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A Overall procedure of consistency regularization for ABC

Figure 1 illustrates the overall procedure of consistency regularization for the ABC. Detailed proce-
dure is described in Section 3.4 of the main paper.

Figure 1: Overall procedure of consistency regularization for the ABC

B Pseudo code of the proposed algorithm

The pseudo code of the proposed algorithm is presented in Algorithm 1. The for loop (lines 2 14) can
be run in parallel. The classification loss Lcls and consistency regularization loss Lcon are expressed
in detail in Sections 3.3 and 3.4 of the main paper.

C Two types of class imbalance for the considered datasets

Two types of class imbalance for the considered datasets are illustrated in Figure 2. For both types
of imbalance, we set γ = 100, N1 = 1000, and β = 20%. In Figure 2 (b), we can see that each
minority class has a very small amount of data. Existing SSL algorithms can be significantly biased
toward majority classes under step imbalanced settings.
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Algorithm 1 Pseudo code of the proposed algorithm
Input:MBX = {(xb, yb) : b ∈ (1, ..., B)} ⊂ X ,MBU = {(ub) : b ∈ (1, . . . , B)} ⊂ U
Output: Classification model f : Rd → {1, ...L}
Parameters : θ (Parameters of Wide ResNet-28-2 and ABC)

1: while Training do
2: for b = 1 to B do
3: α (xb) = Augment(xb)
4: α (ub) = WeakAugment(ub)
5: Ak (ub) =StrongAugmentk (xb), k = 1, 2
6: Predicted class distribution for α (xb) = ps (y|α (xb))
7: Generate 0/1 mask M (xb).
8: Soft pseudo label qb = ps (y|α (ub))
9: if max (qb) ≥ 0.95 then

10: Predicted class distribution for Ak (ub) = ps (y|Ak (ub)) , k = 1, 2
11: Generate 0/1 mask M (ub).
12: end if
13: Loss from the backbone Lback += backbone(α (xb) , α (ub) ,Ak (ub))
14: end for
15: Calculate the classification loss Lcls and consistency regularization loss Lcon.
16: Total Loss Ltotal = Lcls + Lcon + Lback

17: ∆θ ∝ ∇θLtotal, θ ← θ + ∆θ
18: end while

(a) Long-tailed imbalance (b) Step imbalance

Figure 2: Long-tailed imbalance and step imbalance

D Specification of the confidence threshold τ

Table 1: Mean and standard deviation (STD) of validation accuracy during the last 50 epochs

ReMixMatch+ABC CIFAR-10-LT, γ = 100, β = 20%

τ 1 0.98 0.95 0.9 0.85 0.8 0.75 0.7

Mean and STD 78.9, 0.36 81.8, 0.34 82.3, 0.2 81.3, 0.32 81.5, 0.39 81.2, 0.63 80.0, 2.87 79.0, 5.76

In general, the confidence threshold τ should be set high enough, but not too high. If τ is low, training
becomes unstable because many misclassified unlabeled data points would be used for training.
However, if τ is too high, most of the unlabeled data points would not be used for consistency
regularization. Based on these insights, we set τ as 0.95 in our experiments. We confirmed via
experiments that this value of τ enabled high accuracy as well as stability. Specifically, we conducted
experiments on CIFAR-10-LT for the main setting while changing the value of τ . We measured the
validation accuracy of ReMixMatch+ABC during the last 50 epochs (1 epoch=500 iterations) of
training and calculated the mean and standard deviation (STD) of these values. As can be seen from
Table 1, the proposed algorithm achieved the highest mean and lowest STD of the validation accuracy
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when τ was 0.95. When τ was set higher or lower than 0.95, the mean of the validation accuracy
decreased. In particular, as the value of τ decreased from 0.95, the STD increased rapidly, indicating
instability of the training.

E Further details of the experimental setup

We describe further details of the experimental setup. To train the ReMixMatch, we gradually
increased the coefficient of the loss associated with the unlabeled data points, following [4]. We
found that without this gradual increase, the validation loss of the ReMixMatch did not converge.
To train the FixMatch, we used the labeled dataset once more as an unlabeled dataset by removing
the labels for the experiments using CIFAR-100 following the previous study [5], but not for the
experiments using CIFAR-10 and SVHN, because it did not improve the performance. We followed
the default settings for the ReMixMatch [1] and FixMatch [5], unless mentioned otherwise.

