
A Proofs

Proof of Theorem 2.1. For each µ 2 ⇧(⇢̂✓,⌫ ,⇡), define µ(✓ = ✓i | ⇠) = ⌫i|⇠. Then we have
{⌫i|⇠}ni=1 2 V for each fixed ⇠, and ⌫i = E⇠⇠⇡[⌫i|⇠], 8i 2 [n]. We have
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Taking inf on µ and ⌫ yields that
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On the other hand, for ⌫⇤i = E⇠⇠⇡

h
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i
, we define a coupling µ⇤

✓,⇡ such
that 1) its marginal on V equals ⇡, and 2)

µ⇤
✓,⇡(✓ = ✓i | ⇠) = P(i 2 argmin

j2[n]
f⇠(✓j)) := ⌫⇤i|⇠.

It is easy to show that µ⇤
✓,⇡ matches with ⌫⇤i in that ⌫⇤i = µ⇤

✓,⇡(✓ = ✓i), and hence we have
µ⇤
✓,⇡ = ⇧(⇢̂✓,⌫⇤ ,⇡). With this, we have
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This proves that inf⌫2V Wf (⇢̂✓,⌫ ,⇡) = E⇠⇠⇡

⇥
mini2[n] f⇠(✓i)

⇤
.

Proof of Theorem 2.3. Note that

Wf (⇢̂,⇡)� L⇤ = inf
µ2⇧(⇢̂,⇡)

E(✓,⇠)⇠µ [(f⇠(✓i)� f⇠(✓⇠))] .

The result then follows immediately from Assumption 2.2 and the definition of p-Wasserstein distance.

Therefore, for any ✓ and ⌫,

Wp1(⇢̂✓⇤,⌫⇤ , ⇢⇤)  1

h1
(Wf (⇢̂✓⇤,⌫⇤ ,⇡)� L⇤)  1
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⇤),

which yields (5).
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