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Abstract

Graph Neural Networks are perfectly suited to capture latent interactions between
various entities in the spatio-temporal domain (e.g. videos). However, when an
explicit structure is not available, it is not obvious what atomic elements should
be represented as nodes. Current works generally use pre-trained object detectors
or fixed, predefined regions to extract graph nodes. Improving upon this, our
proposed model learns nodes that dynamically attach to well-delimited salient
regions, which are relevant for a higher-level task, without using any object-level
supervision. Constructing these localized, adaptive nodes gives our model inductive
bias towards object-centric representations and we show that it discovers regions
that are well correlated with objects in the video. In extensive ablation studies
and experiments on two challenging datasets, we show superior performance to
previous graph neural networks models for video classification.

1 Introduction

Spatio-temporal data, and videos, in particular, are characterised by an abundance of events that
require complex reasoning to be understood. In such data, entities or classes exist at multiple scales
and in different contexts in space and time, starting from lower-level physical objects, which are well
localized in space and moving towards higher-level concepts which define complex interactions. We
need a representation that captures such spatio-temporal interactions at different level of granularity,
depending on the current scene and the requirements of the task. Classical convolutional nets address
spatio-temporal processing in a simple and rigid manner, determined only by fixed local receptive
fields [1]. Alternatively, space-time graph neural nets [2, 3] offer a more powerful and flexible
approach modeling complex short and long-range interactions between visual entities.

In this paper, we propose a novel method to enhance vision Graph Neural Networks (GNNs) by
an additional capability, missing from any other previous works. That is, to have nodes that are
constructed for spatial reasoning and can adapt to the current input. Prior works are limited to
having either nodes attached to semantic attention maps [4] or attached to fixed locations such as
grids [5, 3, 6]. Moreover, unlike works that require external object detectors [7] our method relies on
a learnable mechanism to adapt to the current input.
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We propose a method that learns to discover salient regions, well-delimited in space and time, that are
useful for modeling interactions between various entities. Such entities could be single objects, parts
or groups of objects that perform together a simple action. Each node learns to associate by itself to
such salient regions, thus the message passing between nodes is able to model object interactions more
effectively. For humans, representing objects is a core knowledge system [8] and to emphasize them
in our model, we predict salient regions [9] that give a strong inductive bias towards modeling them.

Our method, Dynamic Salient Regions Graph Neural Network (DyReg-GNN) improves the relational
processing of videos by learning to discover salient regions that are relevant for the current scene
and task. Note that the model learns to predict regions only from the weak supervision given by
the high-level video classi�cation loss, without supervision at the region level. Our experiments
convincingly show that the regions discovered are well correlated with the objects present in the
video, con�rming the intuition that action recognition should be strongly related to salient region
discovery. The capacity to discover such regions makes DyReg-GNN an excellent candidate model
for tackling tasks requiring spatio-temporal reasoning.

Our main contributions are summarised as follow:

1. We propose a novel method toaugment spatio-temporal GNNsby an additional capability:
that of learning to create localized nodes suited for spatial reasoning, that adapt to the input.

2. The salient regions discoveryenhance the relational processingfor high-level video clas-
si�cation tasks: creating GNN nodes from predicted regions obtains superior performance
compared to both using pre-trained object detectors or �xed regions

3. Our model leads tounsupervised salient regions discovery, a novelty in the realm of
GNNs: it predicts such regions in videos, with only weak supervision at the video class level.
We show that regions discovered are well correlated with actual physical object instances.

2 Related work

Graph Neural Networks in Vision. GNNs have been recently used in many domains where the
data has a non-uniform structure [10, 11, 12, 13]. In vision tasks, it is important to model the
relations between different entities appearing in the scene [14, 15] and GNNs have strong inductive
biases towards relations [16, 17], thus they are perfectly suited for modeling interactions between
visual instances. Since an explicit structure is not available in the video, it is of critical importance
to establish what atomic elements should be represented as graph nodes. As our main contribution
revolves around the creation of nodes, we analyse other recent GNN methods regarding the type of
information that each node represents, and group them into two categories,semanticandspatial.

The approaches of [4, 18, 19, 20, 21, 22] capture the purelysemanticinteractions by reasoning over
global graph nodes, each one receiving information from all the points in the input, regardless of
spatio-temporal position. In [4] the nodes assignments are predicted from the input, while in [18] the
associations between input and nodes are made by a soft clusterization. The work of [22] discovers
different representation groups by using an iterative clusterization based on self-attention similarity.

The downside of these semantic approaches is that individual instances, especially those belonging
to the same category, are not distinguished in the graph processing. This information is essential in
tasks such as capturing human-object interactions, instance segmentation or tracking.

