
7 Appendix

7.1 Implementation Details

All our methods were implemented with PyTorch and were run on a GeForce RTX 2080 Ti GPU. For
the experiments we picked the best performing learning rate out of {1e−4, 3e−4, 5e−4, 1e−3} and
the best performing softmax temperature τ out of {1, 2, 4}. We found a temperature of τ = 4 not
sufficiently high enough for the MNIST addition experiments and picked τ = 8 for these experiments.

7.1.1 Unsupervised Parsing on ListOps

For all ListOps experiments, we use a hidden dimension dim = 60, a batch size of 100, and train the
model for a total number of 100 epochs. We use the Adam optimizer with a learning rate of 0.0005
to minimize the cross-entropy loss. After every epoch, we evaluate on the validation set and save the
best model. We use discretization after the first 4 out of the 5 GNN message passes. We always use an
exponential function to increase β and a linear function to increase α (during experiments for which
they are not constant). The temperatures are updated 10 times per epoch; we use βt = τ(1− e−tγ)
for γ = 0.008, τ = 1 and αt = max(1, 0.002t). We repeat every experiment 8 times.

Our model is taken from Paulus et al. [26] and has following structure. For the encoder, we start with
an embedding layer for the 14 tokens. We use two independent one-directional LSTMs with a single
layer, respectively. We use a token-wise multiplication of the two sequence outputs to obtain a latent
graph and use Gumbel-softmax on this latent graph:

x = E1[14,dim](tok)

q = LSTM1(x)

k = LSTM2(x)

A′ij = qkᵀ

Aij =
1

λ
(A′ij +Gumbel(0, τ)).

To obtain the edge precision, we compare the latent graph Aij with the ground truth adjacency
matrix Bij . Due to our arborescence prior as described in the main paper, we always have the same
number of edges resulting in equality of edge precision and edge recall. For the GNN we use a
second, independent embedding layer for the tokens. For each GNN message pass, we use the latent
representation after the embedding layer of a token and concatenate it with the representation of the
node of the incoming message. In the baseline experiments (Arb.), we use the current state of the
token instead of the first embedding during all message passes except the first one. The message is
transformed by a message MLP with dropout probability 0.1 and is summed up regarding the edge
weights of the latent graph Aij . The new node state is summed with the one before the message pass:

xe = E2[14,dim](tok)

p′′ = [xe;xj ] or [xi;xj ]

p′ = Dropout(ReLU(Lindim×2 dim
1,Bias (p′′)))

p = ReLU(Lindim× dim
2,Bias (p′))

m = Aip

x′i = xi +m.

In those experiments that utilize the ground truth edges (GT) instead of the latent graph, we replace
the second last line m = Aip by m = Bip with B being the ground truth adjacency matrix. To
create Figure 6, we read out the mean absolute values of the gradient at xe as well as x′i for each of
the first 4 GNN massage passes. For the discretization, we use the classification layer that maps the
embedding of the final output to the logits of the 10 classes and the weights of the embedding layer
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that map the 10 numeral tokens to their respective embeddings:

θ = Lin10×dim4 (ReLU(Lindim× dim
3,Bias (x′i)))

z =
1

λ
(θ +Gumbel(0, τ))

v = zᵀE2([0, . . . , 9])

xnext
i =

{
v with probability α,
x′i + v else.

To read out the intermediate results, we compare the final (after the last GNN message pass) θ of
all operation tokens with the ground truth intermediate results obtained by executing the operations.
The experiments without dropout residuals are always set to utilize α = 1. To obtain the task class
of the full example, we utilize the same MLP from the discretization as the classification layer, i.e.,
Lin10×dim4 (ReLU(Lindim× dim

3,Bias (xlast
0 ))).

The baseline LSTM model consists of an one-directional LSTM with a single layer. The hidden state
of the final token is fed to a classification MLP, i.e., Lin10×dim(ReLU(Lindim× dim

Bias (h−1))).

