A Deterministic lower bound

While there remains a small gap between our main lower bound of Theorem 3 and the deterministic quantised gradient descent of Section 6, we can show that the gap cannot be closed by improved deterministic algorithms where the coordinator learns value of objective function $F(x)$ in addition to the minimiser x. That is, our quantised gradient descent is the communication-optimal deterministic algorithm for variant (1) for objectives with constant condition number.

Recall that in the N-player equality over universe of size d, denoted by $\mathrm{EQ}_{d, N}$, each player i is given an input $b_{i} \in\{0,1\}^{d}$, and the task is to decide if all players have the same input. That is, $\mathrm{EQ}_{d, N}\left(b_{1}, \ldots, b_{N}\right)=1$ if all inputs are equal, and 0 otherwise. It is known [33] that the deterministic communication complexity of $\mathrm{EQ}_{d, N}$ is $\mathrm{CC}\left(\mathrm{EQ}_{d, N}\right)=\Omega(N d)$.
Theorem 8. Given parameters $N, d, \varepsilon, \beta_{0}$ and $\beta=\beta_{0} N$ satisfying $d \beta / \varepsilon=\Omega(1)$, any deterministic protocol solving (1) for quadratic input functions $x \mapsto \beta_{0}\left\|x-x_{0}\right\|_{2}^{2}$ has communication complexity $\Omega(N d \log (\beta d / \varepsilon))$, if the coordinator is also required to output estimate $r \in \mathbb{R}$ for the minimum function value such that $\sum_{i=1}^{N} f_{i}(z) \leq r \leq \sum_{i=1}^{N} f_{i}(z)+\varepsilon$.

Proof. Assume Π is a deterministic protocol solving (1) with communication complexity C_{Π}. We show that Π can then solve N-party equality over a universe of size $D=\Omega(d \log (\beta d / \varepsilon))$, implying

$$
C_{\Pi}=\Omega(N D)=\Omega(N d \log (\beta d / \varepsilon)) .
$$

More specifically, let S be the set given by Lemma 2 with $\delta=(2 \varepsilon / \beta)^{1 / 2}$, and let $D=\lceil\log |S|\rceil=$ $\Theta(d \log (\beta d / \varepsilon))$. Note that since we assume $d \beta / \varepsilon=\Omega(1)$, the set S has at least two elements and $D \geq 1$. For technical convenience, assume $|S|=2^{D}$, and identify each binary string $b \in\{0,1\}^{D}$ with an element $\tau(b) \in S$.
Next, assume that each node i is given a binary string $b_{i} \in\{0,1\}^{D}$ as input, and we want to compute $\mathrm{EQ}_{D, N}\left(b_{1}, b_{2}, \ldots, b_{N}\right)$. The nodes simulate protocol Π with input function f_{i} for node i, where $f_{i}(x)=\beta_{0}\left\|x-\tau\left(b_{i}\right)\right\|_{2}^{2}$. Let us denote $F=\sum_{i=1}^{d} f_{i}$. Upon termination of the protocol, the coordinator learns a point $y \in[0,1]^{d}$ satisfying $F(y) \leq F\left(x^{*}\right)+\varepsilon$ and an estimate $r \in \mathbb{R}$ satisfying $r \leq F(y)+\varepsilon$, where x^{*} is the true global minimum. The coordinator can now adjudicate equality based on $F(y)$ as follows:
(1) If all inputs b_{i} are equal, then the functions f_{i} are also equal, and $F\left(x^{*}\right)=0$. In this case, we have $F(y) \leq 2 \varepsilon$, and the coordinator outputs 1 .
(2) If there are nodes i and j such that $i \neq j$, then for all points $x \in[0,1]^{d}$, we have $f_{i}(x)+f_{j}(x)>$ 2ε by the definition of S, and thus $F\left(x^{*}\right)>2 \varepsilon$. In this case, we have $r>2 \varepsilon$, and the coordinator outputs 0 .

Since communication is only used for the simulation of Π, this computes $\mathrm{EQ}_{D, N}\left(b_{1}, b_{2}, \ldots, b_{N}\right)$ with C_{Π} total communication, completing the proof.