Alternatively, multiple methods, including ours, favour modeling instance interactions by de�ning
spatialnodes associated with certain locations. We distinguish between them by how they extract
the nodes from spatial location: as �xed regions or points [23, 24], or detected object boxes [25,
26, 27, 28, 29]. The method [5] creates nodes from every point in 2D convolutional features maps,
while Non-Local [30] uses self-attention [31] between all spatio-temporal positions to capture distant
interactions. Further, [3] extract nodes from larger �xed regions at different scales and processes
them recurrently. Recent methods based on Transformer [32, 6, 33] also model the interactions
between �xed locations on a grid using self-attention. In [7], nodes are created from object boxes
extracted by an external detector and are processed using two different graph structures, one given by
location and one given by nodes similarity. A related approach is used in [27] in a streaming setting
while [34] learns to hop over unnecessary frames. Hybrid approaches use nodes corresponding to
points and object features [35, 36] or propagate over both semantic and spatial nodes [37, 38, 39].
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Figure 1: (Left ) DyReg-GNN extracts localized node useful for relational processing of videos. For
each nodei , from the featuresX t , we predict paramsoi denoting the location and size of a region.
They de�ne a kernelK i , used to extract the localized featuresv i from the corresponding region
of X t . We process the nodes with a spatio-temporal GNN and project each nodev̂ i into its initial
location.(Right) B) Node Region Generation: Functionsf andf gi g generate the regions params
oi ; f extracts a latent representation shared between nodes, while eachgi has different params for
each nodei . C) Node Features Extraction: Eachoi creates a kernel that is used in a differentiable
pooling w.r.t.oi . This allows us to optimize the generation of these regions' params from the �nal
classi�cation loss, resulting in an unsupervised discovery of salient regions.

However, methods that rely on external modules trained on additional data, such as object detectors,
are too dependent on the module's performance. They are unable to adapt to the current problem,
being limited to the set of pre-de�ned annotations designed for another task. Differently, our module
is optimized to discover regions useful for the current task, using only the video classi�cation signal.

Recently, the method [40] uses multiple position-aware nodes that take into account the spatial
structure. This makes it more suitable for capturing instances, but the nodes have associated a static
learned location, where each one is biased towards a speci�c position regardless of the input. On the
other hand, we dynamically assign a location for each node, based on the input, making the method
more �exible to adapt to new scenes.

Dynamic Networks. Several works use second-order computations by dynamically predicting
different parts of their model from the input, instead of directly optimising parameters. Our work
is related to STN [41] that aggregates features by interpolating from an area given by a predicted
global transformation and to the differentiable pooling used in some object detectors [42, 43, 44].
The method [45], replaces the parameters in a standard convolution with weights predicted from the
input, resulting in a dynamically generated �lter. Deformable convolutions [46, 47] predict, based
on the input, an offset for each position in the convolutional kernel. Similar, [48] use the same idea
of predicting offsets but in a graph formulation. The common topic of these methods is to predict
dynamically a support for all points in a convolutional operation while we dynamically generate
the input for a set of nodes designed to process high-level interactions. Related ideas, involving
high-level processing of a small set of powerful modules, is also highlighted in [49] and [40].

Unsupervised Object Representations. There is an entire area of work devoted to extracting
representations centered on objects [50] in a fully unsupervised setting [51, 52, 53, 22]. They are
successful in leveraging a reconstruction task to decompose the scene into objects, for synthetic
images. In [54] it is shown that representations learned from unsupervised decomposition are also
helpful in relational reasoning tasks. Methods for generating unsupervised keypoints or entities
[55, 56, 57, 58] have been generally used in synthetic setting. The method [55] generates keypoints
from real images of people and faces but they use an image reconstruction objective that could not be
aligned with the downsteam task. Our goal is to relate spatio-temporal entities, but without enforcing
a clear decomposition of the scene into objects. This allows us to use a simpler but effective method
that learns from classi�cation supervision of real-world videos and obtain representations that are
correlated to objects.

Activity Recognition. Video classi�cation has been in�uenced by methods designed for 2D images
[59, 60, 61, 62]. More powerful 3D convolutional networks have been later proposed [63], while
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other methods factorise the 3D convolutions [64, 65, 66] bringing both computational speed and
accuracy. Methods like TSM [67] and [68] showed that a simple shift in the convolutional features
results in improved accuracy at a low computational budget.

3 Dynamic Salient Regions GNNs

We investigate how to create node representations that are useful for modeling visual interactions
between various entities in space and time using GNNs. Our proposed Dynamic Salient Regions
GNN model (DyReg-GNN) learns to dynamically assign each node to a certain interesting region.
By dynamic, we mean that we have a �xed numberN of regions that change their position and size
according to the input at each time step. The regions assigned to each of theN nodes can change
from one moment of time to the next depending on their saliency.

