
A Connections to other problems

In the Introduction, we claimed that several well-known formulations for robust learning can be
recovered as approximations of (PII) or Algorithm 1. In what follows, we explore these connections
in three directions: (i) fixed, sub-optimal choices of the perturbation distribution λ in (4); (ii) limiting
cases of the projected LMC dynamics used in Algorithm 1; (iii) modifications of the empirical dual
problem (D̂I).

A.1 Sub-optimal perturbation distributions

For a fixed perturbation distribution λ in (4), (PII) can be thought of as a random data augmentation
procedure [83]. For instance, for λ = N (0,Σ), (PII) becomes

minimize
θ∈Θ

E(x,y)∼D

[
Eδ∼N (0,Σ)

[
ℓ
(
fθ(x+ δ), y

)]]
.

Indeed, the authors of [84, 85] suggest that Gaussian data augmentation can significantly improve
generalization, particularly the augmentations are applied using patches [84]. To quote from [85]:

Data augmentation with Gaussian . . . noise serves as a simple yet very strong
baseline that is sufficient to surpass almost all previously proposed defenses against
common corruptions.

More complex choices of distributions lead to other robust learning methods involving random
removal of patches from the image (e.g., Cutout [86, 87]), random replacement of patches (e.g.,
CutMix [88, 89]), or arbitrary generative models, i.e., δ ∼ G#N (0, σ2I) for some measurable G :
Rz → Rd [85]. For generative models with latent dimension z ≪ d, the latter approach can be
thought of as parameterizing the perturbation distribution λ on a lower-dimensional manifold in the
data space, which has been shown to be a strong defense in prior work [90–92].

While data augmentation with random noise has been shown to be an effective method for improving
robustness in practice, the results in this paper show that even larger gains are possible by optimizing
over the perturbation-generating distribution. In particular, Proposition 3.2 establishes that the
optimal perturbation distribution is not Gaussian and most importantly, not isotropic. Indeed, Figure 1
suggests that the pertubation distribution arising from Algorithm 1 does resemble an anisotropic
Gaussian, but only on the basis induced by the principal components of the data.

It is worth noting that, as we mentioned in Section 2, the results of this paper do not rely on the
linearity of the perturbations. Hence, more complex pertubations can be considered by using an
arbitrary, parametrized data transformation G : X ×∆→ X as in

minimize
θ∈Θ

E(x,y)∼D

[
Eδ∼λ

[
ℓ
(
fθ
(
G(x, δ)

)
, y
)]]

. (PIV)

Due to space constraints, we considered only pertubations of the form G(x, δ) = x+ δ as in (P-RO).
Yet, by once again fixing the pertubation distribution λ, we can obtain a myriad of data augmentation
techniques, including the group-theoretic data-augmentation scheme discussed in [93], where G
denotes the group action, and the model-based robust training methods discussed in [62–65]. Indeed,
exploring the efficacy of DALE toward improving robustness beyond norm-bounded perturbations is
an exciting direction for future work.

A.2 Sampling vs. optimizing pertubations

Aside from fixing the pertubation distribution λ, another common approach to adversarial learning is
to use a gradient-based local optimization method in order to tackle the maximization in ℓadv (see e.g.,
[26, 27]). The perturbations found by these gradient-based methods can then be used to train a robust
model. While empirically effective, this approach is not without issues. In particular, gradient-based
algorithms are not guaranteed to obtain optimal (or even near-optimal) perturbations, since ℓ(fθ(·), y)
is typically not a convex (or concave) function. What is more, maximizing over δ in the definition
of ℓadv is a severely underparametrized problem as opposed to the minimization over θ in (P-RO). It
therefore does not enjoy the same benign optimization landscape [35–39]. Additionally, note that
there is no guarantee that this alternating optimization technique converges.

19

Nevertheless, these algorithms can be seen as limiting cases of Algorithm 1 for specific choices of
the losses ℓpert, ℓro, and ℓnom, the LMC kinetic energy (step 6), and the temperature (T in step 5). To
illustrate this idea, suppose that both ℓpert and ℓro are taken to be the cross-entropy loss, i.e.,

ℓ
(
fθ(x), y

)
= − log

(
[fθ(x)]y

)
. (11)

In this case, when we take T → 0, Algorithm 1 approaches the gradient-based attacks FGSM (for
L = 1) [26] and PGD (for L > 1) [27]. However, as we observed in Figure 1, these methods can
produce quite different perturbations compared to the perturbations produced by DALE.

Another interesting perspective on gradient-based methods is to consider a different sampling scheme.
Indeed, while we adopted the commonly used Laplacian LMC sampler in Algorithm 1, an alternative
often used to sample from lighter tailed distributions is Gaussian LMC [94, 81, 82]. In the latter,
rather than defining the kinetic energy of the Hamiltonian as K(p) ∝ ∥p∥1, this prior is taken to
be K(p) ∝ ∥p∥22. This is equivalent to replacing steps 5 and 6 of Algorithm 1 by

U ← log
[
ℓpert(fθ(x+ δ), y)

]
(12)

δ ← Π∆

[
δ +∇δU +

√
2ηTξ

]
(13)

where ξ ∼ N (0, I). An interesting direction for future work is to compare the performance of
HMC-based samplers under different priors. For more details regarding the derivation of our LMC
sampler, see Appendix E.