B Lower bound for non-convex functions

We now show a simple lower bound for optimisation over non-convex objective functions. We reduce from the N-player set disjointness over universe of size d, denoted by DIS $J_{d, N}$: each player i is given an input $b_{i} \in\{0,1\}^{d}$, and the coordinator needs to output 0 if there is a coordinate $\ell \in[d]$ such that $b_{i}(\ell)=1$ for all $i \in[N]$, and 1 otherwise.
Theorem 11 ([6]). For $\delta>0, N \geq 1$ and $d=\omega(\log N)$, the randomised communication complexity of set disjointness is $\operatorname{RCC}^{\delta}\left(\right.$ DIS $\left._{d, N}\right)=\Omega(N d)$.

Again consider for fixed ε, d and β the set S given by Lemma 2 with $\delta=2 \varepsilon / \beta$. This gives a set S with size at least $\left(\beta d^{1 / 2} / 2 C \varepsilon\right)^{d}=\exp (\Omega(d \log (\beta d) / \varepsilon)$. Let us identify the points in S with indices in $[|S|]$. For a binary string $b \in\{0,1\}^{|S|}$, define the function f_{b} by

$$
f_{b}(x)= \begin{cases}\beta\|x-s\|_{2} & \text { if }\|x-s\|_{2}<\varepsilon / \beta \text { for } s \text { with } b_{s}=1 \\ \varepsilon & \text { otherwise } .\end{cases}
$$

Since the distance between points in S is at least $2 \varepsilon / \beta$, the functions f_{T} are well-defined, continuous and β-Lipschitz.
Theorem 12. Given parameters N, d, ε and β satisfying $d \beta / \varepsilon=\Omega(1)$ and $\left(\beta d^{1 / 2} / 2 C \varepsilon\right)^{d}=$ $\omega(\log N)$, any protocol solving 1 with error probability $\delta>0$ when the inputs are guaranteed to be functions f_{b} for $b \in\{0,1\}^{|S|}$ has communication complexity $N \exp (\Omega(d \log (\beta d) / \varepsilon))$.

Proof. Assume there is a protocol Π with the properties stated in the claim, and worst-case communication cost C_{Π}. We now show that we can use Π to solve set disjointness over universe of size $|S|$ with C_{Π} total communication, which implies

$$
C_{\Pi} \geq \operatorname{RCC}^{\delta}\left(\operatorname{DIS}_{|S|, N}\right)=\Omega(N \exp (\Omega(d \log (\beta d) / \varepsilon)),
$$

yielding the claim.
First, we note that after running Π, the coordinator can send the final estimate z of the optimum to all nodes, and receive approximations of the local function values $f_{i}(z)$ from all nodes with additive $O(N d \log d \beta / \varepsilon)$ overhead, e.g. using quantisation of Corollary 9 . We can without loss of generality assume that this does not exceed the total communication cost of Π.
For $b_{1}, b_{2}, \ldots b_{N} \in\{0,1\}^{|S|}$ that all contain 1 in some position s, then we have $\sum_{i=1}^{N} f_{b_{i}}(x)=0$. Otherwise, for any point $x \in[0,1]^{d}$, consider the closest point $s \in S$ to x; there is at least one b_{i} with $b_{s}=0$, and for that function $f_{b_{i}}(x)=\varepsilon$ by definition. Thus, if $b_{1}, b_{2}, \ldots b_{N}$ are a YES-instance for set disjointness, then $\inf _{x \in[0,1]^{d}} \sum_{i=1}^{N} f_{b_{i}}(x) \geq \varepsilon$, and if $b_{1}, b_{2}, \ldots b_{N}$ are a NO-instance, then $\inf _{x \in[0,1]^{d}} \sum_{i=1}^{N} f_{b_{i}}(x)=0$.
By definition, Π can be used to distinguish between the two cases, and thus to solve set disjointness.

