∈
{w : ‖w‖ ≤ B}

γt
〈
gt(w

md
t ), wt+1 − wmd

t

〉
≤ γt

〈
gt(w

md
t ), w − wmd

t

〉
+

1

2
‖w − wt‖2 −

1

2
‖w − wt+1‖2 −

1

2
‖wt+1 − wt‖2 (52)

Because there exists a minimizer of L with norm at most B, we can apply this with w = w∗ ∈
arg minw:‖w‖≤B L(w). This, plus the convexity of L allows us to upper bound the second term in
(51) as

γtL(wmd
t ) + γt

〈
gt(w

md
t ), wt+1 − wmd

t

〉
= γtL(wmd

t ) + γt
〈
gt(w

md
t ), w∗ − wmd

t

〉
+

1

2
‖w∗ − wt‖2 −

1

2
‖w∗ − wt+1‖2 −

1

2
‖wt+1 − wt‖2 (53)

= γtL(wmd
t ) + γt

〈
∇L(wmd

t ), w∗ − wmd
t

〉
+ γt

〈
δt, w

∗ − wmd
t

〉
+

1

2
‖w∗ − wt‖2 −

1

2
‖w∗ − wt+1‖2 −

1

2
‖wt+1 − wt‖2 (54)

≤ γtL∗ + γt
〈
δt, w

∗ − wmd
t

〉
+

1

2
‖w∗ − wt‖2 −

1

2
‖w∗ − wt+1‖2 −

1

2
‖wt+1 − wt‖2 (55)

Therefore, returning to (51), we conclude that

βtγt
[
L(wmd

t ) +
〈
∇L(wmd

t ), wag
t+1 − wmd

t

〉]
≤ (βt − 1)γtL(wag

t ) + γtL
∗

+ γt 〈δt, w∗ − wt+1〉+
1

2

(
−‖wt+1 − wt‖2 + ‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
(56)

Plugging this back into (48) and subtracting βtγtL∗ from both sides, this implies

βtγt
[
L(wag

t+1)− L∗
]
≤ (βt − 1)γt

[
L(wag

t )− L∗
]

+
1

2
‖wt − w∗‖2 −

1

2
‖wt+1 − w∗‖2

+
Hγt − βt

2βt
‖wt − wt+1‖2 + γt 〈δt, w∗ − wt+1〉 (57)

= (βt − 1)γt
[
L(wag

t )− L∗
]

+
1

2
‖wt − w∗‖2 −

1

2
‖wt+1 − w∗‖2

+
Hγt − βt

2βt
‖wt − wt+1‖2 + γt 〈δt, wt − wt+1〉+ γt 〈δt, w∗ − wt〉 (58)

≤ (βt − 1)γt
[
L(wag

t )− L∗
]

+
1

2
‖wt − w∗‖2 −

1

2
‖wt+1 − w∗‖2

+
Hγt − βt

2βt
‖wt − wt+1‖2 + γt‖δt‖‖wt − wt+1‖+ γt 〈δt, w∗ − wt〉 (59)
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Because βt = 1 + t
6 >

1+t
6 ≥ 2Hγt, the first two terms on the second line of the right hand side are

a quadratic polynomial of the form −a2y
2 + by (here, y corresponds to ‖wt − wt+1‖), which can be

upper bounded by −a2y
2 + by ≤ maxy

{
−a2y

2 + by
}

= b2

2a . We conclude

βtγt
[
L(wag

t+1)− L∗
]
≤ (βt − 1)γt

[
L(wag

t )− L∗
]

+
1

2
‖wt − w∗‖2 −

1

2
‖wt+1 − w∗‖2

+
βtγ

2
t

2(βt −Hγt)
‖δt‖2 + γt 〈δt, w∗ − wt〉 (60)

≤ (βt − 1)γt
[
L(wag

t )− L∗
]

+
1

2
‖wt − w∗‖2 −

1

2
‖wt+1 − w∗‖2

+ γ2
t ‖δt‖2 + γt 〈δt, w∗ − wt〉 (61)

Taking the expectation of both sides, and noting that the noise in the tth stochastic gradient estimate,
gt(w

md
t ), is independent of wt so that E 〈δt, w∗ − wt〉 = 0, we have

βtγtE
[
L(wag

t+1)− L∗
]
≤ (βt − 1)γtE

[
L(wag

t )− L∗
]