To train the ABC, we also gradually decreased the parameter of B (·) for calculating the classification
loss in the experiments using CIFAR-10 and SVHN under the step imbalanced setting. This prevents
unstable training by allowing each labeled data point of the majority classes to be more frequently
used for training.

F Geometric mean (G-mean) of class-wise accuracy for the main setting

Table 2: Performance comparison using G-mean for the main setting

CIFAR-10-LT SVHN-LT CIFAR-100-LT

Algorithm γ = 100, β = 20% γ = 100, β = 20% γ = 20, β = 40%

FixMatch [5] 62.0 87.3 38.5
w/ CReST+PDA [6] 74.4 88.6 42.3

w/ DARP [4] 71.5 87.6 40.4
w/ DARP+cRT [4] 76.7 89.8 47.0

w/ ABC 80.5 91.8 49.0
ReMixMatch [1] 62.5 89.5 41.2

w/ CReST+PDA [6] 72.2 90.7 43.1
w/ DARP [4] 71.9 89.7 42.5

w/ DARP+cRT [4] 77.9 92.0 48.3
w/ ABC 81.9 93.8 50.8

To evaluate whether the proposed algorithm performs in a balanced way for all classes, we also
measured the performance for the main setting using the geometric mean (G-mean) of class-wise
accuracy with correction to avoid zeroing. We set the hyperparameter for the correction to avoid
zeroing as 1%, which indicates that the minimum class-wise accuracy is 1%. The results in Table 2
demonstrates that the proposed algorithm performed in a balanced way.

G Experimental results on SVHN and CIFAR-100 for various settings

For the experiments using SVHN with γ = 150 and β = 20%, the solution of the convex optimization
problem of ReMixMatch+DARP+cRT for refining the pseudo labels did not converge, and thus we
could not measure the performance. The experimental results for SVHN and CIFAR-100 under
various settings showed the same trend as those for CIFAR-10, which is described in Section 4.2 of
the main paper.
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Table 3: Overall accuracy/minority-class-accuracy on SVHN for various settings

SVHN-LT

Algorithm γ = 100, β = 10% γ = 100, β = 30% γ = 50, β = 20% γ = 150, β = 20%

FixMatch [5] 88.5±0.25 / 80.3±0.42 88.7±0.36 / 80.7±0.65 91.1±0.18 / 85.3±0.28 85.6±0.17 / 74.6±0.43

w/ CReST + PDA [6] 89.2±0.43 / 81.7±0.95 89.9±0.36 / 83.0±0.37 91.7±0.86 / 87.6±0.53 86.7±0.89 / 76.7±1.70

w/ DARP + cRT [4] 89.3±0.33 / 83.9±0.47 90.7±0.28 / 84.8±0.37 92.1±0.30 / 87.7±0.44 88.0±0.74 / 80.1±1.88

w/ ABC 92.3±0.38 / 88.7±0.92 92.3±0.34 / 88.3±0.49 93.5±0.17 / 90.7±0.25 91.2±0.15 / 86.2±0.15

ReMixMatch [1] 89.2±0.17 / 81.7±0.41 90.7±0.15 / 84.5±0.46 92.4±0.21 / 87.8±0.48 88.6±0.16 / 80.4±0.42

w/ CReST + PDA [6] 89.8±0.12 / 83.0±0.08 91.2±0.17 / 85.3±0.24 93.3±0.02 / 90.0±0.36 88.8±0.41 / 80.7±0.82

w/ DARP + cRT [4] 91.7±0.26 / 86.6±0.45 93.2±0.08 / 89.3±0.21 93.6±0.41 / 90.4±0.52 −/ −
w/ ABC 93.2±0.64 / 92.2±0.44 94.4±0.37 / 93.3±0.32 94.7±0.35 / 93.5±0.56 93.2±0.46 / 91.8±0.79

Table 4: Overall accuracy/minority-class-accuracy on CIFAR-100 for various settings

CIFAR-100-LT

Algorithm γ = 20, β = 20% γ = 20, β = 50% γ = 10, β = 40% γ = 30, β = 40%

FixMatch [5] 46.1±0.23 / 26.6±0.34 52.3±0.54 / 34.7±0.80 57.4±0.15 / 44.8±0.17 47.6±0.09 / 27.6±0.21

w/ CReST + PDA [6] 46.7±0.49 / 29.3±0.54 52.7±0.06 / 37.4±0.37 57.3±0.23 / 47.5±0.22 48.5±0.06 / 30.0±0.04

w/ DARP + cRT [4] 48.9±0.11 / 33.5±0.17 55.9±0.43 / 43.5±1.28 59.0±0.40 / 50.4±1.09 51.3±0.29 / 36.4±0.50

w/ ABC 49.7±0.40 / 34.6±0.76 58.3±0.74 / 46.7±1.12 61.6±0.15 / 53.0±0.26 53.6±0.35 / 38.8±0.69

