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Abstract

Transformer architectures have become very popular yet the original implemen-
tation requires O(L2) in serial time and memory as functions of input length L.
Recent works proposed various linear self-attention mechanisms, scaling only
as O(L) for serial computation. We conduct a thorough complexity analysis of
Performers, a class which includes most recent linear Transformer mechanisms.
We note a remarkable computational flexibility: the gradient computation can be
performed with no approximations using sublinear memory as a function of L
(in addition to negligible storage for the input sequence), at a cost of greater time
complexity in the parallel setting. In the extreme case, a Performer consumes
only O(1) memory, and still requires O(L) time. Due to complete backward-
compatibility, this discovered time-memory tradeoff can be used for fine-tuning on
low-memory devices in a decentralized fashion without any server computations.

1 Introduction

The Transformer architecture [38] has changed the landscape of deep learning for sequential data.
A computational advantage of Transformers over conventional methods such as recurrent neural
networks (RNNs) [17, 9] is parallelization over the sequence dimension, meaning that the training
speed can be increased by simply using more compute resources. However, this parallel-friendly
structure of self-attention comes at a cost of quadratic Θ(L2) time and memory complexity, where L
is the length of the Transformer’s input sequence.

A recent line of work aimed to address this restriction, using either structured sparsity [8], truncated
back-propagation [12], clustering [20, 31] or linear attention methods [18, 10, 11, 33, 23]. For a
detailed overview of efficient Transformers, see [37]. We refer to the family of linear attention
architectures as Performers (also known as Linear Transformers), following [11], since their generic
kernel formulation covers all the aforementioned linear attention methods. Performers reduce time
and memory complexity to linear O(L) and can provably approximate conventional quadratic Trans-
formers [11], demonstrating strong performance in a systematic comparison of efficient Transformers
[36].

This recent trend of feeding longer sequences into Transformers, coupled with the use of deeper mod-
els, introduces new challenges for researchers and practitioners. Whereas conventional Transformer
setups benefit from large-batch optimization [42], long sequence modelling necessitates smaller batch
sizes in order to fit the model into memory. For example, recently proposed efficient Transformers
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Figure 1: (a) rth layer and its decomposition into T(r−1),Γ(r−1),U(r−1). (b) Illustration of Al-
gorithm 1 when r = n = 2. Red color indicates objects stored in memory. I-II) forward passes
for n = 1, 2 respectively, only the loss value and U (n) are stored. III) backward pass start, for-
ward computation through the slice n = 2 to build symbolic Φ(2) and update U (2) → U (1). IV)
back-propagation through Φ(2) to find∇θ(2)L and G(1). V,VI) the same backward iteration for n = 1.

operating on long sequences used moderately small batch sizes of 1-8 instances [20, 18, 11]. Aiming
to use larger batch sizes, practitioners introduced various tricks – e.g. [28] introduced gradient
accumulation (included in the popular Fairseq library, [27]), which splits the batch into smaller
chunks which are evaluated sequentially, then the resulting batch gradient is accumulated.

Gradient accumulation allows to decrease memory usage at the cost of longer time, but it can only
be applied when the batch size is bigger than 1. In this paper, we are discussing a situation when
even a batch size of 1 is prohibitive, while longer processing times are affordable e.g. when fine-
tuning a pretrained Transformer on low-memory devices (e.g. smartphones, embedded devices or
microcontrollers) on the client-generated data without additional server computations. Heuristics,
such as chunking the input into independent subsegments or truncated back-propagation [12], limit
gradient propagation across the whole input, and, consequently, impair long-context learning.

We propose a solution based on the analysis of Performers. We discover a remarkable property: even
for batch size of 1, a user can decrease memory consumption at the cost of smaller parallel bandwidth
of the model. Notably, no approximations are introduced, so the obtained gradient is correct
and backward-compatible. Our proposed long-sequence training algorithm can be used for training
or fine-tuning on a low-memory device, thus contributing towards decentralized and democratized
deep learning. The algorithm has the following advantages:

1. The integer parameter C, 1 ≤ C ≤ L, controls a tradeoff between the memory, scaling
as O(C) in addition to a negligible input sequence storage, and parallel running time, scaling as
O((L/C) logC). When C = 1, the algorithm consumes as much memory as if a single token
were fed into Performer, plus a small fully characterized addition.

2. For any C, the algorithm requires as many floating point operations (FLOPs) as two
standard forward and one backward pass plus a small addition.