+
1

2
E‖wt − w∗‖2 −

1

2
E‖wt+1 − w∗‖2

+ γ2
t E‖gt(wmd

t )−∇F (wmd
t )‖2 (62)

We now use Lemma 2 to bound the variance of the minibatch stochastic gradient at wmd
t , which yields

βtγtE
[
L(wag

t+1)− L∗
]

≤ (βt − 1)γtE
[
L(wag

t )− L∗
]

+
1

2
E‖wt − w∗‖2 −

1

2
E‖wt+1 − w∗‖2

+
8H2B2γ2

t

bβ2
t

+
8Hγ2

t

b
E
[
L(wag

t )− L∗
]

+
4σ2
∗γ

2
t

b
(63)

≤
(
βt − 1 +

8Hγt
b

)
γtE
[
L(wag

t )− L∗
]

+
1

2
E‖wt − w∗‖2 −

1

2
E‖wt+1 − w∗‖2

+
8H2B2γ2

t

bβ2
t

+
4σ2
∗γ

2
t

b
(64)

From here, we recall that

βt = 1 +
t

6
(65)

γt = γ(t+ 1) (66)

γ ≤ min

{
1

12H
,

b

24H(T + 1)

}
(67)

This ensures that βt ≥ 1 and 2Hγt ≤ βt for all t. Furthermore, for 0 ≤ t ≤ T − 1(
βt+1 − 1 +

8Hγt+1

b

)
γt+1 − βtγt (68)

=

(
βt −

5

6
+

8Hγt+1

b

)
γ(t+ 2)− βtγ(t+ 1) (69)

= γ

(
1 +

t

6
− 5(t+ 2)

6
+

8Hγ(t+ 2)2

b

)
(70)

= γ

(
−2

3
− 2t

3
+

(t+ 2)

3
· 24H(t+ 2)γ

b

)
(71)

≤ γ
(
− t

3

)
≤ 0 (72)
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Therefore,
(
βt+1 − 1 + 8Hγt+1

b

)
γt+1 ≤ βtγt for all 0 ≤ t ≤ T − 1. We can now unroll the

recurrence (64) to conclude(
βT − 1 +

8HγT
b

)
γTE

[
L(wag

T )− L∗
]

≤ βT−1γT−1E
[
L(wag

T )− L∗
]

(73)

≤
(
βT−1 − 1 +

8HγT−1

b

)
γT−1E

[
L(wag

T−1)− L∗
]

+
1

2
E‖wT−1 − w∗‖2 −

1

2
E‖wT − w∗‖2

+
8H2B2γ2

T−1

bβ2
T−1

+
4σ2
∗γ

2
T−1

b
(74)

... (75)

≤ 1

2
E‖w0 − w∗‖2 +

T−1∑
t=0

[
8H2B2γ2

t

bβ2
t

+
4σ2
∗γ

2
t

b

]
(76)

≤ B2

2
+

T−1∑
t=0

[
288H2B2γ2(t+ 1)2

b(t+ 6)2
+

4σ2
∗γ

2(t+ 1)2

b

]
(77)

≤ B2

2
+

288H2B2γ2T

b
+

4σ2
∗γ

2T 3

b
(78)

In addition, we have(
βT − 1 +

8HγT
b

)
γT =

(
T

6
+

8Hγ(T + 1)

b

)
γ(T + 1) ≥ γT 2

6
(79)

Therefore,

E
[
L(wag

T )− L∗
]
≤ 3B2

γT 2
+

1728H2B2

bT
γ +

24σ2
∗T

b
γ (80)

With our choice of2

γ = min

 1

12H
,

b

24H(T + 1)
,

√√√√ B2

T 2

σ2
∗T
b

 (81)

this means

E
[
L(wag

T )− L∗
]

≤ 3B2

T 2 min

{
1

12H ,
b

24H(T+1) ,

√
B2

T2

σ2
∗T
b

} +
72HB2

T (T + 1)
+

24σ∗B√
bT

(82)

≤ 36HB2

T 2
+

72HB2(T + 1)

bT 2
+

3σ∗B√
bT

+
72HB2

T (T + 1)
+

24σ∗B√
bT

(83)

≤ 108HB2

T 2
+

144HB2

bT
+

27σ∗B√
bT

(84)

We complete the proof by applying Lemma 3, which shows that E‖∇`(w∗; z)−∇L(w∗)‖2 ≤ σ2
∗

for σ2
∗ = 2HL∗.