A.3 Penalty-based methods

The third approximation of Algorithm 1, or more precisely, (D̂I), is the use of a fixed ν > 0,
e.g., [53, 54, 95]. Indeed, notice that in the definition of L̂, ν is an optimization variable that is
dynamically adjusted in Algorithm 1 through the dual ascent update in step 10. Notice that step 10 is
simply a (sub)gradient ascent update given that the constraint violation is a subgradient of the dual
function d̂(ν) = minθ∈Θ L̂(θ, ν) for the empirical Lagrangian (see Lemma D.2).

While effective, there are clear advantages in letting ν be an optimization variable. In practice, not
only does it lead to improved performance (see Section 6), but it has the advantage of precluding
the need to manually adjust another hyperparameter, which can be challenging and often requires
domain-specific knowledge. Indeed, the value of ν depends on the underlying learning task (model,
losses, dataset), making it difficult to transfer across applications and highly dependent on domain
knowledge. What is more, if not done carefully, it can hinder generalization guarantees for the
solution.

This issue is, in fact, at the core of the theoretical advantage of (D̂I). Indeed, note that classical
learning theory [57, 58] provides generalization bounds only for the aggregated objective and not
each individual penalty term, i.e., for the value of the Lagrangian rather than the adversarial and
nominal losses in (P-CON). In contrast, Proposition 4.4 provides generalization guarantees both in
terms of near-optimality and near-feasibility by leveraging the constrained learning theory developed
in [60, 77].

20

B Proof of Proposition 3.1

Start by writing the primal problem (PI) in Lagragian form [96, Ch. 4]. Explicitly,

P ⋆
R = min

θ∈Θ,t∈Lp
max
λ∈Lq

+

LPI(θ, t, λ), (PV)

where Lq
+ denotes the subspace of almost everywhere non-negative functions of Lq for (1/p) +

(1/q) = 1. Here the Lagrangian LPI(θ, t, λ) is defined as

LPI(θ, t, λ) = E(x,y)∼D
[
t(x, y)

]
+

∫
λ(x, δ, y)

[
ℓ
(
fθ(x+ δ), y

)
− t(x, y)

]
dxdδdy

=

∫
t(x, y)

[
p(x, y)−

∫
λ(x, δ, y)dδ

]
dxdy +

∫
λ(x, δ, y)ℓ

(
fθ(x+ δ), y

)
dxdδdy,

(14)
where we used the density p of the data distribution D. Then, notice that (PV) can be written
iteratively as

P ⋆
R = min

θ∈Θ
p(θ) where p(θ) = min

t∈Lp
max
λ∈Lq

+

LPI(θ, t, λ). (PVI)

Observe that θ is constant in the definition of p(θ). Since (14) is a linear function of t, p(θ) is the
optimal value of a linear program parametrized by θ. Hence, strong duality holds [96, Ch. 4] and we
obtain that

p(θ) = max
λ∈Lq

+

dPI(λ) where dPI(λ) = min
t∈Lp

LPI(θ, t, λ), (15)

for the dual function dPI. Since t is unconstrained and L is linear in t, the dual function either vanishes
for p(x, y) =

∫
λ(x, δ, y)dδ or diverges to −∞. From (14) and (15), we thus obtain that

p(θ) = max
λ∈Lq

+

∫
λ(x, δ, y)ℓ

(
fθ(x+ δ), y

)
dxdδdy

subject to

∫
λ(x, δ, y)dδ = p(x, y)

(16)

To conclude, notice that since λ is almost everywhere non-negative, it must be that λ(x, δ, y) = 0 for
all δ ∈ ∆ whenever p(x, y) = 0. The measure induced by λ is therefore absolutely continuous with
respect D. We can therefore rewrite (16) in terms of the Radon-Nykodim derivative,

λ(δ | x, y) = λ(x, δ, y)/p(x, y) (17)

which yields (4) as desired.

21

C Proof of Proposition 3.2

For the sake of completeness, before proving Proposition 3.2, in Section C.1 we provide a short
discussion of the preliminary material needed to prove the proposition. The majority of this exposition
is adapted from Rockafellar and Wets’ Variational Analysis [97]. Following this, in Section C.2 we
present a lemma which establishes the decomposability of Pq over Ω, which is crucial in proving the
proposition. Finally, in Section C.3 we provide the full proof of Proposition 3.2.