We evaluate the proposed tradeoff empirically, and confirm backward-compatibility for the synthetic
Copying Task and language modelling on Penn Treebank [25] and Enwik8 [24] datasets.1

1Code: https://github.com/google-research/google-research/tree/master/performer/
models/slim_performer.
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2 Background: linear self-attention and Performer

We commence by defining linear self-attention [18, 11, 33, 23]. Consider a sequence of length
L and three matrices: queries Q ∈ RL×d, keys K ∈ RL×d and values V ∈ RL×d. Then linear
self-attention is defined as a functional producing Y = Att(Q,K,V) ∈ RL×d,

∀l ∈ {1, . . . , L} : Yl =

∑l
l′=1 Vl′ · (g(Kl′)

>g(Ql))∑l
l′=1 g(Kl′)>g(Ql)

=
(
∑l
l′=1 Vl′ × g(Kl′)

>)× g(Ql)

(
∑l
l′=1 g(Kl′))>g(Ql)

, (1)

where by Zl ∈ Rd2×... we denote slice Zl,:,...,: of Z ∈ Rd1×d2×.... g : Rd → RM+ s a positive
mapping for a stable division in (1). M is typically much smaller than L, e.g. M = d.

For needs of autoregressive generative modelling, when each element depends only on previous
elements of the sequence [38], Yl only depends on inputs at indices {1, . . . , l}. Self-attention of
type (1) was proposed for processing sequences of the long length L, since the original self-attention
from [38] scales as O(L2). The second transition in (1), which is due to associativity of matrix
multiplication, suggests an algorithm to compute linear self-attention efficiently in subquadratic time.

For tensors Z(1), . . . ,Z(n) of the same shape, let Z = (Z(i))ni=1 be a tensor such that for all
1 ≤ i ≤ n, Zi,:,...,: = Z(i). By R ∈ RL×d×M , S ∈ RL×M denote a tensor and a matrix such that

R = PS((Vl × g(Kl)
>)Ll=1), S = PS((g(Kl))

L
l=1), (2)

where PS(Z) = (
∑i
i′=1 Zi′)

n
i=1 is a prefix sum along the first dimension of Z. Next, compute

∀1 ≤ l ≤ L : Yl = (Rl × g(Ql))/(S
>
l g(Ql)). (3)

Depending on the prefix-sum algorithm used in (2), we can obtain different complexity estimates for
linear self-attention. [18] propose to iterate through l = 1, . . . , L maintaining only current Rl,Sl,
and compute and store the result Yl. This way, tensors R,PS(R) ∈ RL×d×M are not stored in
memory, resulting in O(L) time complexity and O(L(d+M) + dM) memory complexity. [18] also
propose a similar computation of gradients through (2-3); see Appendix C for more discussion.

Alternatively, [11] employ a parallel prefix-sum algorithm [21, 39], which, for a tensor Z ∈ RL×...,
finds PS(Z) inO(logL) parallel time andO(L) memory. Applying this algorithm for PS(R), PS(S)
and then computing (3) results in only O(logL) parallel time complexity and O(LdM) memory
consumption. A similar approach was proposed in the context of parallel RNNs [26] .

Linear self-attention is a part of Performers [11] – efficient Transformers. Below we outline Performer
architecture [11] for language modelling, while our analysis can be applicable in broader setups.

Let p ∈ ΣL be an input sequence of length L, where Σ is a finite alphabet. By emb(pl, l) ∈ Rdmodel ,
1 ≤ l ≤ L, denote a linear combination of the pl token’s learned embedding and positional embedding
of l’s position (sinusoids with different frequencies, as in [38]). Then Performer is defined as a
parametrized mapping from X(0) = (emb(pl, l))

L
l=1 ∈ RL×dmodel into X(out) ∈ RL×|Σ| through

a sequence of hidden representations X(1), . . . ,X(s) ∈ RL×dmodel . For each 1 ≤ r ≤ s, X(r) is
obtained from X(r−1) by applying a Performer layer consisting of two parts. The first part is a
multi-head self-attention which comprises of k linear self-attentions applied in parallel (dmodel = kd)
plus a skip connection. The second part is a feedforward network applied independently to each
element of the sequence. See a formal definition of the architecture in Appendix A.