C Communication-optimal quantised gradient descent, full version

We now describe in detail our deterministic upper bound. Our algorithm uses quantised gradient descent, loosely following the outline of Magnússon et al. [25]. However, there are two crucial differences. First, we use a carefully-calibrated instance of the quantisation scheme of Davies et al. [11] to remove a $\log d$ factor from the communication cost, and second, we use use two-step quantisation to avoid all-to-all communication.
Preliminaries on gradient descent. We will assume that the input functions $f_{i}:[0,1]^{d} \rightarrow \mathbb{R}$ are α_{0}-strongly convex and β_{0}-strongly smooth. This implies that $F=\sum_{i=1}^{N} f_{i}$ is α-strongly convex and β-strongly smooth for $\alpha=N \alpha_{0}$ and $\beta=N \beta_{0}$. Consequently, the functions f_{i} and F have condition number bounded by $\kappa=\beta / \alpha$.

Gradient descent optimises the sum $\sum_{i=1}^{N} f_{i}(x)$ by starting from an arbitrary point $x^{(0)} \in[0,1]^{d}$, and applying the update rule

$$
x^{(t+1)}=x^{(t)}-\gamma \sum_{i=1}^{N} \nabla f_{i}\left(x^{(t)}\right)
$$

where $\gamma>0$ is a parameter.
Let x^{*} denote the global minimum of F. We use the following standard result on the convergence of gradient descent; see e.g. Bubeck [8].
Theorem 13. For $\gamma=2 /(\alpha+\beta)$, we have that $\left\|x^{(t+1)}-x^{*}\right\|_{2} \leq \frac{\kappa-1}{\kappa+1}\left\|x^{(t)}-x^{*}\right\|_{2}$.
Preliminaries on quantisation. For compressing the gradients the nodes will send to coordinator, we use the recent quantisation scheme of Davies et al. [11]. Whereas the original uses randomised selection of the quantisation point to obtain a unbiased estimator, we can use a deterministic version that picks an arbitrary feasible quantisation point (e.g. the closest one). This gives the following guarantees:
Corollary 14 ([11]). Let R and ε be fixed positive parameters, and $q \in \mathbb{R}^{d}$ be an estimate vector, and $B \in \mathbb{N}$ be the number of bits used by the quantisation scheme. Then, there exists a deterministic quantisation scheme, specified by a function $Q_{\varepsilon, R}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, an encoding function
$\operatorname{enc}_{\varepsilon, R}: \mathbb{R}^{d} \rightarrow\{0,1\}^{B}$, and a decoding function $\operatorname{dec}_{\varepsilon, R}: \mathbb{R}^{d} \times\{0,1\}^{B} \rightarrow \mathbb{R}^{d}$, with the following properties:
(1) (Validity.) $\operatorname{dec}_{\varepsilon, R}\left(q, \operatorname{enc}_{\varepsilon, R}(x)\right)=Q_{\varepsilon, R}(x, q)$ for all $x, q \in \mathbb{R}^{d}$ with $\|x-q\|_{2} \leq R$.
(2) (Accuracy.) $\left\|Q_{\varepsilon, R}(x, q)-x\right\|_{2} \leq \varepsilon$ for all $x, q \in \mathbb{R}^{d}$ with $\|x-q\|_{2} \leq R$.
(3) (Cost.) If $\varepsilon=\lambda R$ for any $\lambda<1$, the bit cost of the scheme satisfies $B=O\left(d \log \lambda^{-1}\right)$.

C. 1 Algorithm description

We now describe the algorithm, and overview its guarantees. We assume that the constants α and β are known to all nodes, so the parameters of the quantised gradient descent can be computed locally, and use W to be an upper bound on the diameter on the convex domain \mathbb{D}, e.g. $W=d^{1 / 2}$ if $\mathbb{D}=[0,1]^{d}$. We assume that the initial iterate $x^{(0)}$ is arbitrary, but the same at all nodes, and set the initial quantisation estimate $q_{i}^{(0)}$ at each i as the origin.
We define the following parameters for the algorithm. Let $\gamma=2 /(\alpha+\beta)$ and $\xi=\frac{\kappa-1}{\kappa+1}$ be the step size and convergence rate of gradient descent, and let W be such that $\left\|x^{(0)}-x^{*}\right\| \leq W$. We define