C.1 Preliminaries

Throughout these preliminaries, we let the tuple (T,A) denote a measurable space, where T is a
nonempty set and A is a σ-algebra of measurable sets belonging to T . Furthermore, we let R denote
the extended real-line, and we will use µ to refer to an arbitrarily defined measure over the measurable
space (T,A).4 By G we denote an arbitrary space of measurable functions g : T → Rn. To this end,
given an integrand f : T × Rn → R, we will consider integral functionals of the form

If [g] =

∫
T

f(t, g(t))µ(dt) (18)

To begin our preliminaries, we first recall the definition of a normal integrand.

Definition C.1 (Normal integrand). A function f : T × Rn → R is called a normal integrand if its
epigraphical mapping Sf : T → Rn × R defined by

Sf (t) ≜ epif(t, ·) =
{
(x, α) ∈ Rn × R

∣∣f(t, x) ≤ α
}

(19)
is closed valued and measurable.

Definition C.2 (Carathéodory integrand). A function f : T × Rn → R is called a Carathéodory
integrand if it is measurable in t for each x and continuous in x for each t.

Notably, Carathéodory integrands are a special case of normal integrands (see e.g., [97, Ex. 14.29]).
Next, recall the definition of a decomposable space.

Definition C.3 (Decomposable space). A space G of measurable functions g : T → Rn is decompos-
able in association with a measure µ on A if for every function g0 ∈ G, for every set A ∈ A with
µ(A) < ∞, and for every bounded, measurable function g1 : A → Rn, the space G contains the
function g : T → Rn defined by

g(t) =

{
g0(t) for t ∈ T\A,

g1(t) for t ∈ A.
(20)

Note that the space M(T,A) of measurable functions g : T → Rn is decomposable, as are the
Lebesgue spaces Lp(T,A, µ) for all p ∈ [1,∞] (see e.g., [97, Ch. 14]). As we will see, the
decomposability of the Lebesgue spaces is integral to the proof of Proposition 3.2. However,
before proceeding to the proof, we first restate a crucial result concerning the interchangability of
minimization and integration, which relies on this notion of decomposability defined above.

Theorem C.4 (Thm. 14.60 in [97]). Let G be a space of measurable functions from T to Rn that is
decomposable relative to a σ-finite measure µ defined on A. Let f : T × Rn be a normal integrand.
Then the minimization of If over G can be reduced to a pointwise minimization in the sense that, as
long as If ̸≡ 0 on G, one has

inf
g∈G

∫
T

f(t, g(t))µ(dt) =

∫
T

[
inf

x∈Rn
f(t, x)

]
µ(dt) (21)

Moreover, as long as this common value is not −∞, one has for g ∈ G that
g ∈ argmin

g∈G
If [g] ⇐⇒ g(t) ∈ argmin

x∈Rn

f(t, x) for µ-almost every t ∈ T. (22)

The utility of this result is that under the assumptions that function class G is decomposable, the
integrand f is normal, and If is finite over G, it holds that the minimization and integration operations
can be exchanged. Furthermore, note that this result is more general than we need; indeed, all of the
integrands we work with in the next subsection are Carathéodory and hence normal.

4In some cases, we will also use µ to denote the Lebesgue measure on Rd; this distinction will be made clear
when we use this convention.

22

C.2 A preliminary lemma

The first step toward proving Proposition 3.2 is to show that the space Pq is decomposable over the
data space Ω. We state this result in the following lemma, as it may be of expository interest as a
warm-up before the proof of Proposition 3.2.

Lemma C.5 (Decomposability of Pq over Ω). The space Pq of distributions of ∆ defined in Proposi-
tion 3.2 is decomposable over Ω = X × Y in the sense of definition C.3.

Proof. Let µ denote the Lebesgue measure on Rd. Recall that Pq is the subset of Lp containing
functions λ with the following properties:

(P1) λ(·|x, y) is almost everywhere non-negative on Ω,

(P2) λ(·|x, y) is absolutely continuous with respect to p(x, y),

(P3)
∫
∆
λ(δ|x, y)µ(dδ) = 1 for p-almost every (x, y) ∈ Ω.

To show that Pq is decomposable over Ω, first let λ, λ′ ∈ Pq and A ⊆ Ω with µ(A) < ∞ be
arbitrarily chosen. Define the functional

λ(δ|x, y) =
{
λ(δ|x, y) for (x, y) ∈ Ω\A,

λ′(δ|x, y) for (x, y) ∈ A.
(23)

Our goal is to show that λ is an element of Pq. To begin, observe that by (P1), λ and λ′ are almost
everywhere non-negative, and therefore so is λ. Further, by (P2), both λ and λ′ are absolutely
continuous with respect to p. Thus, observe that if B ∈ B such that p(B) = 0, then λ(δ|B) =
λ′(δ|B) = 0, and thus it holds that λ(δ|B) = 0, proving that λ≪ p. Finally, note that by (P3), both λ
and λ′ are normalized along ∆. Thus, for any fixed (x, y) ∈ Σ, it holds that

∫
∆
λ(δ|x, y)µ(dδ) = 1.

Thus, it holds that λ ∈ Pq , as was to be shown.