For each l, 1 ≤ l ≤ L− 1, X
(out)
l are predicted logits of the next token pl+1. Let Ll(X(out)

l ) denote
the cross-entropy loss with respect to pl+1, or zero when l = L. The loss is defined as

L = (L− 1)−1 · (L1(X
(out)
1 ) + · · ·+ LL(X

(out)
L )). (4)

3 Low-memory back-propagation algorithm

3.1 Compact notation for Performer

We rewrite transformations X(0) → X(1) → · · · → X(s) in the following form. For each 1 ≤ r ≤ s,

T(r−1),Γ(r−1) =F (r)(X(r−1); θ), U(r−1) =PS(T(r−1)), X(r) =G(r)(U(r−1),Γ(r−1); θ). (5)

3



Algorithm 1 Low-memory forward-
backward pass. See Algorithm 2 for
updateProc. Compared to notation
from the text, redundant indices are
dropped and tensor names are reused
here and in Algorithm 2.

Input: p ∈ ΣL,
θ ∈ Rnparam ,
C ∈ N.

Output: loss L,
gradient∇θL.

Set L := 0;
Set U := 0s×D1 ;
for n = 1 to N do

updateProc(n,False);
end for
Set∇θL := 0nparam

;
Set G := 0s×D1

;
for n = N to 1 do

updateProc(n,True);
end for
Return L,∇θL .

Algorithm 2 updateProc procedure.
Input: n ∈ N, binary flag onBP .
if onBP then Initialize Φ := 0; end if
X := (emb(pAn+l, An + l))Bn

l=1;
for r = 1 to s do

Compute T,Γ := F (r)(X; θ);
if onBP then Update Ur−=

∑Bn

l=1 Tl; end if
Set U := 1Bn

U>r + PS(T), X := G(r)(U,Γ; θ);
if onBP then

Update Φ+= G>r UBn ;
else

Update Ur := UBn ;
end if

end for
Set L(upd) := L(n)(XW(out) + b(out));
if onBP then

Update Φ+= L(upd);
Compute∇θΦ,∇UΦ through auto-differentiation;
Update∇θL+= ∇θΦ, G := ∇UΦ;

else
Set L+= L(upd);

end if

Here θ ∈ Rnparam is a set of all parameters, T(r−1),U(r−1) ∈ RL×D1 and Γ(r−1) ∈ RL×D2 are
the following matrices (see Figure 1a for an illustration). (a) T(r−1) is a matrix of representations
which are passed into the prefix-sum operator. That is, for each 1 ≤ l ≤ L, T

(r−1)
l is a concatenation

of g(Kl) and flattened Vl × g(Kl)
> for all attention heads computed at the rth step. Consequently,

D1 = M(d+ 1)k. (b) For each 1 ≤ l ≤ L, U
(r−1)
l is a concatenation of all corresponding Sl and

flattened Rl – results of the prefix sum (Eq. 2) inside each self-attention head at rth layer. (c) Γ(r−1) is
a matrix of representations which skip the prefix sum. For each 1 ≤ l ≤ L, Γ

(r−1)
l is a concatenation

of X
(r−1)
l and g(Ql) for each attention head 1 ≤ j ≤ k (3). Therefore, D2 = Mk + dmodel.

F (r) and G(r) are functionals depending on a set of model’s parameters θ. That is, they take subsets
of θ corresponding to rth layer weights. F (r) is responsible for constructing T(r−1) and Γ(r−1) –
representations preceding prefix sum, while G(r) finalizes multi-head self-attention and includes the
feed-forward block. Importantly, F (r) and G(r) are applied rowwise, i.e. (5) can be rewritten as

∀1 ≤ l ≤ L : T
(r−1)
l ,Γ

(r−1)
l = F (r)(X

(r−1)
l ; θ), X

(r)
l = G(r)(U

(r−1)
l ,Γ

(r−1)
l ; θ). (6)

Hence, the only place where the signal is propagated across the sequence is prefix sum in (5).

The representation (5) encapsulates architecture details of Performer inside
{F (1), G(1), . . . , F (s), G(s)}. In fact, the representation (5) holds for various possible modi-
fications, proposed in the literature. This includes, but is not limited by the different positioning
of layer normalization [41, 38], adding a stabilizing gating mechanism [29], weight sharing across
layers [22] or reversible Transformer layers [20].

High-level description of the algorithm. The algorithm, proposed in the remainder of the section,
iterates over the sequence 1, . . . , L and only maintains a front of current prefix sum values, thus
allowing a substantial memory improvement. The backward pass is implemented similarly: current
prefix sums along with their gradients are maintained in a dynamic programming fashion, but the
iteration proceeds in a backward direction.