B Proof and Additional Applications of Theorem 2

Theorem 2. For any algorithm A and θ > 1, GC2Cvx(A, θ) defined in Algorithm 2 guarantees

Timeλ(ε,∆, ψ,L,GC2Cvx(A, θ)) ≤
dlogθ

∆
ε e∑

t=1

Time

(
θ−t∆, θ1−t∆

λ
, ψ,L,A

)
2Algorithm 1 defines γ in terms of HL∗ rather than σ2

∗. Later in this proof, we apply Lemma 3 to bound the
variance at w∗ by σ2

∗ = 2HL∗, which justifies this difference.
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Proof. By the definition of Time
(
θ−t∆, θ1−t∆

λ , ψ,L,A
)
, if Eψ(wt−1) ≤ θ1−t∆

λ at each iteration,
then EL(wt)−L∗ ≤ θ−t∆ for each t, and EL(wT )−L∗ ≤ θ−T∆ ≤ ε. We now prove by induction
that the condition Eψ(wt−1) ≤ θ1−t∆

λ always holds.

As the base case, the (λ, ψ)-GC implies that

λψ(w0) ≤ L(w0)− L∗ =⇒ Eψ(w0) ≤ ∆

λ
(85)

Now, suppose that for all t′ < t, Eψ(wt′) ≤ θ−t
′ ∆
λ . Then, by the definition of

Time
(
θ−t∆, θ1−t∆

λ , ψ,L,A
)
, we have EL(wt)− L∗ ≤ θ−t∆ so by the (λ, ψ)-GC

λψ(wt) ≤ L(wt)− L∗ =⇒ Eψ(wt) ≤
EL(wt)− L∗

λ
≤ θ−t∆

λ
(86)

This completes the proof.

To better understand Theorem 2, it is useful to consider an few examples:

Example: Gradient Descent for Lipschitz Objectives Let LG be the set of all G-Lipschitz,
convex objectives, and let ψ(w) = 1

2‖w − w
∗‖22. It is well known that the gradient descent algorithm,

which we denote AGD, requires

Time(ε, B2, ψ,LG,AGD) ≤ c · G
2B2

ε2
(87)

gradients to find an ε-suboptimal point, where c is a universal constant. Theorem 2 implies that

Timeλ(ε,∆, ψ,LG,GC2Cvx(AGD, e))

≤
dlog ∆

ε e∑
t=1

Time

(
e−t∆, e1−t∆

λ
, ψ,LG,AGD

)
(88)

≤ cG2

dlog ∆
ε e∑

t=1

e1−t∆
λ

e−2t∆2
(89)

≤ c e2G2

(e− 1)λ∆
edlog ∆

ε e (90)

≤ c′G
2

λε
(91)

Therefore, our reduction recovers (up to constant factors) the existing guarantee for Lipschitz and
strongly convex optimization [25]. We emphasize that this guarantee (91) has nothing to do with
gradient descent specifically—for any algorithm A with

Time(ε, B2, ψ,LG,A) ≤ c · G
2B2

ε2
, (92)

the modified algorithm GC2Cvx(A, e) will have the same rate (91).

Example: Accelerated SGD for Smooth Objectives For LH , the class of convex and H-smooth
objectives, Lan [17] proposed an algorithm, AC-SA which, for ψ(w) = 1

2‖w − w
∗‖2, requires

Time(ε, B2, d2,LH ,AAC−SA) = c ·

(√
HB2

ε
+
σ2B2

ε2

)
(93)

stochastic gradients with variance bounded by σ2 to find an ε-suboptimal point, which is optimal. In
follow-up work Ghadimi and Lan [13] describe a “multi-stage” variant of AC-SA which is optimal
for strongly convex objectives. This algorithm closely resembles GC2Cvx(AAC−SA, e) with some
small differences, and their analysis is what inspired Theorem 2 in the first place. But, in contrast to
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their long and fairly complicated analysis, Theorem 2 can be used to prove their guarantee using the
following simple computation:

Timeλ(ε,∆, ψ,LH ,GC2Cvx(AAC−SA, e))

≤
dlog ∆

ε e∑
t=1

Time

(
e−t∆, e1−t∆

λ
, ψ,LH ,AAC−SA

)
(94)

= c ·

√H dlog ∆
ε e∑

t=1

√
e1−t∆

λ

e−t∆
+ σ2

dlog ∆
ε e∑

t=1

e1−t∆
λ

e−2t∆2

 (95)

≤ ec ·

√H

λ

⌈
log

∆

ε

⌉
+
σ2

λ∆

dlog ∆
ε e∑

t=1

et

 (96)

≤ ec ·

(√
H

λ

⌈
log

∆

ε

⌉
+

eσ2

(e− 1)λ∆
exp

(⌈
log

∆

ε

⌉))
(97)

≤ c′ ·

(√
H

λ

⌈
log

∆

ε

⌉
+
σ2

λε

)
(98)

This is, up to constant factors, the optimal rate for strongly convex objectives, and matches Ghadimi
and Lan’s analysis.