$$
\mu=1-\frac{1}{\kappa+1}, \quad \delta=\xi(1-\xi) / 4, \quad R^{(t)}=\frac{2 \beta}{\xi} \mu^{t} W
$$

where μ will be the convergence rate of our quantised gradient descent, and δ and $R^{(t)}$ will be parameters controlling the quantisation at each step. For the purposes of analysis, we assume that $\kappa \geq 2$. Note that this implies that $1 / 3 \leq \xi<1, \mu<1$, and $0<\delta<1$.
The algorithm proceeds in rounds $t=1,2, \ldots, T$. At the beginning of round $t+1$, each node i knows the values of the iterate $x^{(t)}$, the global quantisation estimate $q^{(t)}$, and its local quantisation estimate $q_{i}^{(t)}$ for $i=1,2, \ldots, N$. At step t, nodes perform the following steps:
(1) Each node i updates its iterate as $x^{(t+1)}=x^{(t)}-\gamma q^{(t)}$.
(2) Each node i computes its local gradient over $x^{(t+1)}$, and transmits it in quantised form to the coordinator as follows. Let $\varepsilon_{1}=\delta R^{(t+1)} / 2 N$ and $\rho_{1}=R^{(t+1)} / N$.
(a) Node i computes $\nabla f_{i}\left(x^{(t+1)}\right)$ locally, and sends message $m_{i}=\operatorname{enc}_{\varepsilon_{1}, \rho_{1}}\left(\nabla f_{i}\left(x^{(t+1)}\right)\right)$ to the coordinator.
(b) The coordinator receives messages m_{i} for $i=1,2, \ldots, N$, and decodes them as $q_{i}^{(t+1)}=$ $\operatorname{dec}_{\varepsilon_{1}, \rho_{1}}\left(q_{i}^{(t)}, m_{i}\right)$. The coordinator then computes $r^{(t+1)}=\sum_{i=1}^{N} q_{i}^{(t+1)}$.
(3) The coordinator sends the quantised sum of gradients to all other nodes as follows. Let $\varepsilon_{2}=$ $\delta R^{(t+1)} / 2$ and $\rho_{2}=2 R^{(t+1)}$.
(a) The coordinator sends the message $m=\operatorname{enc}_{\varepsilon_{2}, \rho_{2}}\left(r^{(t+1)}\right)$ to each node i.
(b) Each node decodes the coordinator's message as $q^{(t+1)}=\operatorname{dec}_{\varepsilon_{2}, \rho_{2}}\left(q^{(t)}, m\right)$.

After round T, all nodes know the final iterate $x^{(T)}$.

C. 2 Analysis

For simplicity, we will split the analysis into two parts. The first describes and analyses the algorithm in an abstract way; the second part describes the details of implementing it in the coordinator model. For technical convenience, assume $\kappa \geq 2$; for smaller condition numbers, we can run the algorithm with $\kappa=2$.
Convergence. Let $\gamma=2 /(\alpha+\beta)$, let $x^{(0)} \in[0,1]^{d}, q_{i}^{(0)} \in \mathbb{R}^{d}$ and $q_{i}^{(0)} \in \mathbb{R}^{d}$ for $i=1,2, \ldots, N$ be arbitrary initial values. From the algorithm description, we see that the update rule for our quantised gradient descent is

$$
\begin{aligned}
& x^{(t+1)}=x^{(t)}-\gamma q^{(t)} \\
& q_{i}^{(t+1)}=Q_{\varepsilon_{1}, \rho_{1}}\left(\nabla f_{i}\left(x^{(t+1)}\right), q_{i}^{(t)}\right) \quad \text { for } \varepsilon_{1}=\delta R^{(t+1)} / 2 N \text { and } \rho_{1}=R^{(t+1)} / N
\end{aligned}
$$

$$
\begin{array}{ll}
r^{(t+1)} & =\sum_{i=1}^{N} q_{i}^{(t+1)}, \\
q^{(t+1)} & =Q_{\varepsilon_{2}, \rho_{2}}\left(r^{(t+1)}, q^{(t)}\right) \quad \text { for } \varepsilon_{2}=\delta R^{(t+1)} / 2 \text { and } \rho_{2}=2 R^{(t+1)} .
\end{array}
$$