3.2 Forward computation

Suppose the memory budget is not enough to perform a complete forward pass through Performer
(Equation 5 for r = 1, . . . , s), because the input sequence length L is too big. We show that instead
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we can emulate the full forward computation under the memory needed for a forward pass through
the input of length C ≤ L, plus a small addition. 1 ≤ C ≤ L is arbitrary and user-defined.

Split matrices X(r),T(r),Γ(r),U(r), into N slices of size at most C along the vertical axis (N =
dL/Ce): for each n, 1 ≤ n ≤ N ,

X(r,n) = (X
(r)
An+l)

Bn

l=1 ∈ RBn×dmodel , T(r,n) = (T
(r)
An+l)

Bn

l=1,

U(r,n) = (U
(r)
An+l)

Bn

l=1 ∈ RBn×D1 , Γ(r,n) = (Γ
(r)
An+l)

Bn

l=1 ∈ RBn×D2 ,

where An = (n − 1)C and by Bn, 1 ≤ n ≤ N , we denote the size of the nth slice: Bu = C for
u < N , BN ≤ C. Based on (5), we conclude that for each 1 ≤ n ≤ N and 1 ≤ r ≤ s it holds that

T(r−1,n),Γ(r−1,n) = F (r)(X(r,n); θ), U(r−1,n) = 1Bn
× (U

(r−1,n−1)
Bn−1

)> (7)

+PS(T(r−1,n)), X(r,n) = G(r)(U(r−1,n),Γ(r−1,n); θ). (8)

Here, 1Bn ∈ RBn is a vector of Bn ones and we denote U
(r−1,0)
B0

= 0D1 (a vector of D1 zeros).

Now, instead of iterating over r = 1, . . . s and computing (5) for the whole sequence at once, we first
iterate over n = 1, . . . , N and then iterate over r = 1, . . . , s in a nested loop to compute (7-8).
As can be deduced from the (7-8), we only need to maintain the current value of (U

(r−1,n−1)
Bn−1

)sr=1 ∈
Rs×D1 in the outer iteration over n.

Denote U (n) = (U
(r−1,n)
Bn

)sr=1 ∈ Rs×D1 , 0 ≤ n ≤ N . The memory-efficient algorithm for
the forward pass is as follows. First, initialize L = 0 and U (0) = 0s×D1 . Then, iterate over
n = 1, . . . , N and maintain the current value of U (n−1). During each iteration, compute X(0,n) =

(emb(pAn+l, An + l))Bn

l=1. Then iterate over r = 1, . . . , s, where compute (7-8) and update U (n)
r =

U
(r−1,n)
Bn

. Finally, compute X(out,n) = X(s,n)W(out) + b(out) and update L+= L(n)(X(out,n)),

where we denote L(n)(X(out,n)) = (L− 1)−1
∑Bn

l=1 LAn+l(X
(out,n)
l ).

By the end of the iteration over n, the correct loss value (4) is computed. As a result, the forward pass
takes O(L) serial time or O((L/C) logC) parallel time and consumes only O(C) memory. This is
in addition to the input sequence p ∈ ΣL storage, which is O(L) in principle, however the constant
is negligibly small. For instance, if p is a flattened image or an ASCII text string, then it occupies
precisely L bytes in memory. The logC term in the parallel time complexity is due to the parallel
prefix-sum algorithm taking logarithmic time, as discussed in Subsection 2.

3.3 Back-propagation and the final algorithm

The goal of a backward pass is to compute the gradient ∇θL of the loss function with respect to
parameters θ. One can just perform automatic differentiation [14] (implemented in Tensorflow [1]
and Pytorch [30]) through the computation graph induced by the memory-efficient forward pass
algorithm from Subsection 3.2. However, such a backward pass would need to store all intermediate
tensors produced during the forward pass, resulting in O(L) memory complexity as a function of
L and C. Instead, we propose a back-propagation algorithm which has the same time and memory
complexity as the efficient forward pass.

Let θ(1) = · · · = θ(N) = θ be results of a symbolic “identity operation” performed on θ, so
that for all 1 ≤ n ≤ N , θ(n) is used instead of θ in (7-8). Then the total gradient of θ has
the form ∇θL = ∇θ(1)L + · · · + ∇θ(N)L. In Appendix B we derive an expression for ∇θ(n)L,
1 ≤ n ≤ N . Namely, denote G(n) = ∇U(n)L, then∇θ(n)L = ∇θ(n)Φ(n)(θ(n),U (n−1),G(n)), where
Φ(n) : Rnparam × Rs×D1 × Rs×D1 → R,

Φ(n)(θ(n),U (n−1),Z) = L(n)(X(out,n)) +

s∑
r=1

Z>r U (n)
r .