C.3 Proof of Proposition 3.2

Ultimately, there are three main steps to this proof. (1) First, we argue that Thm. C.4 applies to the
maximization over λ, so that the expectation over the data distribution D and the maximization over
λ ∈ Pq can be interchanged. (2) We argue that strong duality holds for the inner problem induced
by pushing the maximization inside the expectation. (3) We find a closed-form solution for the dual
problem, proving the claim of the proposition.

Proof. Step 1. To begin, we argue that the maximization over λ and the expectation over the data
distribution D can be interchanged. To do so, we define the function F : Ω× P2 → R

F
(
(x, y), λ

)
≜ Eδ∼λ(δ|x,y)

[
ℓ(fθ(x+ δ), y)

]
(24)

so that the optimization problem in (PII) can be written as

P ⋆
R = min

θ∈Θ
p(θ) where p(θ) ≜ max

λ∈P2
E(x,y)∼D

[
F
(
(x, y), λ

)]
. (25)

Now observe that by construction F is measurable in (x, y) for each λ, and continuous (in fact,
linear) in λ for each (x, y). Thus, F is a Carathéodory integrand, and as P2 is decomposable over Ω
by Lemma C.5, Thm. C.4 applies to p(θ). Therefore, the maximization in the definition of p(θ) can
be pushed inside the expectation over (x, y) ∼ D, yielding the following equality:

p(θ) = max
λ∈P2

E(x,y)∼D
[
F
(
(x, y), λ

)]
= E(x,y)∼D

[
max
λ∈P2

F ((x, y), λ)

]
. (26)

Step 2. Next, we argue that the inner maximization problem in the expression on the RHS of (26) is
strongly dual. To begin, notice that this inner maximization is now performed separately for each
data point (x, y) ∈ Ω. We therefore proceed by considering the solution of the inner problem for an

23

arbitrary but fixed data point (x, y). To this end, first let λ⋆ be the solution to the inner problems for
this fixed pair (x, y), i.e. λ⋆ achieves the optimal value in

u(θ) = u(θ,x, y) = max
λ∈P2

F ((x, y), λ) (27)

Now let m(∆) denote the Lebesgue measure of ∆, and consider that Hölder’s inequality implies that
∥λ⋆∥L1 ≤ m(∆)1/2 ∥λ⋆∥L2 . Further, as each feasible λ ∈ P2 is normalized over ∆, it holds that

1

m(∆)
≤ ∥λ⋆∥2L2 . (28)

Thus, since P2 ⊂ L2
+, it holds that λ⋆ ∈ L2

+, and thus there exists a constant c satisfying 1/m(∆) ≤
c <∞ such that

∥λ⋆∥2L2 =

∫
∆

F ((x, y), δ)2dδ ≤ c. (29)

Accordingly, we can rewrite (27) in an equivalent way as follows:

u(θ) = max
λ∈L2

+

Eδ∼λ(δ|x,y)
[
ℓ(fθ(x+ δ), y)

]
subject to

∫
∆

λ(δ|x, y)dδ = 1,

∫
∆

λ(δ|x, y)2dδ ≤ c.
(PVII)

Notice that (PVII) is a convex quadratic program in the optimization variable λ. Furthermore, note
that if c = 1/m(∆) (i.e., equality is achieved in the expression (28) derived from Hölder’s inequality),
then the feasible set is a singleton which is equivalent in L2 to λ(δ|x, y) = 1/m(∆). Alternatively,
if c > 1/m(∆), then λ(δ|x, y) is a strictly feasible point, and thus Slater’s condition holds. In either
case, we find that (PVII) is strongly dual [96, Ch. 4] and so we can write

u(θ) = min
γ≥0, µ∈R

dPVII(θ, γ, µ), (30)

for the dual function

dPVII(θ, γ, µ) = max
λ∈L2

+

∫
∆

[
ℓ(fθ(x+ δ)λ(δ|x, y)− γλ(δ|x, y)2 − µλ(δ|x, y)

]
dδ + γc+ µ.

Step 3. Finally, we find a closed-form expression for the solution to the dual problem derived above.
To do so, an entirely similar argument to the one given in Lemma C.5 shows that L2

+ is decomposable.
And indeed, as the integrand in the above primal function is clearly Carathéodory, we can again apply
Theorem C.4 to dPVII(θ, γ, µ):

dPVII(θ, γ, µ) =

∫
∆

{
max
λ∈L2

+

ℓ(fθ(x+ δ)λ(δ|x, y)− γλ(δ|x, y)2 − µλ(δ|x, y)

}
dδ + γc+ µ.

(31)

A straightforward calculation of the inner maximization problem shown above yields

λ⋆(δ|x, y) =
[
ℓ(fθ(x+ δ), y)− µ

2γ

]
+

, (32)

where [z]+ = max(0, z) denotes the projection onto the non-negative orthant. From (PVII), µ is
chosen so as to meet the normalization constraint, i.e., so that∫

∆

[
ℓ(fθ(x+ δ), y)− µ

2γ

]
+

dδ = 1 ⇐⇒
∫
∆

[ℓ(fθ(x+ δ), y)− µ]+ dδ = 2γ.