7.1.2 Multi-Hop Reasoning over Knowledge Graphs

For all Knowledge Graph experiments, we use a hidden dimension dim = 256, a batch size of 512,
and train the model for a total of 200 epochs. We use the Adam optimizer with a learning rate of
0.001 to minimize the cross-entropy loss. We use a randomized grid search training on paths of
length 1 and validating hitset 10 on paths of length 2 for the L2 regularization of the entities and
the relations between 1e−20, ..., 1e−5 and for the dropout probabilities for the subject, object and
relations between 0, ..., 0.8, respectively. This results in an entity regularization of 1e−15, a relation
regularization of 1e−9, a subject dropout of 0.7 [0.1], an object dropout of 0.1 [0.6] and a relation
dropout of 0.5 [0.2] for WordNet [Freebase]. After every 10th epoch, we evaluate on the validation
set and save the best model. We use discretization after every single relation. We always use an
exponential function to increase β and a linear function to increase α (during experiments for which
they are not constant). The temperatures are updated 3 times per epoch; we use βt = τ(1− e−tγ) for
γ = 0.008, τ = 1 and αt = max(1, 0.005t). We repeat every experiment 4 times.

Our model is based on the ComplEx model from Trouillon et al. [36]. Given the current (intermediate)
entity embedding s and relation type embedding r we compute the logits θ for all possible entities
with the ComplEx scoring function score = Re < s, r, · >. Hence, we obtain the logits for all
possible entities. Using the Gumbel-softmax trick with parameter θ, scale β, and temperature τ , we
obtain the sample z ∈ Rn. The function h now computes zᵀE where E be the matrix whose rows
are the entity embeddings. We use dropout residual connections between the input and output vectors
of the discrete-continuous component during training. Guu et al. [10] introduced their own evaluation
protocol for multi-hop reasoning that we adopted. On the one hand, we calculate all possible objects
that can be reached traversing each path. These are the positives and are filtered during evaluation.
On the other hand, we calculate all possible objects that can be reached by the final relation of the
path individually. These are the negatives that we rank our prediction against. We compare our best
performing model against two RNN models, Path-RNN [6] and ROP [42] as well as against the
state-of-the-art transformer model CoKE [39].

We use a slightly different setup for the FB15K237 experiments in Section 7.4.1. Here, we train the
same model for a total number of 100 epochs and for each path from subject to object as well as
from object to subject using reciprocal relations [29]. The evaluation is copied from the standard link
prediction task [3], that is, we evaluate all paths in the forward direction from subject to object as well
as in the backward direction from object to subject. We also use the filter method for the positives,
but we compare against all other possible objects and not only the ones reachable by the last relation.

7.1.3 End-to-End Learning of MNIST Addition

For the MNIST addition experiments, we use a batch size of 16 and train the model for a total number
of 30 epochs. We use the Adam optimizer with a learning rate of 0.0001 to minimize the cross-entropy
loss. We use the dataset from Manhaeve et al. [20]. Since they do not offer a validation set, we
validate the model twice per epoch on the test set and record the best test accuracy for all models.
We use discretization after the CNN encoding layer, i.e., before the addition layer. The temperatures
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are updated 8 times per epoch; we increase β and α by βt = τ(1− e−tγ) for γ = 0.008, τ = 8 and
αt = max(1, 0.002t). We repeat every experiment 8 times.

Our model is based on the baseline model used by Manhaeve et al. [20] and has the following
structure. The CNN encoder consists of two convolutional layers with kernel size 5 and filter size 6
and 16, respectively. Each convolutional layer is followed by 2D max-pooling layer of size 2× 2 and
a ReLU activation function. An MLP with 3 layers transforms the output to an embedding size of 84.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

x′ = Lin84×84Bias (ReLU(Lin84×120Bias (ReLU(Lin120×256Bias (e))))).

For the discretization we use a single classification matrix C ∈ R19×84. This matrix is also used for
the classification after the addition layer.

θ = Cx′

z =
1

λ
(θ +Gumbel(0, τ))

v = zᵀC

x =

{
v with probability α,
x′ + v else.