In Φ(n)’s definition, X(out,n) and U (n) = (U
(r−1,n)
Bn

)sr=1 are results of (7-8) iteration over r =

1, . . . , s with parameters θ = θ(n) and (U
(r−1,n−1)
Bn−1

)sr=1 equal to Φ(n)’s second argument U (n−1).
Gradient ∇θ(n)Φ(n) can be computed by automatic differentiation through Φ(n).
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An efficient way to compute and sum up all∇θ(n)L is to iterate in a backward direction n = N, . . . , 1
and to maintain values of U (n),G(n). U (N) is known after the end of the forward pass, and

∀1 ≤ n ≤ N : U (n−1) = U (n) −
Bn∑
l=1

(T
(r−1,n)
l )sr=1. (9)

Further, in Appendix B we show that G(N) = 0r×D1 and, for each 1 ≤ n ≤ N ,

G(n−1) = ∇U(n−1)Φ(n)(θ(n),U (n−1),G(n)). (10)

By a single auto-differentiation through Φ(n) we can compute ∇θ(n)L = ∇θ(n)Φ(n) and the update
(10). If w is some vector of length Bn and h is some scalar function of v = PS(w), then for all
1 ≤ l ≤ Bn : ∇hwl =

∑Bn

l′=t∇hvl′ . In other words, the gradient through PS(·) is another prefix
sum computed backwards. Hence, auto-differentiation through Φ(n) takes the same parallel time
O(logC), serial time O(C) and memory O(C), as the forward computation of Φ(n). Since during
the whole back-propagation algorithm, we only store and update tensors U (n),G(n), whose size
doesn’t depend on L and C, this results in total O((L/C) logC) parallel time, O(L) serial time and
O(C) memory in addition to p storage. A full description of the forward-backward pass is presented
in Algorithm 1. Figure 1b is an illustration of the algorithm.

3.4 Analysis of the running time and memory

As we have shown, Performer can be trained in parallel time O((L/C) logC) and O(C) memory
in addition to the input p storage. Hence, C is a tradeoff parameter: when C is maximal (C = L),
the model is fully-parallelized, therefore resulting in the fastest execution. Whereas minimal C = 1
corresponds to step-by-step processing, i.e. a fully-sequential regime which doesn’t benefit from
parallelized computations on GPU or TPU, but consumes O(1) memory as a function of L.

During the forward pass, Algorithm 1 requires as many total FLOPs as the naive forward pass
through (7-8). As for the backward pass, for each 1 ≤ n ≤ N , the forward pass through n’s
slice is repeated for symbolic construction of Φ(n) (see Algorithm 2), and then back-propagation
is run through Φ(n). In addition, a backward update of U (n) (9) is computed, taking precisely
BnsM(d+ 1)k “add” operations. Hence, we conclude that Algorithm 1 requires as many FLOPs
as two forward and one backward pass through (7-8) for the whole sequence p plus LsM(d +
1)k = LsMdmodel + LsMk FLOPs. To characterize this addition, assuming that typically dff
(dimension of the feedforward block) is 4dmodel in practice, observe that applying dense Performer
layers (11-15, Appendix A) alone requires 3Lsd2

model + 2Lsdmodeldff = 11Lsd2
model FLOPs. This

is much bigger than LsMdmodel +LsMk, since M is much smaller than dmodel in practice [11, 18].

Since the back-propagation takes roughly 5 times more FLOPs than the forward pass [14], we
conclude that memory efficiency of Algorithm 1 results in a small constant-time increase in
FLOPs. FLOPs affect energy consumption [40], a crucial factor for on-device applications.

Further analysis of Algorithm 1 reveals that the C = 1 regime requires as much memory as if
Transformer were applied to a sequence of length 1 plus exactly 2sdmodel(M + 1) floats for
storing U ,G. For comparison, the subset of θ corresponding to dense layers in self-attention and
feed-forward blocks (11-15), occupies 3sd2

model + 2sdmodeldff = 11sd2
model floats. Again, this is

much bigger than 2sdmodel(M + 1), since M is much smaller than dmodel in practice.