To conclude, notice that due to the strong duality of (PVII), for each value of c <∞ there is a value
of γ > 0 such that (32) is a solution of (PVII) [96, Ch. 4]. Also, since (x, y) were chosen arbitrarily,
(32) holds for all data point. Given that the space is decomposable, these solutions can be pieced
together, yielding the desired result.

24

D Proof of Proposition 4.4

We proceed here as in [60]. However, we deviate slightly from the proof of the parametrization
gap [60, Prop. 2 in Appendix B.1] to account for the maximization in the robust loss. In particular,
the proof of Proposition 3.6 is organized in the following way:

1. First, in Section D.1 we bound the deviation between the primal problem (P-CON) and dual
problem (DI). The result is summarized in Lemma D.1.

2. Next, in Section D.2, we review two results needed to complete the proof of Proposition 3.6
concerning the continuity and differentiability of the dual objective.

3. Finally, in Section D.3 we leverage the preliminaries provided in Section D.2 to complete
the proof of the proposition. This result is summarized in Proposition D.4.

Ultimately, the result in Proposition 4.4 is obtained by combining the results in Lemma D.1 and
Proposition D.4 and using the union bound.

D.1 Bounding the parametrization gap

In this section, we are interested in the relationship between the statistical problem (P-CON) and its
dual problem. In particular, the dual problem to (P-CON) can be written in the following way

D⋆ ≜ max
ν≥0

min
θ∈Θ

L(θ, ν) (DI)

for the Lagrangian

L(θ, ν) = E
[
max
δ∈∆

ℓ
(
fθ(x+ δ), y

)]
+ ν
[
E
[
ℓ
(
fθ(x), y

)]
− ϵ
]
. (33)

The goal of this subsection is to prove the following lemma, which establishes bounds on the error
induced by the parameterization space Θ.

Lemma D.1. Under the conditions of Prop. 4.4, the value D⋆ of (DI) is related to the value P ⋆

of (P-CON) by
P ⋆ −Mα ≤ D⋆ ≤ P ⋆. (34)

Proof. The result in Lemma D.1 is trivial when the hypothesis classH induced by the parametrization
is convex. In this case, (P-CON) is a convex program and Assumption 4.2 (Slater’s condition) implies
that it is strongly dual [96, Ch. 4]. In other words, P ⋆ = D⋆. Hence, we are interested in the setting
in whichH is not convex, but is still a rich parametrization as per (4.1) such as the class of CNNs.

In the nonconvex case, the upper bound in (34) is a simple consequence of weak duality [96, Ch. 4].
To obtain the lower bound, consider the variational problem

P̃ ⋆ ≜minimize
ϕ∈H

E(x,y)∼D

[
max
δ∈∆

ℓ
(
ϕ(x+ δ), y

)]
subject to E(x,y)∼D

[
ℓ
(
ϕ(x), y

)]
≤ ϵ−Mα

(PVIII)

forH = conv(H). Let ϕ̃⋆ ∈ H be a solution of (PVIII) associated with δ⋆(x, y), the perturbations
that attains the maximum in its objective. Since ∆ is a compact set by assumption, there indeed
exists a perturbation δ⋆ ∈ ∆ that achieves the maximum. SinceH is convex, (PVIII) is now a convex
optimization problem (recall that the pointwise maximum of convex functions is convex [96, Prop
1.1.6]) which therefore has a strictly feasible point fθ′ ∈ H ⊂ H (Assumption 4.2). Hence, it is
strongly dual [96, Ch. 4] and

P̃ ⋆ = max
ν̃≥0

min
ϕ∈H

L̃(ϕ, ν̃) = L̃(ϕ̃⋆, ν̃⋆), (35)

where ν̃⋆ achieves the maximum in (35) for the Lagrangian5

L̃(ϕ, ν̃) = E
[
max
δ∈∆

ℓ
(
ϕ(x+ δ), y

)]
+ ν̃
[
E
[
ℓ
(
ϕ(x), y

)]
− ϵ+Mα

]
(36)

5For clarity, we omit the distribution D over which the expectations are taken.

25

To proceed, notice from (DI) that

D⋆ ≥ min
θ∈Θ

L(θ, ν), for all ν ≥ 0,

and that sinceH ⊆ H = conv(H), we obtain

D⋆ ≥ min
θ∈Θ

L(θ, ν̃⋆) ≥ min
ϕ∈H

L̃(ϕ, ν̃⋆). (37)

Using the strong duality of (PVIII), the expression written above in (37) yields

D⋆ ≥ min
ϕ∈H

L̃(ϕ, ν̃⋆) = P̃ ⋆ = E
[
ℓ
(
ϕ⋆(x+ δ⋆(x, y)), y

)]
. (38)

Now note that to obtain the lower bound in (34), it suffices to show that

E
[
ℓ
(
ϕ⋆(x+ δ⋆(x, y)), y

)]
≥ P ⋆ −Mα (39)