ReMixMatch [1] 49.0±0.29 / 29.9±0.42 54.4±0.13 / 37.8±0.12 59.5±0.20 / 47.1±0.42 51.0±0.11 / 32.0±0.50

w/ CReST + PDA [6] 49.4±0.32 / 31.8±0.15 54.4±0.21 / 38.6±0.35 58.8±0.08 / 47.6±0.24 51.9±0.34 / 33.5±0.69

w/ DARP + cRT [4] 50.2±0.40 / 35.2±0.55 54.6±1.75 / 44.8±2.09 59.4±1.04 / 52.1±0.71 52.8±0.24 / 38.4±0.30

w/ ABC 52.5±0.10 / 38.5±0.42 59.3±0.66 / 49.5±1.02 63.5±0.29 / 57.1±0.06 55.4±0.46 / 42.8±0.67

H Experimental results on SVHN and CIFAR-100 for the step imbalanced
setting

Experimental results for SVHN and CIFAR-100 under the step imbalanced setting showed the same
tendency as that for CIFAR-10, which is described in Section 4.2 of the main paper.

Table 5: Overall accuracy/minority-class-accuracy on SVHN for the step imbalanced setting

SVHN-Step, γ = 100, β = 20%

Algorithm w/ - w/ CReST + PDA [6] w/ DARP + cRT [4] w/ ABC

FixMatch [5] 79.8±1.34 / 61.5±2.76 86.6±0.19 / 76.3±0.23 85.9±0.28 / 74.3±0.37 91.2±0.15 / 85.6±0.35

ReMixMatch [1] 82.7±0.42 / 67.4±0.81 85.9±0.13 / 73.9±0.16 90.5±1.13 / 84.3±1.86 91.3±1.61 / 89.8±0.95

Table 6: Overall accuracy/minority-class-accuracy on CIFAR-100 for the step imbalanced setting

CIFAR-100-Step, γ = 20, β = 40%

Algorithm w/ - w/ CReST + PDA [6] w/ DARP + cRT [4] w/ ABC

FixMatch [5] 46.7±0.29 / 15.0±0.26 49.9±0.24 / 26.7±0.41 50.7±0.61 / 28.8±2.04 54.7±0.06 / 32.1±0.12

ReMixMatch [1] 47.3±0.12 / 16.5±1.06 48.5±0.18 / 19.2±0.35 53.6±0.28 / 35.0±1.04 56.0±0.46 / 38.3±0.55

I Floating point operations per second (FLOPS) of each algorithm

As we mentioned in Section 4.3 of the main paper, computation cost required for the algorithms
combined with DARP increased as the number of classes or the amount of data increased. In contrast,
computation cost required for the proposed algorithm did not significantly increased because the
whole training procedure can be carried out using minibatches. FLOPS of FixMatch+CReST and
ReMixMatch+CReST are the same as those of FixMatch and ReMixMatch, but the algorithms
combined with CReST required iterative re-training with a labeled set expanded by adding unlabeled
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data points with pseudo labels. We measured FLOPS using Nvidia Tesla-V100. For the experiments
on CIFAR-10 and CIFAR-100, we used only one GPU, whereas we used four GPUs in parallel for
the experiments on LSUN.

Table 7: FLOPS of each algorithm

Algorithm CIFAR-10 CIFAR-100 LSUN

FixMatch [5] 14.5 iter/sec 14.7 iter/sec 2.6 iter/sec
FixMatch+DARP [4] 12.0 iter/sec 6.3 iter/sec 0.4 iter/sec

FixMatch+ABC 11.2 iter/sec 11.0 iter/sec 2.0 iter/sec

ReMixMatch [1] 6.9 iter/sec 6.9 iter/sec 1.3 iter/sec
ReMixMatch+DARP [4] 6.3 iter/sec 4.5 iter/sec 0.3 iter/sec

ReMixMatch+ABC 5.8 iter/sec 5.6 iter/sec 0.9 iter/sec

J Further qualitative analysis and quantitative comparison

Figure 3 (b) presents biased predictions of FixMatch [5], a recent SSL algorithm, trained on CIFAR-
10 with the amount of Class 0 being 100 times more than that of Class 9 as depicted in Figure 3
(a). In contrast, Figure 3 (c) presents that the class distribution of the predicted labels became more
balanced using the FixMatch+ABC trained on the same dataset. These results are consistent with
those in Figure 1 of the main paper.