Table 1 shows comparison of the proposed algorithm with other architectures such as a conventional
Transformer, recurrent neural networks (RNNs, 17, 9) and residual networks (e.g. Neural ODEs, 6).

4 Experiments

Our main contribution is a new low-memory gradient computation algorithm for the existing Per-
former architecture. Performers have very competitive performance among other methods for long
sequence modelling [11, 18, 36]. Hence, in the experimental section, we aim to answer the following
questions about using this algorithm in practice. (a). Does the theoretical time-memory tradeoff,
controlled by C, agree with benchmarks of time-memory for varied C? (b) In precise arithmetic,
different values of C lead to the same correct gradient ∇θL. Does this hold in practice, when
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Figure 2: Benchmarks of Algorithm 1. All plots are averaged over 10 seeds. “iter.” stands for
iterative computation of (2-3), while “PS” is for explicit prefix sum computation in (2). We omit
time and memory for big values of C in “Config. IV, PS” and “Config. IV, full” setups, because
these led to memory overflow. Analogous results for configuration II can be found in Appendix
D. (Left) Time dependence on C. Crosses indicate horizontal time levels for corresponding full
memory-inefficient methods. The dotted line indicates ∝ C−1 tangent in logarithmic scale. (Middle)
Memory dependence on C. Again, crosses are for horizontal levels of full-sequence methods and the
dotted line indicates ∝ C tangent. We do not report curves for config. III, because they completely
match curves for config. IV, which is natural, since s, dmodel are the same for both configurations.
“L/B” stands for a memory lower bound computed by processing input of length C. (Right) Relative
gradient discrepancy as a function of C and standard errors. Evaluated on random inputs over ΣL.

finite-precision arithmetic is employed? (c) Can a model, pre-trained with a bigger C (e.g. on a
server), be fine-tuned with a smaller C (e.g. on an embedded device)?

We address these questions below. We analyse 4 model configurations (L, s, dmodel): I = (8192, 1,
1024), II = (1024, 3, 512), III = (4096, 3, 1024), IV = (16384, 3, 1024). In all configurations, we
set dff = 4dmodel, k = dmodel/64 (number of heads). We set M = d and employ g(x) = (x2

i )
d
i=1

elementwise-quadratic feature mapping in (1), which we find to work well. In all experiments
Σ = {0, . . . , 255} and batch size is set to 1, i.e. we analyse a setup where gradient accumulation
cannot be used to decrease memory, and therefore our algorithm is crucial. Our code is in PyTorch
1.7 [30]. To ensure that reproduction of experiments is accessible for a wider audience, we use a
single NVIDIA Tesla P100 GPU with 16 GB memory for each experiment.

4.1 Empirical benchmarking of the tradeoff

We run Algorithm 1 for configurations I, III, IV and different powers of 2 as C. We use in-
put strings sampled randomly from ΣL. In order to characterize the time-memory tradeoff, we
measure wall-clock time and peak GPU memory for a single gradient evaluation. We use the
torch.cuda.max_memory_allocated function to report peak GPU memory.

As discussed in Section 2, there are two methods to compute (2-3): the first (iterative) method
doesn’t compute and store tensors (3) explicitly, resulting in smaller memory consumption at a
cost of less parallelization, while the second one computes tensors (3) using the parallel prefix sum
algorithm, therefore operating faster, but using more memory. The same methods can be applied for
the memory-efficient algorithm when computing (7-8) updates. We implement and benchmark both
methods as part of the algorithm. For the explicit prefix-sum method, we find that the torch.cumsum
function works faster and consumes less memory than our custom implementation of the parallel
prefix sum algorithm. We attribute this to hardware-optimized implementation of the native function,
and use it in experiments. As for the iterative algorithm, we implement its “block” version, when,
instead of iterating l one-by-one, we iterate through blocks of small size (see details in Appendix
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Table 1: Complexity for the back-propagation as a func-
tion of sequence length L and the tradeoff parameter
C ≤ L. The indicated memory complexity is in addi-
tion to the input sequence p storage. The serial time
complexity for Performer is reported for the version with
iterative PS(·) computation (as in [18]), while the parallel
time is reported for the parallel prefix sum (as in [11]).
For both methods, memory complexity is the same, but
the constant is smaller for the iterative version.