The addition layer concatenates the final embeddings of both images and transform them through a
MLP with 2 layers into a single representation.

x1,2 = ReLU(Lin84×168Bias (ReLU(Lin168×168Bias ([x1;x2])))).

We obtain the final class log-probabilities by computing Cx1,2. This results in a model with a total
of 94, 900 parameters. We use the code offered by Manhaeve et al. [20] to run the DeepProbLog
experiments as well as the baseline model they compared to. These two models are executed in a
single epoch and use a batch size of 1 and 2, respectively. The DeepProbLog model uses a similar
encoder to get predictions for each of the images individually and has the following structure.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

out = Lin10×120(ReLU(Lin120×256Bias (e))),

The 2 image outputs are then fed into the probabilistic logic program ProbLog together with the
following annotated disjunction, which handles the logic of addition to obtain the final predictions.

nn(mnist_net, [X], Y, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) :: digit(X,Y );

add(X,Y, Z) : −digit(X,X2),digit(Y, Y 2), Z is X2 + Y 2.

Different to DeepProbLog or our model, the baseline model concatenates the images beforehand and
uses the following layers.

e′ = ReLU(maxpool2×2(Conv2d6,5(inp)))

e = ReLU(maxpool2×2(Conv2d16,5(e
′)))

out = Lin19×84(ReLU(Lin84×120Bias (ReLU(Lin120×704Bias (e))))),

which results in a model with a total of 98, 951 parameters.

For the experiments in Figure 4, we also use a batch size of 16, set τ = 8.0, use a learning rate of
0.0003 and train the model for a total number of 30 epochs. If we update temperatures, we also
update them 8 times per epoch. We do not use dropout residuals. For the experiment Base, we use a
constant τ = 8.0, β = 1.0 and γ = 0.008. For the experiment TauAnn, we set β = 1.0 constant and
anneal τ by τt = max(1.0, τe−tγ). For the experiment TM, we set τ = 8.0 constant and increase β
by βt = τ(1− e−tγ).
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7.1.4 Temperature Matching

To illustrate the effect of the parameter β, we conducted two toy experiments. The first one is
depicted in Figure 5. We use the same setup as in Maddison et al. [19]. We illustrate the Gumbel-
softmax densities of the unnormalized probabilities θ = (2, 0.5, 1). The second toy experiment is
depicted in Figure 2. The model here computes Softmax(θ + ε) with parameters θᵀ = (θ1, θ2) and
ε ∼ Gumbel(0, β). The learning problem is defined through a cross-entropy loss between the output
probabilities of the Gumbel-Softmax and a constant target vector (1.0, 0.0)ᵀ. We use the initial
paramaters θᵀ = (−0.9442, 0.3893) and minimize the loss using stochastic gradient descent with a
learning rate of 0.01 for a total number of 5000 steps.

7.2 Datasets

For the Unsupervised Parsing on ListOps experiment, we followed the data generation description
from Paulus et al. [26] applied to the original code from Nangia and Bowman [22]. More precisely,
we used the three operators min, max and med and capped the maximum length of a sequence at
50. For each depth d ∈ {1, 2, 3, 4, 5} we generated 20, 000 samples for the training set and 2, 000
samples each for the validation set and test set. In order to evaluate the generalization behavior, we
further generated 2, 000 test samples for each depth d ∈ {8, 10}. All other settings are those of the
original code [22].

7.3 Derivation of Equation 6

For all i, we have zi ∈ [0, 1] and
∑
i zi = 1. Therefore, we have

∑
i 6=j z

2
i ≤ 1 and (1− zj)2 ≤ 1 and

thus, ∥∥∥∥( ∂z∂θj
)∥∥∥∥

F

=

∥∥∥∥(∂z1∂θj
. . .