C Proof of Theorem 3

Theorem 3. Let ` and L satisfy Assumptions 1 and 3, then the output of GC2Cvx(Alg 1, e) guarantees
for universal constants c, c′

EL(ŵ)− L∗ ≤ c ·

(
∆ exp

(
−c
′
√
λT√
H

)
+ ∆ exp

(
−c
′λbT

H

)
+
HL∗

λbT

)

Proof. Let ψ(w) = 1
2 minw∗∈arg minw L(w)‖w−w∗‖2 , so L satisfies the (λ, ψ)-GC. By Theorem 1,

Algorithm 1 guarantees that3

Time

(
ε,
B2

2
, ψ,L,Alg 1

)
≤ c ·

(√
HB2

ε
+
HB2

bε
+
HB2L∗

bε2

)
(99)

where, in this case, the “time” refers to the number of iterations, T . Applying Theorem 2, this implies
Timeλ(ε,∆, ψ,L,GC2Cvx(Alg 1, e))

≤
dlog ∆

ε e∑
t=1

Time

(
e−t∆, e1−t∆

λ
, ψ,L,Alg 1

)
(100)

≤ c ·
dlog ∆

ε e∑
t=1

√He1−t∆
λ

e−t∆
+
He1−t∆

λ

be−t∆
+
HL∗e1−t∆

λ

be−2t∆2

 (101)

= c ·

(√eH

λ
+
eH

bλ

)⌈
log

∆

ε

⌉
+
eHL∗

bλ∆

dlog ∆
ε e∑

t=1

et

 (102)

≤ e3c ·

((√
H

λ
+
H

bλ

)⌈
log

∆

ε

⌉
+
HL∗

bλε

)
(103)

Solving for ε completes the proof.
3Theorem 1, as stated, requires a bound on ‖w∗‖. However, given w0 with ψ(w0) ≤ 1

2
B2, there is a

minimizer with norm at most B in the shifted coordinate system w 7→ w − w0.

20



D Proof of Theorem 4

Lemma 4. Let µ be an unknown parameter in {±a}. The output µ̂ of any algorithm which receives
as input k i.i.d. samples x1, . . . , xk ∼ N (µ, s2) will have mean squared error at least

max
µ∈{±a}

E(µ̂− µ)
2 ≥

(
1− a

√
k

s

)
a2

Proof. This lemma is nearly identical to many lower bounds for Gaussian mean estimation. We
include the proof to be self-contained and to account for the fact that µ has only two possible values.

The KL divergence between k i.i.d. samples from N (−a, s2) and N (a, s2) is

DKL(N (−a, s2)⊗k‖N (a, s2)⊗k) =
2ka2

s2
(104)

By Pinsker’s inequality, the total variation distance between the output of the algorithm if µ = −a
and the output of the algorithm if µ = a is upper bounded by

δ(µ̂−a, µ̂a) ≤ a
√
k

s
(105)

Finally, we note that
(µ̂− a)2 ≤ a2 =⇒ (µ̂− (−a))2 > a2 (106)

and vice versa. Therefore, we conclude that

max
µ∈{±a}

E(µ̂− µ)2 ≥

(
1− a

√
k

s

)
a2 (107)

This completes the proof.

Theorem 4. For `(w; (x, y)) = 1
2 (〈w, x〉−y)2 the square loss, for any learning algorithm that takes

n samples as input, there exists a distribution over (x, y) pairs such that ` and L satisfy Assumptions
1 and 2, and for a universal constant c, the algorithm’s output will have error at least

EL(ŵ)− L∗ ≥ c ·

(
HB2

n
+

√
HB2L∗

n

)
Similarly, there exists a distribution over (x, y) pairs such that ` and L satisfy Assumptions 1 and 3
(and, in fact, L is λ-strongly convex), and for a universal constant c, the algorithm’s output will have
error at least

EL(ŵ)− L∗ ≥ c ·
(

∆ · 1n≤ H
2λ

+ min

{
HL∗

λn
, ∆

})
Proof. We will prove the first terms and the second terms of the lower bounds separately.