(a) Class-imbalanced training set (b) FixMatch (c) FixMatch+ABC

Figure 3: Predictions on a class-balanced test set of CIFAR-10 using FixMatch (b) and the Fix-
Match+ABC (c) trained on a class-imbalanced training set (a).

Because the use of the 0/1 mask for the ABC plays a similar role of re-sampling techniques, we
compare the representations of proposed algorithm with those of SMOTE (oversampling technique)
[2]+CNN, and random undersampling [3]+CNN. Figure 4 (a), (b) and (c) present the t-SNE represen-
tations obtained using SMOTE+CNN, undersampling+CNN, and ABC only. Because re-sampling
techniques can only be applied to labeled data, they cannot be combined with the SSL algorithms,
and thus they were combined with CNN instead. SMOTE+CNN and undersampling+CNN learned
less separable representations than the ABC only. These results show that using the 0/1 mask instead
of re-sampling techniques is more effective because we could utilize unlabeled data. In addition,
the 0/1 mask enabled the ABC to be combined with the backbone, so that the ABC could use the
high-quality representations learned by the backbone as shown in Figure 4 (d).

(a) SMOTE [2]+CNN (b) Undersampling [3]+CNN (c) ABC only (d) ReMixMatch+ABC

Figure 4: t-SNE of the representations of the CIFAR-10 test set using re-sampling+CNN, ABC only,
and ReMixMatch+ABC trained on CIFAR-10-LT, γ = 100, β = 20%
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We also compared the performance of the proposed algorithm with those of SMOTE+CNN and
undersampling+CNN. The results in Table 8 show the importance of using unlabeled data for training
and using the high-quality representations obtained from backbone.

Table 8: Performance of each algorithm in Figure 4 and FixMatch+ABC. The algorithms were trained
on CIFAR-10-LT, γ = 100, β = 20% and tested on the test set of CIFAR-10.

Performance of each algorithm in Figure 4 and FixMatch+ABC Overall Minority

ReMixMatch+ABC 82.4 75.7
FixMatch+ABC 81.1 72.0
Without training backbone (ABC only) 68.7 56.2
SMOTE+CNN 60.8 46.1
Undersampling+CNN 48.7 55.8

Figure 5 presents the confusion matrices of FixMatch, FixMatch+DARP+cRT, and FixMatch+ABC
trained on CIFAR-10-LT, γ = 100, β = 20%. Similar to Figure 4 of the main paper, FixMatch and
FixMatch+DARP+cRT often misclassified test data points in the minority classes (e.g., classes 8 and
9 into classes 0 and 1). In contrast, FixMatch+ABC classified the test data points in the minority
classes with higher accuracy, and produced a significantly more balanced class-distribution than
FixMatch and FixMatch+DARP+cRT.

(a)FixMatch (b)FixMatch+DARP+cRT (c) FixMatch+ABC

Figure 5: Confusion matrices of the predictions on the test set of CIFAR-10

Figure 6 presents the confusion matrices of the predictions on the unlabeled data. Similar to Figure 5
and Figure 4 of the main paper, FixMatch+ABC and ReMixMatch+ABC classified the unlabeled
data points in the minority classes with higher accuracy, and produced a significantly more balanced
pseudo labels than other algorithms. By using these balanced pseudo labels for training, the proposed
algorithm could make a more balanced prediction on the test set.

K Detailed comparison between the end-to-end training of the proposed
algorithm and decoupled learning of representations and a classifier

Although FixMatch+DARP+cRT and ReMixMatch+DARP+cRT also use the representations learned
by ReMixMatch [1] and FixMatch [5], they showed worse performance than the proposed algorithm.
The performance gap between FixMatch(ReMixMatch)+DARP+cRT and the proposed algorithm
results from the different characteristics of the ABC versus DARP+cRT as follows. First, whereas
DARP+cRT decouples learning of representations and training of a classifier, the ABC is trained
end-to-end interactively with representations that the backbone learns. Second, DARP+cRT does not
use unlabeled data for training of its classifier after representations learning is finished, while the
ABC is trained with unlabeled data to conduct consistency regularization so that decision boundaries
can be placed in a low density region. To verify these reasons, we compare the validation loss
graphs of the algorithms based on end-to-end training and decoupled learning of representations
and a classifier in Figure 7. We recorded the validation loss of 100 epochs after the representations
were fixed, where 1 epoch was set as 500 iterations. For the proposed algorithm, we recorded the
validation loss of the last 100 epochs. In Figure 5 (a) and (b), we can see that the validation loss
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(a)FixMatch (b)FixMatch+DARP+cRT (c) FixMatch+ABC