To obtain this lower bound, notice from Assumption 4.1 that there exists θ̃† ∈ Θ such that

sup
x

∣∣∣ϕ̃⋆(x)− fθ̃†(x)
∣∣∣ ≤ α. (40)

For these parameters, it holds that∣∣∣∣E [ℓ(ϕ(x+ δ⋆(x, y)), y
)]
− E

[
max
δ∈∆

ℓ
(
fθ̃⋆(x+ δ), y

)]∣∣∣∣ ≤
E
[∣∣∣∣ℓ(ϕ(x+ δ⋆(x, y)), y

)
−max

δ∈∆
ℓ
(
fθ̃⋆(x+ δ), y

)∣∣∣∣] ≤
E
[∣∣ℓ(ϕ(x+ δ⋆(x, y)), y

)
− ℓ
(
fθ̃⋆(x+ δ⋆(x, y)), y

)∣∣] ,

where the first inequality is due to the convexity of the absolute value (Jensen’s inequality) and the
second inequality follows from the fact that δ⋆ is a suboptimal solution of maxδ∈∆ ℓ

(
fθ̃⋆(x+ δ), y

)
.

Using the Lipschitz continuity of the loss and Assumption 4.1, we conclude that∣∣∣∣P̃ ⋆ − E
[
max
δ∈∆

ℓ
(
fθ̃⋆(x+ δ), y

)]∣∣∣∣ ≤M E
[∣∣ϕ(x+ δ⋆(x, y))− fθ̃⋆(x+ δ⋆(x, y))

∣∣] ≤Mα.

(41)
Using a similar argument, we also obtain that∣∣∣E [ℓ(ϕ̃⋆(x), y

)]
− E

[
ℓ
(
fθ̃⋆(x), y

)]∣∣∣ ≤Mα. (42)

Hence, given that ϕ̃⋆(x) is feasible for (PVIII), (42) implies that θ̃⋆ is feasible for (P-CON). By
optimality, P ⋆ ≤ E

[
maxδ∈∆ ℓ

(
fθ̃⋆(x+ δ), y

)]
. Now recalling (38), we conclude that

D⋆ ≥ E
[
ℓ
(
ϕ⋆(x+ δ⋆(x, y)), y

)]
≥ P ⋆ + E

[
ℓ
(
ϕ⋆(x+ δ⋆(x, y)), y

)
−max

δ∈∆
ℓ
(
fθ̃⋆(x+ δ), y

)]
≥ P ⋆ −Mα,

where the last inequality follows from (41).

D.2 Preliminaries for proving the empirical gap

Before proceeding to considering the empirical gap of the dual problem, we state two preliminary
results which will be useful in proving the empirical gap in Section D.3. To this end, we first state the
classical result known as Danskin’s theorem.

Theorem D.2 (Danskin’s Theorem). Consider the function

F (w) = max
z∈Z

f(w, z) (43)

where f : Rn ×Z → R and assume that the following three conditions hold:

26

(i) f(·, z) is convex in w for each z ∈ Z;

(ii) f(w, ·) is continuous in z for each w in a certain neighborhood of a point w0;

(iii) The set Z is compact.

Then it holds that

∂F (x0) = conv

 ⋃
z∈Ẑ(w0)

∂wf(w0, z)
) (44)

where Ẑ(w) denotes the set of z ∈ Z at which F (w) = f(w, z).

The interested reader can find a full proof of Danskin’s theorem in [98, Thm. 2.87].

Next, we note that in the proof presented in Section D.3, it will be necessary to verify that a function
analogous to F (w) defined in (43) which is defined as the pointwise maximum of continuous function
f(w, z) is continuous. To verify this continuity, we will rely on the following result:

Lemma D.3. Fix any point u0 ∈ Φ and let g : Φ× Rn → R. Denote
v(u) = inf

w∈Φ(u)
g(w, u) and S(u) = argmin

w∈Φ(u)

g(w, u) (45)

Now suppose that

(a) The function g(w, u) is continuous on Φ× Rn;

(b) The feasible set Φ is closed;

(c) There exists a constant α ∈ R and a compact set C ⊂ Rn such that for every u in a
neighborhood of u0, the level set {w ∈ Φ(u) : g(w, u) ≤ α} is nonempty and contained in
C;

(d) For any neighborhood N of S(u0), there exists a neighborhood NU of u0 such that N ∩
Φ(u) ̸= ∅ ∀u ∈ NU .

Then it holds that v(u) is continuous at u = u0.

Further details regarding this result as well as a full proof can be found in [99, Prop. 4.4].

D.3 Bounding the empirical gap

We now proceed by evaluating the empirical gap between the statistical dual problem (DI) and its
empirical version (D̂I). In particular, our goal is to prove the following result.