Lemma 15. The inequalities

$$
\begin{align*}
& \left\|x^{(t)}-x^{*}\right\|_{2} \leq \mu^{t} W \tag{Q1}\\
& \left\|\nabla f_{i}\left(x^{(t)}\right)-q_{i}^{(t)}\right\|_{2} \leq \delta R^{(t)} / 2 N \tag{Q2}\\
& \left\|\nabla F\left(x^{(t)}\right)-q^{(t)}\right\|_{2} \leq \delta R^{(t)} \tag{Q3}
\end{align*}
$$

hold for all t, assuming that they hold for $x^{(0)}, q^{(0)}$ and $q_{i}^{(0)}$ for $i=1,2, \ldots, N$.
Proof. We apply induction over t; we assume that the inequalities (Q1-Q3) hold for t, and prove that they also hold for $t+1$. Since we assume the inequalities hold for $t=0$, the base case is trivial. By elementary computation, the following hold:

$$
0<\xi<1, \quad 0<\delta<1, \quad 2 \delta / \xi+\xi=\mu, \quad \gamma \beta \leq 2, \quad \mu R^{(t)}=R^{(t+1)}
$$

Convergence (Q1): First, we observe that $\frac{2 \delta}{\xi}+\xi=\frac{1}{2}(1+\xi)=1-\frac{1}{\kappa+1}=\mu$ and $\gamma \beta \leq 2$. We now have that

$$
\begin{array}{rlr}
\left\|x^{(t+1)}-x^{*}\right\|_{2} & =\left\|x^{(t)}-\gamma q^{(t)}+\gamma \nabla F\left(x^{(t)}\right)-\gamma \nabla F\left(x^{(t)}\right)+x^{*}\right\|_{2} & \text { (def.) } \\
& \leq\left\|\gamma q^{(t)}-\gamma \nabla F\left(x^{(t)}\right)\right\|_{2}+\left\|\left(x^{(t)}-\gamma \nabla F\left(x^{(t)}\right)\right)-x^{*}\right\|_{2} & \text { (triangle-i.e.) } \\
& \leq \gamma\left\|\nabla F\left(x^{(t)}\right)-q^{(t)}\right\|_{2}+\xi\left\|x^{(t)}-x^{*}\right\|_{2} & \text { (norm, Thm. 13)) } \\
& \leq \gamma \delta R^{(t)}+\xi \mu^{t} W & \text { (by Q1, Q3 for } t) \\
& =(\gamma \beta \delta / \xi+\xi) \mu^{t} W & \left(\text { expand } R^{(t)}\right) \\
& \leq(2 \delta / \xi+\xi) \mu^{t} W=\mu^{t+1} W . & (\gamma \beta \leq 2)
\end{array}
$$

Local quantisation (Q2): First, let us observe that to prove that (Q2) holds for $t+1$, it is sufficient to show $\left\|\nabla f_{i}\left(x^{(t+1)}\right)-q_{i}^{(t)}\right\|_{2} \leq R^{(t+1)} / N$, as the claim then follows from the definition of $q_{i}^{(t+1)}$ and Corollary 9 . We have