Model Serial
time

Parallel
time

Memo
-ry

RNN O(L) O(L) O(L)
Residual NN O(L) O(L) O(L)
Transformer O(L2) O(logL) O(L2)
Performer O(L) O(logL) O(L)
Our alg. O(L) O(LC logC) O(C)
Ours, C=1 O(L) O(L) O(1)

Table 2: Time per iteration (sec., aver-
aged over 1000 iterations) and peak GPU
memory (Gb). When using small values
of C, we relate the remaining memory to
a storage of parameters θ and optimizer’s
state.

Setup, L, C Time Memory

CT, 8192, full 0.3008 0.938
CT, 8192, 4096 0.5372 0.595
CT, 8192, 2048 0.6002 0.436
PTB, 1024, full 0.1377 0.300
PTB, 1024, 512 0.2526 0.257
PTB, 1024, 256 0.3060 0.231
ENW, 4096, full 0.4598 1.513
ENW, 4096, 2048 0.7922 1.085
ENW, 4096, 1366 0.8654 0.909

Figure 3: Algorithm 1 compared to checkpointing of {U (n)}1≤n≤N . Time and memory plots.

C). This way, the algorithm has a smaller constant in O(L) time complexity and bigger constant in a
“small” O(dM) term of the memory complexity (assuming that d,M � L).

For a fixed C, in addition to reporting memory of Algorithm 1, we also report memory of the naive
gradient computation run on a string of length C, sampled uniformly from ΣC . This is to confirm
that memory use of Algorithm 1 is just slightly above the full computation on the input of length C.

Results are reported in Figure 2 (left, middle). We observe significant improvements in memory
compared to the full computation, as C decreases. As C converges to 20 = 1, the remaining
memory can be attributed to storage of the model’s parameters θ. Time follows two regimes:
declining fast as C grows (meaning that prefix sums are parallelized) and declining slower for big
values of C (meaning that the practical limit of parallelization is reached). Memory scales slower
than O(C), as C increases. We attribute this to details of the PyTorch internal code. We find that
iterative version of (2-3) works only slightly slower than prefix-sum version, while consuming much
less memory. Finally, Algorithm 1 consumes only slightly more memory in practice than the
full method run on the input of length C < L (“L/B” plots on Figure 2 (middle)).

In addition, we compare Algorithm 1 with checkpointing [15]. By checkpointing in this context we
understand storing {U (n)}1≤n≤N during the forward pass and reusing them during the backward
pass instead of recomputing. This results in a small FLOPs decrease since U (n), while memory scales
as O(L/C). We use config. I for comparison (Figure 3). While not faster in practice, checkpointing
consumes much more memory as C decreases for both iterative and prefix-sum computation of (2-3).

4.2 Effects of finite-precision arithmetic

Since the iterative version of (2-3) results in a good balance between time and memory of Algorithm
1, we use it further. To quantify finite-precision effects, we plot relative discrepancy ‖∇(C)

θ L −
∇(full)
θ L‖2/‖∇(full)

θ L‖2 between the gradient ∇(C)
θ produced by Algorithm 1, and the gradient
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Figure 4: Learning curves for three language modelling setups. We report accuracy on a newly
generated data samples for Copying task, and Bits Per Character (BPC) metric on validation examples
for Penn Treebank and Enwik8. F/T stands for “fine-tuning”. All curves are roughly the same and
result in nearly the same performance, confirming correctness and backward-compatibility of
gradients computed via memory-efficient Algorithm 1. Differences can be attributed to finite-precision
arithmetic effects, accumulating over many iterations.

Table 3: Time per iteration (sec., averaged over 1000 iterations) and peak GPU memory (Gb). We
also report memory required to store parameters θ only without any computations.

Setup, L, C BPC,
F/T

BPC,
no F/T

Memory,
params

F/T mem.,
Alg. 1

F/T mem.,
full comp.

F/T time,
Alg. 1

F/T time,
full alg.

PTB, 1024, 16 1.4263 1.6544 0.0661 0.1077 0.1834 0.8938 0.0426
ENW 4096, 64 1.5642 1.6141 0.2610 0.4276 0.8049 1.1142 0.2045

∇(full)
θ L produced by full computation. Figure 2 shows results for randomly initialized models. We

observe a small discrepancy of order 10−6–10−4, confirming the correctness of Algorithm 1.

4.3 Training from scratch and fine-tuning

To confirm backward compatibility of Algorithm 1 during training, we run three language modelling
setups: Copying Task (CT), symbol-level Penn Treebank (PTB) and Enwik8 (ENW).