The main architecture of our DyReg-GNN model is illustrated in Figure 1. Our model receives feature
volumeX 2 RT � H � W � C and at each time stept we predict the location and size ofN regions.
From these regions, a differentiable pooling operation creates graph nodes that are processed by a
GNN and then are projected to their initial position. This module can be inserted at any intermediate
level in a standard convolutional model.

3.1 Node Region Generation

We want to attend only to a few most relevant entities in the scene, thus a small number of nodes are
used in DyReg-GNN (in our experimentsN = 9 ) and it is crucial to assign them to the most salient
regions. The number of nodes is a hyperparameter that we choose such that it exceeds the expected
number of relevant entities in the scene, to increase the robustness of the model. Thus, we propose a
global processing (shown in Figure 1 B) that aggregates the entire input features to produce regions
de�ned by parameters indicating their location(� x; � y) and size(w; h).

To generateN salient regions, we process the inputX t using position-aware functionsf and
f gi gi 2 1;N that retain spatial information. Nodes should be consistent across time, thus we generate
their regions in the same way at all time steps, by sharing in time the parameters off andf gi g. The
functionf is a convolutional network that highlights the important regions from the input.

M t = f (X t ) 2 RH 0� W 0� C 0
(1)

For each nodei , we generate a latent representation of its associated region using thef gi g functions.
Eachgi has the same architecture, but different parameters for each node and could be instantiated
as a fully connected network or as global pooling enriched with spatial positional information. We
generate the node regions from a global view to make the decision as informed as possible.

m̂ i;t = gi (M t ) 2 RC 0
; 8i 2 1; N (2)

Each of theN latent representations is processed independently, with a GRU [69] recurrent network
(shared between nodes), to take into account the past regions' representations.

zi;t = GRU(zi;t � 1;m̂ i;t ) 2 RC 0
; 8i 2 1; N (3)

At each time step, the �nal parameters are obtained by a linear projectionWo 2 RC 0� 4, transformed
by a function� to control the initialisation of the position and size (e.g. regions would start at
reference points either in the center of the frame or arranged on a grid). For more details about how
to set the transformation� we refer to the Supplemental Materials.

oi;t = (� x i;t ; � yi;t ; wi;t ; hi;t ) = � (Wozi;t ) 2 R4 (4)

3.2 Node Features Extraction

The following operations are applied independently at each time step thus, in the current subsection,
we ignore the time index for clarity. We extract the features corresponding to each regioni using a
differentiable pooling w.r.t. the predicted region parametersoi . All the input spatial locationsp 2 R2

are interpolated according to the kernel functionK ( i ) (p) as presented in Figure 1 C.
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We present the operation for a single axis since the kernel is separable, acting in the same way on
both axes:

K ( i ) (px ; py ) = k( i )
x (px )k( i )

y (py ) 2 R (5)

We de�ne the center of the estimated regionci;x + � x i , whereci;x is a �xed reference point for node
i (located in the frame's center or arranged on a grid). The values of the kernel decrease with the
distance to the center and is non-zero up to a maximal distance ofwi , wherewi and� x i are the
predicted parameters from Eq. 4.

k( i )
x (px ) = max(0; wi � j ci;x + � x i � px j) (6)

For each time stept, nodei is created by interpolating all points in the inputX t using the kernel
function. By modifying(� x i ; � yi ) the network controls the location of the regions, while(hi ; wi )
parameters indicate their size.

v i =
WX

px =1

HX

py =1

K ( i ) (px ; py )xpx ;py 2 RC (7)

Settingwi = 1 leads to standard bilinear interpolation, but optimising it allows the model to adapt
region's size and we observe that larger ones result in a more stable optimisation (see node size
ablations from Supp. Material).

The position of the region associated with each node should be taken into account. It helps the
relational processing by providing an identity for the node and is also useful in tasks that require
positional information. We achieve this by computing a positional embedding for each nodei using a
linear projection of the kernelK i into the same space as the feature vectorvi and summing them.

Key Properties. By construction, the nodes in our method arelocalized, meaning that they are
clearly associated with a location: they pool information from clearly delimited area in space and they
maintain position information from the positional embedding. These two aspects could be helpful in
tasks involving spatio-temporal reasoning.

Thedynamicaspect refers to the key capability of adapting the region's position and size according
to the saliency of the input at each time step. This is done by predicting the regions from the input
with the operations from equations (1–4).