$$
\begin{array}{rlr}
\left\|\nabla f_{i}\left(x^{(t+1)}\right)-q_{i}^{(t)}\right\|_{2} & =\left\|\nabla f_{i}\left(x^{(t+1)}\right)-\nabla f_{i}\left(x^{(t)}\right)+\nabla f_{i}\left(x^{(t)}\right)-q_{i}^{(t)}\right\|_{2} & \\
& \leq\left\|\nabla f_{i}\left(x^{(t+1)}\right)-\nabla f_{i}\left(x^{(t)}\right)\right\|_{2}+\left\|\nabla f_{i}\left(x^{(t)}\right)-q_{i}^{(t)}\right\|_{2} & \text { (triangle-i.e.) } \\
& \leq \beta_{0}\left\|x^{(t+1)}-x^{(t)}\right\|_{2}+\delta R^{(t)} / N & \text { (smoothness, Q3) } \\
& \leq \beta_{0}\left(\left\|x^{(t+1)}-x^{*}\right\|_{2}+\left\|x^{(t)}-x^{*}\right\|_{2}\right)+\delta R^{(t)} / N & \text { (triangle-i.e.) } \\
& \leq 2 \beta_{0} \mu^{t} W+\delta R^{(t)} / N & (\text { by Q1 for } t, t+1) \\
& =2 \beta \mu^{t} W / N+\delta R^{(t)} / N & \left(\beta=\beta_{0} N\right) \\
& =\xi R^{(t)} / N+\delta R^{(t)} / N & \left(\text { definition of } R^{(t)}\right) \\
& =(\xi+\delta) R^{(t)} / N & (\text { rearrange) } \\
& \leq(\xi+2 \delta / \xi) R^{(t)} / N & (2 / \xi \geq 1) \\
& =\mu R^{(t)} / N=R^{(t+1)} / N . & (2 \delta / \xi+\xi=\mu)
\end{array}
$$

Global quantisation (Q3): To prove (Q3), we start by giving two auxiliary inequalities. First, we prove that $\left\|\nabla F\left(x^{(t+1)}\right)-r^{(t+1)}\right\|_{2} \leq \delta R^{(t+1)} / 2$:

$$
\begin{equation*}
\left\|\nabla F\left(x^{(t+1)}\right)-r^{(t+1)}\right\|_{2}=\left\|\sum_{i=1}^{N} \nabla f_{i}\left(x^{(t+1)}\right)-\sum_{i=1}^{N} q_{i}^{(t+1)}\right\|_{2} \tag{def.}
\end{equation*}
$$

$$
\leq \sum_{i=1}^{N}\left\|\nabla f_{i}\left(x^{(t+1)}\right)-q_{i}^{(t+1)}\right\|_{2} \quad \quad \text { (triangle-i.e.) }
$$

$$
\leq N \delta R^{(t+1)} / 2 N=\delta R^{(t+1)} / 2 . \quad(\text { by } \mathrm{Q} 2 \text { for } t+1)
$$

Next, we want to prove $\left\|r^{(t+1)}-q^{(t+1)}\right\|_{2} \leq \delta R^{(t+1)} / 2$. Again, it is sufficient to show $\| r^{(t+1)}-$ $q^{(t)} \|_{2} \leq 2 R^{(t+1)}$, as the claim then follows from the definition of $q^{(t+1)}$ and Corollary 9. We have

$$
\begin{aligned}
\left\|r^{(t+1)}-q^{(t)}\right\|_{2} & =\left\|r^{(t+1)}+\nabla F\left(x^{(t+1)}\right)-\nabla F\left(x^{(t+1)}\right)+\nabla F\left(x^{(t)}\right)-\nabla F\left(x^{(t)}\right)-q^{(t)}\right\|_{2} \\
& \leq\left\|r^{(t+1)}-\nabla F\left(x^{(t+1)}\right)\right\|_{2}+\left\|\nabla F\left(x^{(t+1)}\right)-\nabla F\left(x^{(t)}\right)\right\|_{2}+\left\|\nabla F\left(x^{(t)}\right)-q^{(t)}\right\|_{2} \\
& \leq \delta R^{(t+1)} / 2+\beta\left\|x^{(t+1)}-x^{(t)}\right\|_{2}+\delta R^{(t)}
\end{aligned}
$$

where the last inequality follows from smoothness of F, equation (Q2) for $t+1$ and equation (Q3) for t. It holds that

$$
\begin{array}{rlr}
\beta\left\|x^{(t+1)}-x^{(t)}\right\|_{2}+\delta R^{(t)} & \leq \beta\left(\left\|x^{(t+1)}-x^{*}\right\|_{2}+\left\|x^{(t)}-x^{*}\right\|_{2}\right)+\delta R^{(t)} & \quad \text { (triangle-i.e.) } \\
& \leq 2 \beta \mu^{t} W+\delta R^{(t)} & (\text { by Q1 for } t, t+1) \\
& =\xi R^{(t)}+\delta R^{(t)} & \left(\text { definition of } R^{(t)}\right) \\
& \leq(\xi+2 \delta / \xi) R^{(t)} & (2 / \xi \geq 1) \\
& =\mu R^{(t)}=R^{(t+1)} . &
\end{array}
$$