The first terms of each bound These lower bounds are based on a simple least squares problem
in dimension 2n. The loss is, again,

`(w; (x; y)) =
1

2
(〈w, x〉 − y)

2 (108)

The data distribution is specified in terms of a sign vector σ ∈ {±1}2n. The x distribution is the
uniform distribution over {

√
He1, . . . ,

√
He2n}, and y|x =

〈
x, B√

2n
σ
〉

. Because ‖x‖2 = H , it
is easy to confirm that ` is H-smooth, convex, and non-negative, so it satisfies Assumption 1. In
addition, the expected loss is

L(w) = Ex,y
1

2
(〈w, x〉 − y)

2
=

1

4n

2n∑
i=1

(
√
Hwi −

√
HB√
2n

σi

)2

(109)
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It is easy to see that L is minimized at the point w∗ = B√
2n
σ, which has norm B and that L(w∗) =

L∗ = 0. Therefore, L satisfies Assumption 2.

Alternatively, L(0)− L∗ = HB2

4n , so choosing B2 = 4n∆
H ensures that L(0)− L∗ ≤ ∆. Also, L is

H
2n -strongly convex, so it satisfies Assumption 3 as long as n ≤ H

2λ .

Finally, any algorithm which sees n samples from the distribution will have received no information
whatsoever about the ≥ n coordinates of the sign vector σ that were not involved in the sample.
Therefore, for any algorithm, there is a setting of σ such that P(ŵiσi ≤ 0) ≥ 1

2 , and for this setting
of σ

EL(ŵ)− L∗ ≥ 1

4n
· n · 1

2
· HB

2

2n
=
HB2

16n
(110)

This proves the first term of the first lower bound under Assumptions 1 and 2. For Assumptions 1
and 2, we have instead

EL(ŵ)− L∗ ≥ HB2

16n
=

∆

4
(111)

Of course, this latter bound holds only when n ≤ H
2λ .

We note that since L∗ = 0 in this example, the variance of gradients at the optimum,
E‖∇`(w∗; (x, y))‖2 = 0. Therefore, these lower bounds hold when the bound on L∗ is replaced by
the bound E‖∇`(w∗; (x, y))‖2 ≤ σ2

∗.

The second terms of each bound These lower bounds are also both based on the following simple
1-dimensional least squares problem. The loss is given by

`(w; (x; y)) =
1

2
(wx− y)

2 (112)

The distribution is defined using a sign σ ∈ {±1} to be chosen later. With probability 1 − p,
(x, y) = (0, 0), and with probability p, x =

√
H and y ∼ N (σ

√
HB, s2).

Because x2 ≤ H , it is easy to confirm that `(w; (x; y)) is H-smooth, convex, and non-negative, so it
satisfies Assumption 1. Also, the expected loss is

L(w) = Ex,y
1

2
(wx− y)

2
=
p

2

(√
Hw −

√
HBσ

)2

+
ps2

2
(113)

It is easy to see that L is convex and is minimized at w∗ = Bσ, which has L2 norm B and the
minimizing value is L(w∗) = ps2

2 . Therefore, choosing s2 = 2L∗

p ensures that L satisfies Assumption
2.

Alternatively, L(0)− L∗ = pHB2

2 , so choosing pB2 ≤ 2∆
H ensures L(0)− L∗ ≤ ∆. Furthermore,

L(w)− L∗ =
p

2

(√
Hw −

√
HBσ

)2

=
Hp

2
‖w − w∗‖2 (114)

Therefore, choosing p = λ
H ensures that L is λ-strongly convex, so it satisfies Assumption 3.