An essential aspect of this method is that the �nal classi�cation loss isdifferentiablewith respect
to regions' parameters as the gradients are passing from the nodes outputsvi through the kernels
ki to the parameterswi and� x i . This allows us to learn regions from the �nal loss,without direct
supervision for the region generation. Thus the method has more �exibility in learning relevant
regions as appropriate for the task.

3.3 Graph Processing

For processing the nodes' features, different spatio-temporal GNNs could be used. Generally, they
follow a framework [12] of sending messages between connected nodes, aggregating [70, 71] and
updating them.

The speci�c message-passing mechanism is not the focus of the current work, thus we follow a
general formulation similar to [3] for recurrent spatio-temporal graph processing. It uses two different
stages: one happening between all the nodes at a single time step and the other one updating each
node across time. For each time stept, we send messages between each pair of two nodes, computed
as an MLP (with shared parameters) and aggregates them using a dot product attentiona(vi ; vj ) 2 R.

v i;t =
NX

j =1

a(v j;t ; v i;t )MLP([v j;t ; v i;t ]) 2 RC (8)

We incorporate temporal information through a shared recurrent function across time, applied
independently for each node.

v̂ i;t +1 = GRU(v̂ i;t ; v i;t ) 2 RC (9)
The GRU output represents the updated nodes' features and the two steps are repeatedK = 3 times.
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Table 1: Results on val. set of Smt-Smt-V2 showing the
importance of salient regions discovery.We compare our
predicted (unsupervised) regions to �xed grid regions or
boxes given by an object detector using the same GNN
model. The meanL 2 distance between the regions and gt.
objects proves that DyReG-GNN has regions correlated with
objects, while also having superior accuracy and ef�ciency.

Model Regions FLOPS Dist Acc
discovery # # (%)"

TSM-R50 - 65.8G - 63.4

+ GNN+Fixed Grid +1.4G 0.170 64.1
+ GNN+Detector Obj detector +41.1G 0.125 64.0
+ DyReg-GNN Unsupervised +1.6G 0.12964.8

Table 2: Consistent improvements
over different backboneson the vali-
dation set of Smt-Smt-V1 using central
crop evaluation.

Model Acc (%)

TSM-R18 33.7
TSM-R18 + DyReg-GNN 35.6 (" 1:9)

I3D-R50 44.0
I3D-R50 + DyReg-GNN 45.4 (" 1:4)

TSM-R50 47.2
TSM-R50 + DyReg-GNN 48.8 (" 1:6)

3.4 Graph Re-Mapping

To use our method as a module inside any backbone, we produce an output with the same shape as
the convolutional inputX t 2 RH � W � C . The resulting features of each node are sent to all locations
in the input according to the weights used in the initial pooling from Section 3.2.

ypx ;py ;t =
NX

i =1

K ( i )
t (px ; py )v̂ i;t 2 RC (10)

4 Experimental Analysis

While much effort is put into the creation of different video datasets used in the literature, such
as Kinetics [63] or Charades [72], it has been argued [73] that they contain biases that make them
solvable without complex spatio-temporal reasoning. CATER [73] is proposed to alleviate this, but
it is too small (5500 videos) and still has biases that make the last few frames suf�cient for good
performance [34]. We test our model on two video classi�cation datasets that seem to offer the best
advantages, being large enough and requiring abilities to model complex interactions. We evaluate
on real-world datasets, Something-Something-V1&V2 [74], while we also test on a variant of the
SyncMNIST [3] dataset that is challenging and requires spatio-temporal reasoning, while allowing
fast experimentation. The code for our method can be found in our repository2.

4.1 Human-Object Interactions Experiments

Something-Something-V1&V2 [74] datasets classify scenes involving human-object complex in-
teractions. They consist of 86K / 169K training videos and 11K / 25K validation videos, having
174 classes. Unless otherwise speci�ed, all experiments on Something-Something datasets use
TSM-ResNet-50 [67] as a backbone and we add instances of our module at multiple stages.

Studying the Importance of Salient Regions Discovery.We test the importance of the dynamic
regions for GNNs vision methods by training models where we replace the predicted regions with the
same number of �xed regions on a grid (GNN + Fixed Regions) or boxes (GNN + Detector) as given
by a Faster R-CNN [75] trained on MSCOCO [76].

The detector based model has comparable results to the one with �xed regions, seemingly being
unable to fully bene�t from the correctly identi�ed objects. The relative weaker performance of this
model could be due to the fact that the pre-trained detector is not well aligned to the actual salient
regions that are relevant for the classi�cation problem.

On the other hand, this weakness is not applicable for DyReg-GNN that learns suitable regions for the
current task and it obtains the best performance as seen in Table 1. Not only that it does not require
object annotations, but it is also more computationally ef�cient. Running the detector on a video of

2https://github.com/bit-ml/DyReg-GNN
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Table 3:Results on val. set of Smt-Smt-V1.Our
model achieves competitive results compared to re-
cent works (best results in red), while it outperforms
all other graph-based methods (best results in blue).
All the methods use ResNet50 as backbone.