Combining the two previous inequalities, we have

$$
\left\|r^{(t+1)}-q^{(t)}\right\|_{2} \leq \delta R^{(t+1)} / 2+R^{(t+1)} \leq 2 R^{(t+1)}
$$

as desired.
Finally, putting things together, we have

$$
\begin{aligned}
\left\|\nabla F\left(x^{(t+1)}\right)-q^{(t+1)}\right\|_{2} & =\left\|\nabla F\left(x^{(t+1)}\right)-r^{(t+1)}+r^{(t+1)}-q^{(t+1)}\right\|_{2} \\
& \leq\left\|\nabla F\left(x^{(t+1)}\right)-r^{(t+1)}\right\|_{2}+\left\|r^{(t+1)}-q^{(t+1)}\right\|_{2} \\
& \leq \delta R^{(t+1)} / 2+\delta R^{(t+1)} / 2=\delta R^{(t+1)}
\end{aligned}
$$

completing the proof.
Lemma 16. For any $\varepsilon>0$ and $t \geq(\kappa+1) \log \frac{W}{\varepsilon}$, we have $\left\|x^{(t)}-x^{*}\right\|_{2} \leq \varepsilon$.
Proof. By Lemma 15, we have $\left\|x^{(t)}-x^{*}\right\|_{2} \leq \mu^{t} W=(1-(1-\mu))^{t} W \leq e^{-(1-\mu) t} W$. Assuming $t \geq \frac{1}{1-\mu} \log \frac{W}{\varepsilon}$, we have

$$
e^{-(1-\mu) t} W \leq e^{-(1-\mu)(1-\mu)^{-1} \log W / \varepsilon} W=e^{\log \varepsilon / W} W=\varepsilon W / W=\varepsilon
$$

The claim follows by observing that $\frac{1}{1-\mu}=\kappa+1$ by definition.
Communication cost. Finally, we analyse the distributed implementation described at the beginning of this section, and analyse its total communication cost. Recall that we assume that the parameters α and β are known to all nodes, so the parameters of the quantised gradient descent can be computed locally, and use $W=d^{1 / 2}$. Note that W is the only parameter depending on the input domain, so the algorithm also applies for arbitrary convex domain $\mathbb{D} \subseteq \mathbb{R}^{d}$, setting W to be the diameter of \mathbb{D}.

Since $\delta<1$, we have by Lemma 9 that the each of the messages sent by the nodes has length at most $O\left(d \log \delta^{-1}\right)$ bits. Assuming $\kappa \geq 2$, we have $\xi \geq 1 / 3$ and

$$
\log \delta^{-1}=\log \frac{2(\kappa+1)}{\xi} \leq \log 6(\kappa+1) \leq \log 7 \kappa
$$

Since the nodes send a total of $2 N$ messages of $O(d \log \kappa)$ bits each, the total communication cost of a single round is $O(N d \log \kappa)$ bits.
To get $F\left(x^{(T)}\right)-F\left(x^{*}\right) \leq \varepsilon$, we need $\left\|x^{(T)}-x^{*}\right\|_{2} \leq(\varepsilon / \beta)^{2}$. By Lemma 16, selecting $T=$ $O\left(\kappa \log \frac{\beta W}{\varepsilon}\right)$ is sufficient. Finally, using $W=O\left(d^{1 / 2}\right)$, we have that the total communication cost of the optimisation is $O\left(N d \kappa \log \kappa \log \frac{\beta d}{\varepsilon}\right)$.