Under either set of assumptions, minimizing L using n samples (x1, y1), . . . , (xn, yn) amounts to a
Gaussian mean estimation problem using just the subset of k samples for which x 6= 0. By Lemma 4,
this means that for any algorithm, for some setting of σ ∈ {±1},

E[L(ŵ)− L∗ | k] ≥ pHB2

2

(
1−

√
HB2k

s2

)
(115)

Applying Jensen’s inequality to the convex function −
√
k, we conclude that

EL(ŵ)− L∗ ≥ pHB2

2

(
1−

√
HB2np

s2

)
=
pHB2

2

(
1−

√
HB2np2

2L∗

)
(116)

For Assumptions 1 and 2, we set the remaining parameter as p2 = L∗

2HB2n and conclude

EL(ŵ)− L∗ ≥
√
HB2L∗

32n
(117)
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For Assumptions 1 and 3, we consider two cases: If ∆ ≤ HL∗

4λn , we set B2 = 2∆
pH to conclude

EL(ŵ)− L∗ ≥ ∆

(
1−

√
∆λn

HL∗

)
≥ ∆

2
(118)

Otherwise, we set B2 = L∗

2λnp ≤
2∆
Hp and conclude

EL(ŵ)− L∗ ≥ HL∗

8λn
(119)

Therefore, under Assumptions 1 and 2, the loss is at least

EL(ŵ)− L∗ ≥ c ·min

{
HL∗

λn
, ∆

}
(120)

We note that by Lemma 3, the variance of gradients at the optimum, E‖∇`(w∗; (x, y))‖2 ≤ 2HL∗.
Therefore, when the bound on L∗ is replaced by the bound E‖∇`(w∗; (x, y))‖2 ≤ σ2

∗, we have the
lower bounds

EL(ŵ)− L∗ ≥ c · σ∗B√
n

(121)

in the convex case and

EL(ŵ)− L∗ ≥ c ·min

{
σ2
∗
λn

, ∆

}
(122)

in the strongly convex case. This completes the proof.

E Stochastic Optimization with Bounded Variance at the Optimum

So far, we have considered optimizing objectives where the instantaneous losses are non-negative
and the value of the minimum of the expected loss is bounded and small, but in other contexts we
may want to understand the complexity of optimization in terms of bounds on the variance of the
stochastic gradients. In the optimization literature, it is common to assume that the variance of the
stochastic gradients is bounded uniformly on the entire space, i.e. supw E‖∇`(w; z)‖2 ≤ σ2. When,
in addition to this variance bound, the objective L is H-smooth and convex, and has a minimizer with
norm at most B, then it has long been known that T steps of SGD achieves error [25]

EL(wT )− L∗ ≤ HB2

T
+
σB√
T

(123)

However, the assumption of uniformly upper bounded variance can be strong, and it turns out that
when ` is also H-smooth, the σ in SGD’s guarantee can easily be replaced with σ∗, an upper bound
on the standard deviation of the variance just at the minimizer specifically, i.e. E‖∇`(w∗; z)‖2 ≤ σ2

∗
[8, 14, 21, 23, 31, 34], i.e. SGD guarantees

EL(wT )− L∗ ≤ HB2

T
+
σ∗B√
T

(124)

Indeed, for other non-accelerated algorithms, the weaker bound σ∗ often suffices and a global
variance bound is unnecessary [e.g. 16, 37]. However, it was not clear whether it is possible to make
this substitution of σ∗ for σ for accelerated methods. For example, Lan [17]’s optimal stochastic
first-order algorithm guarantees

EL(wT )− L∗ ≤ HB2

T 2
+
σB√
T

(125)

Can we replace this σ with σ∗ too? This would represent a significant improvement. As discussed
previously, we can expect σ∗ to be small—potentially even zero, and anyways often much smaller
than σ—for problems of interest, including training machine learning models in the (near-) inter-
polation regime. More generally, it is often desirable, and generally much easier, to control the
stochastic gradient variance at a single point versus globally. As an example, for “heterogeneous”
distributed optimization—where different parallel workers have access to samples from different data
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distributions—it is common to bound a measure of the “disagreement” between these different data
distributions specifically at the minimizer, which amounts to bounding the variance of the stochastic
gradients at w∗ [see, e.g., the discussion in 37].