Model Regions #F Top 1 Top 5
discovery

no
n-

G
ra

ph

TSM [67] - 16 48.4 78.1
S3D [64] - 64 48.2 78.7
GST [78] - 16 48.6 77.9
SmallBig [79] - 16 50.0 79.8
STM [80] - 16 50.7 80.4
MSNet [81] - 16 52.1 82.3

G
ra

ph

ORN [14] Objects 8 36.0 -
NL I3D [7] Grid 32 44.4 76.0
NL GCN [7] Objects 32 46.1 76.8
TRG [82] Frames 16 48.1 80.4
RSTG [3] Grid 32 49.2 78.8

TSM+DyReg Dynamic 16 49.9 79.0

Table 4:Results on val. set of Smt-Smt-V2.,
in comparisons to recent works. DyReg-GNN
improves the TSM-ResNet50 backbone when
using either one (r4) or three (r3-4-5) modules
of graph processing and it obtains top results.

Model BB Top 1 Top 5

TRG [82] R50 59.8 87.4
GST [78] R50 62.6 87.9
v-DP [83] D121 62.9 88.0
SmallBig [79] R50 63.8 88.9
STM [80] R50 64.2 89.8
MSNet [81] R50 64.7 89.4
TSM [67] R50 63.4 88.5

TSM+DyReg-r4 R50 64.3 88.9
TSM+DyReg-r3-4-5 R50 64.8 89.4

size224� 224would add39:7 GFLOPS on its own, comparing to the1:6G of three DyReg-GNN
modules, from which0:2G represents the regions prediction.

Overall, our method, with unsupervised regions obtains superior performance in terms of accuracy
and computational ef�ciency representing a suitable choice for relational processing of a video.

Object-centric representations. The nodes represent the core processing units and their localiza-
tion enforces a clear decision on what speci�c regions to focus on while completely ignoring the rest,
as a form of hard attention. Different from other works [77], our hard attention formulation is differen-
tiable. To better understand what elements in�uence the model predictions, we could inspect the pre-
dicted kernels, thus introducing another layer of interpretability to the model, on top of the capabilities
offered by the convolutional backbone. Visualisations of our nodes' regions reveal that generally, they
cover the objects in the scene. For example, in the �rst row of Figure 3 the nodes are placed around
the phone in the �rst frames and then separate into two groups, one for the phone one for the hand.

The localized nodes make our model capable of discovering salient regions, leading to object-centric
node representations. We quantify this capacity by measuring the meanL 2 distance (normalised to
the size of the input) between the predicted regions and ground-truth (gt.) objects given by [28]. The
metric is completely de�ned in the Supp. Materials. We observed that the score improves during the
learning process (it reaches0:129starting from0:201), although the model is not optimized for this
task. This suggests that the model actually learns object-centric representations.

In Table 1 we also compare the �nalL 2 distance of our best DyReg-GNN model to an object detector
and to �xed grid regions. Although our method is not designed and supervised to �nd object regions,
we observe that it is able to predict locations that are fairly close to gt. objects. TheL 2 distance is sim-
ilar to the one obtained by an external model (0:129vs0:125), trained especially for detecting objects.

We observe that learning the regions' size is important for the stability of the optimisation and thus for
the �nal performance (see Tab.5 and Supp. Material - Regions' Size section). However, the predicted
size is not as well aligned with the size of the true objects. This gives us a hint that for the action
classi�cation task it is important to have good region locations, but their size is less relevant. We
leave a more thoroughly investigation for futures work.

These experiments prove that the high-level classi�cation task is well inter-related with the discovery
of salient regions and that, in turn, these regions improve the relational processing in the recognition
task. First, we show that DyReg-GNN's region obtain superior accuracy and ef�ciency than other
methods of extracting nodes and second, these regions are well correlated to gt. object locations.

Comparison to recent methods. DyReg-GNN can be used with any convolutional model and we
show that it consistently boosts the performance of multiple backbones(Table 2). We compare to
recent methods from the literature in Table 3 and Table 4. Our method improves the accuracy over the
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TSM-ResNet50 backbone on both Smt-Smt-V1 and Smt-Smt-V2 by1:5%and1:4%respectively and
achieves competitive results. Compared to all the other graph based methods we obtain superior re-
sults, showing that our discovery of dynamic regions is effective for space-time relational processing.