D Subsampling

In this section, we show that the condition $\beta d / N^{2} \varepsilon=\Omega(1)$ in our main lower bound is, to a degree, necessary.
Lemma 17. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subseteq[0,1]^{d}$, and let $X_{1}, X_{2}, \ldots, X_{M}$ be i.i.d. random variables, each selected uniformly at random from S. Writing $\hat{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ and $X=\frac{1}{M} \sum_{i=1}^{M} X_{i}$, we have

$$
\mathbb{E}\left[\|X-\hat{x}\|_{2}\right]=0, \quad \text { and } \quad \operatorname{Var}\left(\|X-\hat{x}\|_{2}\right)=\frac{d}{M}
$$

Proof. The first part follows immediately by the definition of the expectation. For the second part, we first note that since all points within $[0,1]^{d}$ are at most $d^{1 / 2}$ apart, and thus by the definition of variance, it follows that

$$
\begin{aligned}
\operatorname{Var}\left(\|X-\hat{x}\|_{2}\right) & =\mathbb{E}\left[\|X-\hat{x}\|_{2}^{2}\right]-\mathbb{E}\left[\|X-\hat{x}\|_{2}\right]^{2}=\mathbb{E}\left[\|X-\hat{x}\|_{2}^{2}\right]-0 \\
& \leq \mathbb{E}\left[\frac{1}{M^{2}} \sum_{i=1}^{M}\left\|X_{i}-\hat{x}\right\|_{2}^{2}\right]=\frac{1}{M^{2}} \sum_{i=1}^{M} \mathbb{E}\left[\left\|X_{i}-\hat{x}\right\|_{2}^{2}\right] \\
& \leq \frac{1}{M^{2}} M d=\frac{d}{M}
\end{aligned}
$$

Theorem 18. Assume the input functions f_{i} of the nodes are promised to be quadratic functions $x \mapsto \beta_{0}\left\|x-x^{*}\right\|_{2}^{2}$ for some constant $\beta_{0}>0$, let $\beta=\beta_{0} N$, and assume we can select $M \leq N$ to be an integer satisfying $\beta d / M \varepsilon \leq 1 / 8$. The there is a randomised algorithm solving (1) using

$$
O\left(M d \log \frac{\beta d}{\varepsilon}\right) \text { bits of communication, }
$$

with probability at least $1 / 2$.
Proof. We start by having the coordinator select a multiset I of M nodes uniformly at random with replacement. Let \hat{x} denote the global optimum of $\sum_{i=1}^{N} f_{i}$, and let \hat{Y} be the random variable for the global optimum of $\sum_{i \in I} f_{i}$. By Lemma 17, Chebyshev's inequality and the assumption $\beta d / N \varepsilon \leq 1 / 8$, we have that

$$
\operatorname{Pr}\left[\|\hat{Y}-\hat{x}\|_{2} \geq \frac{1}{2}\left(\frac{\varepsilon}{\beta}\right)^{1 / 2}\right] \leq \frac{4 d \beta}{\varepsilon M} \leq 1 / 2
$$

Let \hat{y} be the actualised value of \hat{Y}. We now apply the algorithm of Theorem 10 to find a point z such that $\|z-\hat{y}\|_{2} \leq 1 / 2(\varepsilon / \beta)^{1 / 2}$, where, if the multiset I contains duplicates, those nodes simulate multiple copies of themselves. This uses $O(M d \log \beta d / \varepsilon)$ bits of communication. We now have with probability at least $1 / 2$ that $\|z-\hat{x}\| \leq(\varepsilon / \beta)^{1 / 2}$, and thus $\sum_{i=1}^{N} f_{i}(z) \leq \sum_{i=1}^{N} f_{i}(\hat{x})+\varepsilon$.

Checklist

(1) For all authors...
(1) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
(2) Did you describe the limitations of your work? [Yes]
(3) Did you discuss any potential negative societal impacts of your work? [Yes]
(4) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
(2) If you are including theoretical results...
(1) Did you state the full set of assumptions of all theoretical results? [Yes]
(2) Did you include complete proofs of all theoretical results? [Yes]
(3) If you ran experiments...
(1) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [N/A]
(2) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [N/A]
(3) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]
(4) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]
(4) If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(1) If your work uses existing assets, did you cite the creators? [N/A]
(2) Did you mention the license of the assets? [N/A]
(3) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(4) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
(5) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
(5) If you used crowdsourcing or conducted research with human subjects...
(1) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(2) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(3) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