Proposition D.4. Let ν̂ be a solution of (D̂I) with a finite D⋆. Under the conditions of Theorem 4.4,
there exists θ̂⋆ ∈ argminθ∈Θ L̂(θ, ν̂⋆) such that∣∣D⋆ − D̂⋆

∣∣ ≤ (1 + ν)max(ζR(N), ζN (N)) (near-optimality) (46)

E(x,y)∼D

[
ℓi
(
fθ̂⋆(x), y

)]
≤ ci + ζi(Ni) (near-feasibility). (47)

hold with probability 1− 5δ, where ν = max(ν̂⋆, ν⋆), for ν̂⋆ a solution of (D̂I) and ν⋆ a solution
of (DI), and D⋆ and D̂⋆ as in (DI) and (D̂I) respectively.

Proof. (Near-optimality). Let ν⋆ and ν̂⋆ be solutions of (DI) and (D̂I) respectively and consider the
set of dual minimizers

Θ†(ν) = argmin
θ∈Θ

L(θ, ν) and Θ̂†(ν̂) = argmin
θ∈Θ

L̂(θ, ν̂)

Using the optimality of ν⋆, it holds that

D⋆ − D̂⋆ = min
θ∈Θ

L(θ, ν⋆)−min
θ∈Θ

L̂(θ, ν̂⋆)

≤ min
θ∈Θ

L(θ, ν⋆)−min
θ∈Θ

L̂(θ, ν⋆).

27

Since θ̂† ∈ Θ̂†(ν⋆) is suboptimal for L(θ, ν⋆), we get

D⋆ − D̂⋆ ≤ L(θ̂†, ν⋆)− L̂(θ̂†, ν⋆). (48)

Using a similar argument yields

D⋆ − D̂⋆ ≥ L(θ†, ν̂⋆)− L̂(θ†, ν̂⋆) (49)

for θ† ∈ Θ†(ν̂⋆). Thus, we obtain that∣∣∣D⋆ − D̂⋆
∣∣∣ ≤ max

{∣∣∣L(θ̂†, ν⋆)− L̂(θ̂†, ν⋆)
∣∣∣, ∣∣∣L(θ†, ν̂⋆)− L̂(θ†, ν̂⋆)

∣∣∣} (50)

Using the empirical bound from Assumption 4.3, we obtain that∣∣∣L(θ, ν)− L̂(θ, ν)
∣∣∣ ≤ ζR(N) + νζN (N), (51)

holds uniformly over θ with probability 1− 4δ.

(Near-feasibility). The proof relies on characterizing the superdifferential of the dual function

d̂(ν) = min
θ∈Θ

L̂(θ, ν) (52)

from (D̂I). Explicitly, we say p ∈ R is a supergradient of d̂ at ν if

d̂(ν′) ≤ d̂(ν) + p(ν′ − ν), for all ν′ ≥ 0. (53)

The set of all supergradients of d̂ at ν is called the superdifferential of d̂ at ν and is denoted ∂d̂(ν).
To characterize the supperdifferential, first let Θ†(ν) ∈ argminθ∈Θ L̂(θ, ν) for the Lagrangian L̂
and define the constraint slack as

s(θ) =

[
1

N

N∑
n=1

ℓ
(
fθ(xn), yn

)
− ϵ

]
+

. (54)

Now by rewriting d̂(ν) as follows

d̂(ν) = min
θ∈Θ

L̂(θ, ν) = −max
θ∈Θ
−L̂(θ, ν), (55)

we argue that the conditions of Thm. D.2 are satisfied. To begin, we note that because L̂(θ, ·) is affine
in ν for all θ ∈ Θ and Θ is compact, we immediately meet conditions (i) and (iii) of Thm. D.2. Thus,
it suffices to show that L̂(·, ν) is continuous in θ for all ν ≥ 0.

To prove the continuity of d̂(ν), we will seek to show that the conditions of Lemma D.3 are satisfied
for d̂(ν). In this way, first recall that ℓ(·, y) is continuous for all y ∈ Y and fθ(x) is differentiable with
respect to θ and x. Therefore, it holds that ℓ(fθ(x), y) is continuous on Ω×Θ. Thus, property (a) in
Lemma D.3 holds. Furthermore, the fact that ∆ is compact and fixed with respect to θ establishes (b)
and (d). Finally, condition (c) holds by observing that the perturbation δ are finite dimensional and
that ℓ(fθ(x+ δ), y) is uniformly bounded.

Having established the continuity of d̂(ν), altogether we have shown that the conditions (i)–(iii) of
Thm. D.2 are satisfied. Thus, using the fact that d̂(ν) = minθ∈Θ L̂(θ, ν) = −maxθ∈Θ−L̂(θ, ν),
Thm. D.2 yields the following result:

∂d(µ) = conv

 ⋃
θ†∈Θ†(µ)

s
(
θ†) . (56)

To complete the proof, we assume toward contradiction that for all θ̂† ∈ Θ̂†(ν̂⋆) it holds that

1

N

N∑
n=1

ℓ
(
fθ̂†(xn), yn

)
> ϵ.