Implementation Details Unless otherwise speci�ed, we use TSM-ResNet50 (pre-trained on Ima-
geNet [84]) as our backbone and add instances of our module in the last three stages. To bene�t from
ImageNet pre-training, we add our graph module as a residual connection. We noticed that models
using multiple graphs have problems learning to adapt the regions from certain layers. We �x this
by training models containing a single graph at each single considered stage, as the optimisation
process is smoother for a single module, and distill their learned offsets into the bigger model. The
distillation is done for the �rst10%of the training iterations to kick-start the optimization process
and then continue the learning process using only the video classi�cation signal.

In all experiments we follow the training setting of [67], using16 frames resized to have the shorter
side of size256, and randomly sample a crop of size224� 224. For the evaluations, we follow the
setting in [67] of taking 3 spatial crops of size256� 256with 2 temporal samplings and averaging
their results. For training, we use SGD optimizer with learning rate0:001and momentum0:9, using
a total batch-size of10, trained on two GPUs. We decrease the learning rate by a factor of 10 three
times when the optimisation reaches a plateau.

4.2 Synthetic Experiments

SyncMNIST is a synthetic dataset involving digits that move on a black background, some in a
random manner, while some move synchronously. The task is to identify the digits that move in the
same way. We use a harder variant of the dataset (MultiSyncMNIST), where the videos could include
multiple digits of the same class. The challenge consists in �nding useful entities and model their
relationships while being able to distinguish between instances of the same class. Each video contain
5 digits and the goal is to �nd the smallest and the largest digit class among the subset that moves in
the same way. This results in a video classi�cation task with 56 classes. The dataset contains 600k
training videos and 10k validation videos with 10 frames each.

Studying the Importance of Dynamic Nodes. We validate our assumption that the nodes should
be dynamic, meaning that their regions position and size should be adapted according to the input at
each time step. We investigate (Table. 5) different types of localized nodes, each adapting to the input
to a varying degree, and show the bene�ts of our design choices. We experiment with variants of
our model, all having the same backbone (2D ResNet-18 [85]), the same graph processing and same
pre-determined number of regions, but we constrain the node regions in different ways.

Fixed Modelextracts node features from regions arranged on a grid, with a �x location and size.

Static Modelinvestigates the importance of dynamic regions by optimising regions based on the
whole dataset but do not take into account the current input. Effectively, the featureszi from Eq. 4
become learnable parameters.

Constant-Time Modelhas regions adapted to the current video but they do not change in time.

DyReg-GNN Modelpredicts regions de�ned by location and size, and we can either pre-determine
a �xed size for all the regions (Position-Only Model) or directly predict it from the input as in our
complete model (DyReg-GNN Model).

These experiments (Table 5), show that the �xed region approach (Fixed Model) achieves the worst
results, slightly improving when the regions are allowed to change according to the learned statistics of
the dataset (Static model). Adapting to the input is shown to be bene�cial, the performance improving
even when the regions are invariant in time (Constant-Time Model), and further more when predicting
different regions at every time steps (Position-Only). The best performance is achieved when both
the location and the size of the regions are dynamically predicted from the input (DyReg-GNN).

In Figure 2 we show examples of the kernels obtained for each of these models. We observe that the
Static Model's kernels are learned to be arranged uniformly on a grid, to cover all possible movements
in the scene, while the Constant-Time Model's kernels are adapted for each video such that they
cover the main area where the digits move in the current video. The full DyReg-GNN Model learns
to reduce the size of its regions and we observe that they closely follow the movement of the digits.

The previous experiments show that performance increases when the model becomes more dynamic,
proving that our model bene�ts from nodes that are adapted to a higher degree to the current input.
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Figure 2:Nodes' regionson MultiSyncMNIST for 3
frames. a)StaticModel, ignoring the input, learns a
regular grid; b)Constant-Timepredicts the same regions
for all time steps, covering the movement in the video; c)
The attention map of a single node ofSemanticthat can't
distinguish between different instances of the same digit;
d) DyReg-GNNgenerally follows the digits locations at
each time steps while also adapting the regions' size.

Figure 3:Nodes' regionson Smt-Smt-V2.
We show (1st row) the center of all theN
regions as predicted by DyReg-GNN (each
color for a node). Each node region (last
2 rows) corresponds to a zone from the
latentconv features pooled by a node.

Table 5: Ablation of dynamic nodes on MultiSyncM-
NIST. It is crucial to have regions that adapt based on the
input (Dynamic), both their position (Pos.) and size at
each time step.

Model Optimise Time Dynamic Acc
Pos. Varying Pos. Size

Fixed 78.85
Static X 81.48
Ct-Time X X 86.77
Pos-Only X X X 93.41
DyReg-GNN X X X X 95.09

Table 6:Semantic vs spatial nodeson
MultiSyncMNIST. The localized (spa-
tial) node regions of DyReg-GNN are
better suited than semantic nodes' maps
obtained by the Semantic Model.