For the CT, we follow the setup from [20, 18], sampling inputs as 0ω0ω, where ω is drawn uniformly
from (Σ \ {0})L/2−1. In this setup, we only aggregate cross-entropy loss from the second half of the
input, so the task is to reproduce the first half. We include the CT as a task where long-range signal is
crucial, and the heuristic of “chunking” the input into segments would fail to solve the task.

We use model configurations I, II, III for the CT, PTB and ENW, resulting in sequence lengths L =
8192, 1024, 4096 respectively. For each setup, we compare training with full gradient computation,
“fine-tuning” regime, when the first half of iterations is run using the full algorithm, and the second
half is run using Algorithm 1 using various values of C. In addition, we include training from scratch
equipped with memory-efficient gradient computation via Algorithm 1. Figure 4 demonstrates results:
all methods result in almost same performance. This confirms that memory-efficient gradient
computation is backward-compatible during training. Table 2 quantifies the memory savings and
time tradeoff in all setups. Additional details and results, including bigger version of Figure 4, BPC
for CT, train set performance, and curve differences in Figure 4, can be found in Appendix D.

4.4 One-shot fine-tuning under low memory

To analyze the scenario when model is pretrained on server and then fine-tuned (F/T) with a small C
on a low-memory device, we add the following experiment. We take a pretrained model from either
PTB or ENW setup from Section 4.3 and subsample randomly 5000 examples from the corresponding
validation set. We perform a one-step gradient descent with 0.01 learning rate (tuned on other random
subset) to minimize the loss computed on the first half of each sequence and evaluate Bits Per
Character (BPC) on the second half. In this experiment, the first half of the sequence represents the
data generated by user on the device, and the second half is a new data to be predicted. Fine-tuning

9



procedure, therefore, represents “personalization” of the model to the specific user (see Table 3). We
observe BPC improvement without any server compute and a memory improvement compared to the
full computation, while time (≈ 1 sec.) is less crucial, since fine-tuning can run in the background.

5 Related Work and Extensions

Compatibility with other memory-optimization techniques. Observe that the specification (5) is
compatible with the reversible layer design from [20], when the sparse self-attention is replaced with
the linear self-attention2. This can bring more memory savings, since one doesn’t need to store the
whole symbolic Φ(n) during the backward pass. Checkpointing along the layer dimension [15, 7]
can also be used to reduce the memory consumption for storing Φ(n)’s graph, though at the cost of a
longer execution time. The gradient accumulation technique [28] is also compatible with Algorithm
1, i.e. one can combine both methods to “collapse” batch and sequence dimensions simultaneously.
Moreover, our algorithm is compatible with distillation [32], since it can be run on a distilled model.

Comparison with [18]. In [18], authors mention that a single self-attention block can be evaluated in
O(1) additional memory. However, during back-propagation, one still needs to store L intermediate
states, e.g. in the feedforward block. Hence, the full memory complexity is still O(L). In contrast,
our method optimizes memory consumption along the sequence dimension for the whole multilayer
model.

Extension to Transformers with dropout. Dropout [34] is a popular regularization technique. It is
used with Transformers when the train dataset is small enough to cause overfitting (e.g. it wasn’t used
with GPT-2, trained on a massive dataset). Our algorithm can be extended to stochastic computation
graphs with dropout. For that, use separate random seeds to generate dropout masks for each slice
1 ≤ n ≤ N , and reuse these seeds two times during the forward and backward pass through the nth
slice.

6 Conclusion

We proposed an algorithm for memory-efficient back-propagation through a Performer. The algorithm
reduces memory consumption along the sequence dimension, and can, therefore, be used for long-
sequence training. The algorithm: (1) is completely backward-compatible, since it computes precise
gradients and does not involve approximation, (2) does not require many additional computations,
and (3) enables user control over the tradeoff between time and memory consumption.

Limitations. One limitation of this works is that the proposed memory improvements are traded
off by longer running time. Another one is that these improvements rely on a specific feature of
prefix sum signal propagation appearing in Performers and, also, in parallelized versions of RNNs
[26]. Finally, we don’t see an immediate extension of the proposed construction to the bidirectional
self-attention case, used in Transformer encoders [38] and for masked language modelling [13]. The
reason for that is that no notion of the prefix sum “front” can be introduced in this case.

Negative societal impacts. This work studies Performers – efficient Transformers. Transformers
in general can have the following negative societal impacts: large carbon dioxide emissions [35],
privacy and data leak vulnerabilities [5], bias and fairness issues and malicious misuse [4, 3].
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