Unfortunately, a consequence of our lower bound, Theorem 4, is that the σ in the accelerated rate
(125) cannot generally be replaced by σ∗ in the same way as it can be for the unaccelerated rate
(124). In fact, since Theorem 4 applies to any learning rule that uses n samples, this holds also for
non-first-order methods too:
Corollary 2. For `(w; (x, y)) = 1

2 (〈w, x〉 − y)2 the square loss, for any learning algorithm that
uses n i.i.d. samples, there exists a distribution over (x, y) such that L has a minimizer with norm
less than B, ` is H-smooth and convex, and E‖`(w∗; z)‖2 ≤ σ2

∗, and for a universal constant c, the
algorithm’s output has error at least

EL(ŵ)− L∗ ≥ c ·
(
HB2

n
+
σ∗B√
n

)
There is also a distribution over (x, y) such that L is satisfies L(0)−L∗ ≤ ∆, L is λ-strongly convex,
and ` is H-smooth and convex, and for a universal constant c, the algorithm’s output has error at
least

EL(ŵ)− L∗ ≥ c ·
(

∆ · 1n≤ H
2λ

+ min

{
σ2
∗
λn

, ∆

})
As in Section 5, since a single stochastic gradient estimate ∇`(w; z) can be computed with one
sample, this lower bound also applies to minibatch first-order algorithms with n = bT , and the lower
bound (10) for deterministic first-order optimization still holds so we also have
Corollary 3. For any algorithm that uses T minibatch stochastic gradients of size b, there exists an
objective L(w) = Ez`(w; z) where L has a minimizer with norm less than B, ` is H-smooth and
convex, and E‖`(w∗; z)‖2 ≤ σ2

∗ , so that for a universal constant c, the algorithm’s output has error
at least

EL(ŵ)− L∗ ≥ c ·
(
HB2

T 2
+
HB2

bT
+
σ∗B√
bT

)
There is also an objective that satisfies L(0)− L∗ ≤ ∆, L is λ-strongly convex, and ` is H-smooth
and convex, so that for universal constants c, c′, the algorithm’s output has error at least

EL(ŵ)− L∗ ≥ c ·

(
∆ exp

(
−c
′
√
λT√
H

)
+ ∆ · 1bT≤ H

2λ
+ min

{
σ2
∗

λbT
, ∆

})

Ignoring again the small gap between exp(− c
′λbT
H ) and 1bT≤ H

2λ
(see the discussion below Corollary

1), this shows, in essence, that when b = 1, it is impossible to achieve the accelerated optimization
rates of T−2 and exp(−

√
λT/
√
H) under the conditions of Corollary 3. Furthermore, when b = 1,

the guarantee of regular, unaccelerated SGD actually matches the lower bound, so there is no room
for acceleration, Lan’s accelerated SGD algorithm relied crucially on the uniformly bounded variance,
and the σ in (125) cannot generally be replaced with σ∗. In fact, Corollary 2 shows that no learning
rule, even non-first-order methods, can ensure error n−2 using just n samples.

However, the good news is that our guarantees for minibatch accelerated SGD also apply in this
setting:
Theorem 5. Let L(w) = Ez`(w; z) have a minimizer with norm at most B, let ` be H-smooth and
convex, and let E‖∇`(w∗; z)‖2 ≤ σ2

∗. Then Algorithm 1 guarantees

EL(wag
T )− L∗ ≤ c ·

(
HB2

T 2
+
HB2

bT
+
σ∗B√
bT

)
Let L(w) = Ez`(w; z) satisfy L(w)−L∗ ≥ λ

2 minw∗∈arg minw L(w)‖w−w∗‖2 for all w, let L(0)−
L∗ ≤ ∆, let ` be H-smooth and convex, and let E‖∇`(w∗; z)‖2 ≤ σ2

∗. Then GC2Cvx(Alg 1, e)
guarantees

EL(ŵ)− L∗ ≤ c ·

(
∆ exp

(
−c
′
√
λT√
H

)
+ ∆ exp

(
−c
′λbT

H

)
+

σ2
∗

λbT

)
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The first part of the Theorem is demonstrated in the proof of Theorem 1 in Appendix A, and the
second part follows an essentially identical argument as in the proof of Theorem 3.

Corollary 3 showed that it is impossible to achieve error like T−2 using first-order methods with
b = 1. However, Theorem 5 shows it is possible to achieve error like T−2 with parallel runtime
T using our minibatch accelerated SGD method with b > 1. In other words, while SGD with
minibatches of size b = 1 matches the lower bound in Corollary 2 with n = bT = T , and therefore
attains the smallest possible error using n samples, our method is able to more quickly attain this
same optimal error using n = bT samples with b � 1. As discussed in Section 6, this means our
algorithm’s parallel runtime, T , can be much smaller than SGD’s, with up to a quadratic improvement.
Since the lower bound, Corollary 3, and upper bound, Thoerem 5, match, this also tightly bounds the
complexity of stochastic first-order optimization with a bound on σ∗.
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