Model Params (M) Acc

ResNet-18 2.79 52.29
Fixed 2.82 78.85
Semantic 2.85 82.41

DyReg-GNN-Lite 2.83 91.43
DyReg-GNN 3.08 95.09

Studying the Importance of Localized Nodes. We argue that nodes should pool information from
different locations according to the input, such that the extracted features correspond to meaningful
entities. Depending on the goal, we could balance between semantic nodes globally extracted from
all spatial positions or localized (spatial) nodes that are obtained from well-delimited regions.

Semantic Modelcreates nodes similar to [4, 19] where each node extracts features from all the spatial
locations and could represent a semantic concept. Each node is extracted by a global average pooling
where the weights at every positionp are directly predicted from the input features at that location.
Practically, we replace the spatially delimited kernel used in our model with this global attention map.

A major downside of this approach is that it does not distinguish between positions with the same
features, making it harder to reason about different instances. Figure 2.C shows the attention map of
a single node and we observe that it has equally high activations for both instances of the same digit,
thus making it hard to distinguish between them.

This limitation does not exist in our DyReg-GNN model, as it predicts localized nodes that favour the
modeling of instances. For comparison, we use two variants with a different number of parameters
and show that they clearly outperform the semantic model (Table 6). These experiments prove that
in cases that involve spatial reasoning of entities, such as the current task, DyReg-GNN is a perfect
choice, showing its bene�ts for spatio-temporal modeling.

Implementation details. All models share the ResNet-18 backbone with 3 stages, where the graph
receives the features from the second stage and sends its output to the third stage. We useN = 9 graph
nodes and repeat the graph propagation for three iterations. In our main model,f from Eq. 1 is a small
convolutional network whileg is a fully connected layer. For the lighter model that implementsg as a
global pooling enriched with spatial positional information, we refer to the Supp. Materials. The graph
offsets are initialized such that all the nodes' regions start in the center of the frame. In all experiments,
we use SGD optimizer with learning rate0:001and momentum0:9, trained on a single GPU.

Key Results.In the previous section, we experimentally validated that:1. DyReg-GNN consistently
improves multiple backbones (Table 2) obtaining competitive results (Table 3, 4);2. learned dynamic
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regions are crucial for good performance (Table 5) and3. these regions are preferable to �xed regions
or external object detectors for space-time GNNs (Table 1);4. predicted nodes correspond to salient
regions (Fig. 2-3) and are well correlated with objects (Table 1).

5 Conclusions

We propose Dynamic Salient Regions Graph Neural Networks (DyReg-GNN), a relational model
for processing spatio-temporal data (videos), that augments visual GNNs by learning to predict
localized nodes, adapted for the current scene. This novel method enhances the relational processing
of spatio-temporal GNNs and we experimentally prove that it is superior to having nodes anchored in
�xed prede�ned regions or linked to external pre-trained object detectors. Although we do not use
region level supervision, the learning dynamics of high-level classi�cation produces salient regions
that are well correlated with object instances. We believe that our method of learning dynamic,
localized nodes is a valuable direction that could lead to further advances to the growing number of
powerful relational models in spatio-temporal domains.
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valuable feedback and discussions of this work. This work has been supported in part by Bitdefender
and UEFISCDI, through projects EEA-RO-2018-0496 and PN-III-P4-ID-PCE-2020-2819.
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Appendix: Discovering Dynamic Salient Regions for
Spatio-Temporal Graph Neural Networks

In this Appendix we present an impact statement, discuss some limitations of the method and then we
provide more technical details about DyReg-GNN model and include some additional visualisations
and ablation studies.

Section A presents some views on the broader impact of this work.

Section B identi�es some limitations of the methods.

Section C presents more details about how the regions are generated.

Section D shows a qualitative analysis of the regions predicted by our model.

Section E shows additional ablation studies in the synthetic setting in relation to the number of nodes,
the regions size, the importance of recurrence when generating the nodes and comparisons to using
ground-truth boxes or other baselines.

Section F presents some training details, describe the metric used to measure the correlation between
our regions and the existing objects in the scene and have a runtime analysis of our proposed module.

We provide our full code as supplementary material and we will release it online upon the paper
publication. Beside this Appendix, we also provide some videos, visualising the regions discovered
by our DyReg-GNN model.

A Broader Impact

We research novel methods that would improve current general models for spatio-temporal processing.
Our goal is to investigate models that emphasize a small number of relevant nodes having the potential
to be more explainable and that could lead to more interpretable reasoning. Although this is not fully
realised in this paper, we believe that this work is a good step in this direction. Our model enhances
any convolutional backbone for video processing and thus inherits the bene�ts and also the possible
harms brought by such models.