∂zn
∂θj

)ᵀ∥∥∥∥
F

=

√√√√∑
i

∣∣∣∣ ∂zi∂θj
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7.4 Further Experiments

In the following, we illustrate further experiments. In particular, we created a new dataset for
multi-hop reasoning and compared our model to its base model without discretization.
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Table 6: The results of the path query task on the newly created multi-hop reasoning dataset based on
FB15K-237. Our model that discretizes the score function of the base model performs much better
on the path query task and generalizes perfectly to paths up to length 10.

MRR MRR (etrapolation)

Model 1 2 3 4 5 6 7 8 9 10

ComplEx 32.9 30.6 24.7 20.8 16.5 15.1 12.2 10.5 8.8 7.1
ComplEx-C 31.3 35.2 36.9 37.8 35.2 31.9 25.7 19.4 14.1 9.7
Ours, τ = 4 26.8 52.3 48.8 51.4 52.6 54.2 54.8 54.7 54.9 54.7

7.4.1 Multi-Hop Reasoning over FB15K-237

Since the benchmarks in Table 3 are based on Freebase and Wordnet, which have several issues,
we also created a new dataset based on FB15K-237 [34] using the methodology of Guu et al. [10].
Particularly, we built the graph consisting of all training triples from the original dataset and sampled
a starting entity uniformly. We then sampled an incident relation uniformly and sampled the next
entity uniformly from all entities reachable via this relation. Continuing this way, we created a dataset
of 272, 115 training paths of length (number of relations) 2, 3, 4, 5, respectively. We repeated this
procedure on the graph consisting of all triples (not only training triples) and removed all duplicates to
create 17, 535 validation paths of length 2, 3, 4, 5, and 20, 466 test paths of length 2, . . . , 10. Finally,
we added all of the FB15K-237 triples to the dataset as paths of length 1.

We use a slight variation of our model for Freebase and Wordnet to optimize the training in both
directions of the path. As baselines, we take the same model without the discretization module and
train it first on triples only (ComplEx) and then on all paths (ComplEx-C). We validate the models
using filtered MRR (Bordes et al. [3]) on all validation paths and report test results on all paths for
each length individually. Table 6 lists the results of the experiments on the new FB15K-237 based
dataset. The models based on discrete-continuous components achieve improvements of up to 49%
compared to the baselines. Even more pronounced is the ability of these models to generalize: the
accuracy does not drop even when tested on paths twice the length of those seen during training. The
performance gap between 1 relation and 2 relations is mainly due to the fact that the test paths of
length 1 purely consist of triples from the test graph while all other paths consist of all triples from
the full knowledge graph.

7.5 Error Bars for Multi-Hop Reasoning over Knowledge Graphs

In Table 7 we give results including the error bars for the experiments depicted in Table 3 and Table 4.
The results of Table 3 are can be found in the row Paths ≤ 5.

Table 7: Error bars for the experiments in Table 3 and Table 4.
WordNet Freebase

Paths Model MQ H@10 MQ H@10

≤ 5 Ours 94.4± 0.0 64.3± 0.11 89.6± 0.46 68.7± 0.32

≤ 4 Ours 94.3± 0.14 64.7± 0.11 88.8± 1.29 69.4± 0.72

≤ 3 Ours 93.4± 0.04 65.0± 0.11 88.3± 1.85 68.5± 0.46

≤ 2 Ours 90.2± 0.04 62.0± 0.04 87.6± 0.62 68.6± 0.36

≤ 1 Ours 81.1± 0.22 52.2± 0.17 82.1± 0.54 63.9± 0.6

7.6 Accuracy Curves of the Accuracies in Figure 4

To obtain the accuracies in Figure 4, we repeated each experiment 8 times. For both of the experiment
setups, TM and TauAnn, we found a single seed each, for which we noticed no training at all. Thus
we repeated these experiments a ninth time. We depict the accuracy curves of all 9 runs of TM in
Figure 7 and of TauAnn in Figure 8.
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Figure 7: All 9 TM accuracies from the ablation study depicted in Figure 4.
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Figure 8: All 9 TauAnn accuracies from the ablation study depicted in Figure 4.
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