(d)ReMixMatch (e)ReMixMatch+DARP+cRT (f) ReMixMatch+ABC

Figure 6: Confusion matrices of the predictions on the unlabeled data of CIFAR-10

of the algorithms based on decoupled learning of representations and a classifier tended to increase
after a few epochs. The validation loss was reduced by conducting consistency regularization (C/R)
using unlabeled data, but it still tended to increase. In the case of ReMixMatch+DARP+cRT+C/R*
and FixMatch+DARP+cRT+C/R*, which do not fix the representations (algorithms marked with *),
high-quality representations learned by the backbone were gradually replaced by the representations
learned with a re-balanced classifier, which caused overfitting on minority classes. We can observe a
similar tendency in Figure 5 (c) under the supervised learning setting. In contrast, the validation loss
of ReMixMatch+ABC, FixMatch+ABC, and the proposed algorithm under supervised learning setting
decreased steadily and achieved the lowest validation loss. The performances of the algorithms based
on end-to-end training and decoupled learning of representations and a classifier are summarized in
Table 9.

(a)With ReMixMatch (b)With FixMatch (c) Supervised setting

Figure 7: Validation loss graphs of algorithms based on end-to-end training and decoupled learning
of representations and a classifier on the test set of CIFAR-10. The algorithms in (a) and (b) were
trained on the train set of CIFAR-10-LT with γ = 100, β = 20%, N1 = 1000, and the algorithms in
(c) were trained on the training set of CIFAR-10-LT with γ = 100, β = 100%, N1 = 5000. C/R and
* in the graphs indicate consistency regularization and non-fixed representations, respectively.
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Table 9: Performance of the algorithms based on end-to-end training and decoupled learning of
representations and a classifier. The algorithms were trained on the training set described in the
caption of Figure 7. The algorithms were tested on the test set of CIFAR-10.

Performance of the algorithms based on end-to-end training versus decoupled learning Overall Minority

Under the semi-supervised learning setting

ReMixMatch+ABC (end-to-end training) 82.4 75.7
ReMixMatch+DARP+cRT+C/R* (Decoupled learning) 80.6 71.4
ReMixMatch+DARP+cRT+C/R (Decoupled learning) 79.5 70.4
ReMixMatch+DARP+cRT (Decoupled learning) 78.5 66.4
FixMatch+ABC (end-to-end training) 81.1 72.0
FixMatch+DARP+cRT+C/R* (Decoupled learning) 80.3 71.6
FixMatch+DARP+cRT+C/R (Decoupled learning) 78.7 68.3
FixMatch+DARP+cRT (Decoupled learning) 78.1 66.6

Under the supervised learning setting

End-to-End training of CNN with the ABC (end-to-end training) 84.9 80.6
cRT* (Decoupled learning of representations and the classifier of CNN) 81.1 79.6
cRT (Decoupled learning of representations and the classifier of CNN) 80.0 79.9

L Ablation study for FixMatch [5] + ABC on CIFAR-10

Results in Table 10 show a similar tendency as that for ReMixMatch+ABC in Section 4.5 of the main
paper.

Table 10: Ablation study for FixMatch+ABC on CIFAR-10-LT, γ = 100, β = 20%

Ablation study Overall Minority

FixMatch+ABC (proposed algorithm) 81.1 72.0
Without gradually decreasing the parameter of B (·) for consistency regularization 80.2 70.1
Without consistency regularization for the ABC 76.2 60.9
Without using the 0/1 mask for the consistency regularization loss Lcon 74.9 58.8
Without using the 0/1 mask for the classification loss Lcls 77.1 62.7
Without using the confidence threshold τ for consistency regularization 79.2 67.8
Using hard pseudo labels for consistency regularization 78.8 68.0
Without training backbone (ABC only) 68.7 56.2
Training the ABC with a re-weighting technique 80.3 70.5
Decoupled training of the backbone and ABC 77.4 65.0
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