When developing our model, we used a synthetic dataset of moving digits and a public dataset for
human-object interactions. Our model is kept generic, with no parts specially designed for these
tasks. The models trained on these datasets have no obvious direct real application, as the �rst one is
a toy dataset and the second one has restrictive classes meant only to evaluate the capabilities of the
models. But developing better models for video understanding leads to more effective applications.
On one hand, it could lead to better applications helping visually impaired people navigate the world
and on the other hand it could lead to stricter automatic surveillance of workers. In order for ML
technology to have a positive broader impact, more discussions between different actors in society
should be conducted leading to the development of guidelines and practices.

The proposed work does not rely on using object detectors and only uses video level supervision.
Object detectors have a prede�ned list of objects, that would not be suf�cient for many practical
cases leading to biases in the system. Moreover, this way we eliminate a possible source of biases
coming from the object-level annotations.

B Limitations

By design, DyReg-GNN uses a �xed number of nodes, that we treat as a hyperparameter. This
way the model is forced to produce the same number of regions regardless of the complexity of the
scene. From simpler scenes, the model learns to group the nodes in overlapping regions, creating
redundancy. On the other hand, more complex scenes have an increased number of relevant regions,
tending to require distinct regions. This could lead to a discrepancy that would increase the dif�culty
of the optimisation process. Changes in scene's complexity could be also observed in a single video
when the scene suffer major changes in time. For example when elements appear, disappear or
are occluded from view, the number of regions predicted by the model remains the same and it is
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harder to properly model all the elements. Ideally, we want a system that adapts to the complexity of
the scene by dynamically predicting the number of nodes. This is a challenging task that requires
additional investigations and we leave it for future work.

Preliminary experiments reveals that our method requires a relative large amounts of data to be
properly trained. This seems not to be an issue for Something-Something dataset that has 80k-160k
training videos, but could be an issue for smaller datasets. On MultiSyncMNIST we could train
models with high accuracy on10%of the whole dataset of 600k videos. But when using only1%(6k
videos) of the data, the predicted regions would not change during training. Given the size of the
recent video dataset, this is not a big limitation.

C Node Region Generation

The goal of this sub-module is to generate the regions that correspond to salient zones in the input.
We achieve this by processing the input globally with position-aware functionsf andf gi g.

Function f . We usef function to aggregate local information from larger regions in the input
while preserving suf�cient positional information. The inputX t 2 RH � W � C is �rst projected
into a lower dimensionC0 since this representation should only encode saliency without the need
to precisely model visual elements. Then we increase the receptive �eld by applying two conv
layers, followed by a transposed conv and then a �nal conv layer. This results in a feature map
M t = f (X t ) 2 RH 0� W 0� C 0

. Depending on the backbone and the stage where the graph is added
H; W have different values and we adapt the hyperparameters of the convolutional layers such that
H 0 andW 0 are not smaller than6. For example, in the synthetic experimentsf reduces the input
from R16� 16� 32 to R7� 7� 16.

Functions f gi g. For each nodei we usegi to extract a global latent representation from which we
predict the corresponding region parameters. We present two variant ofgi function, a larger and more
precise one and a smaller, more computational ef�cient one.

For the bigger one, we use a simple fully connected layer of sizeC � (H 0 � W 0 � C0) that takes
the wholeM t and produces a vector of sizeC. This waygi could distinguish and model the spatial
locations of theH 0 � W 0 grid.

The second approach consists in a weighted global average pooling for each nodei . The weight
associated to each locationp is predicted directly from the inputM t;p by a1 � 1 convolution. But
this results in a translation-invariant functiongi that losses the location information. We alleviate this
by adding to each of theH 0 � W 0 location a positional embedding similar to the one used in [31].
This approach predicts regions of slightly poorer quality as the location information is not perfectly
encoded in the positional embeddings. For a lighter model, such as the one presented in Table 6 of the
main paper we could use the second approach for thef gi g functions and also skip thef processing.

Constraints Equation 4 in the main paper could be expended as:

~oi = (�~ x i ; �~yi ; ~wi ; ~hi ) =  � Wozi 2 R4 (11)
oi = � (~oi )

To constrain the model to predict valid image regions and also to start from regions with favourable
position and size, we apply non-linear functions for each componentoi = � (~oi ) . We design the
non-linearities such thatwi ; hi > 0 and� x i + Cx 2 [0; W] and ,� yi + Cy 2 [0; H ], whereC is a
�xed reference point. In experiments, all nodes share the same constantC , representing the center of
the image.

h = e
~h hinit w = e~w winit (12)
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