28

Then, from our discussion of the superdifferential, 0 /∈ ∂d(ν̂⋆), which contradicts the optimality of ν̂⋆.
Hence, there must be θ̂† ∈ Θ̂†(µ̂⋆) such that 1

N

∑N
n=1 ℓ

(
fθ̂†(xn), yn

)
≤ ϵ. For those parameters,

the uniform bound in Assumption 4.3, yields that, with probability 1− δ over the data,

E(x,y)∼D

[
ℓ
(
fθ̂†(x), y

)]
≤ 1

N

N∑
n=1

ℓ
(
fθ̂†(xn), yn

)
+ ζN (N) ≤ ϵ+ ζN (N). (57)

Combining (50), (51), and (57) using the union bound concludes the proof.

29

E Deriving the Langevin Monte Carlo sampler

In this appendix, we offer a more detailed derivation of the Langevin Monte Carlo sampler used in
Algorithm 1. Along the way, we present a brief, expository introduction to Hamiltonian Monte Carlo
to provide the reader with further context concerning the derivation of Algorithm 1. Much of this
material is based on the derivations provided in standard references, including [100, 101, 94]; we
refer the reader to these references for a more complete treatment of these topics.

In the setting of our paper, given a fixed data point (x, y) ∈ Ω, our goal in deriving the sampler is to
evaluate the following expectation:

Eδ∼λ(δ|x,y) [ℓ(fθ(x+ δ), y)] =

∫
∆

ℓ(fθ(x+ δ), y)λ(δ|x, y) (58)

where λ denotes the perturbation distribution defined by

λ(δ|x, y) = ℓ(fθ(x+ δ), y)∫
∆
ℓ(fθ(x+ δ), y)dδ

(59)

and where fθ ∈ F is a fixed classifier. Roughly speaking, this problem is challenging due to the
fact that we cannot compute the normalization constant in (59). Therefore, although the form of (59)
indicates that the amount of mass placed on δ ∈ ∆ will be proportional to the loss ℓ(fθ(x, y)) when
the data is perturbed by this perturbation δ, it’s unclear how we can sample from this distribution in
practice.

The first step in deriving the sampler is to introduce a momentum variable p to complement the space
of perturbations: δ → (δ,p). This transformation expands the d-dimensional perturbation space to
a 2d-dimensional phase space. Furthermore, this augmentation facilitates the lifting of λ onto the
so-called canonical distribution λ(δ,p) defined by

λ(δ,p) = λ(p|δ) · λ(δ), (60)

which takes support over the 2d-dimensional phase space. Notably, as we have artificially introduced
the momentum parameters p, the canonical density does not depend on a particular choice of
parameterization of (60), and we can therefore express it in terms of an invariant Hamiltonian
function H(δ,p) defined by

λ(δ,p) = exp {−H(δ,p)} , or equivalently H(δ,p) = − log λ(δ,p). (61)

Now, owing to the decomposition in (60), note that the Hamiltonian can be written as follows:

H(δ,p) = − logλ(p|δ)− logλ(δ) (62)
≡ K(p) + U(δ). (63)

where we have defined a kinetic energy term K(p) = − logλ(p|δ) as well as a potential energy
term U(δ) = − logλ(δ). By evolving the parameters (δ,p) in phase space according to Hamilton’s
equations

dδ

dt
= +

∂H

∂p
=

∂K

∂p
and

dp

dt
= −∂H

∂δ
= −∂U

∂δ
, (64)

we generate a trajectory δ(t) that walks along the so-called typical set of the perturbation distribution
λ(δ) from which we want to sample. Thus, to generate such a trajectory, we first choose a distribution
for the momentum parameters p and the integrate Hamilton’s equations over time.

As is common in the literature, the next step in deriving the sampler is to place a probabilistic prior
over p. In what follows, we describe the samplers that result from two different priors.

Gaussian prior. As is common in the literature, one can take the prior over p to be a normal. That is,
we can let p ∼ N (0, T Id) where T > 0 is a constant and Id is the d-dimensional identity matrix.
This in turn engenders a kinetic energy term K(δ,p) ∝ (2T)−1 ∥p∥22. Then, to (approximately)
integrate Hamilton’s equations, we employ the following leapfrog integration update scheme:

δ ← δ + η∇δU(δ) +
√

2ηTp where p ∼ N (0, T Id). (65)

30

Laplacian prior. Another common choice is to take the prior over p to be Laplacian so that
p ∼ Laplacian(0, T 2). A similar calculation to the one performed for the Gaussian prior reveals
that this implies that K(δ,p) ∝ 1

T ∥p∥1. Integrating Hamiltonian’s equations for this choice of the
kinetic energy function yields the following scheme:

δ ← δ + η sign
[
∇δU(δ) +

√
2ηTξ

]
where ξ ∼ Laplace(0, T). (66)

31

Table 3: Public implementations of baseline methods. In this table, we list the public implementa-
tions of popular adversarial training methods that we used to train baseline classifiers.

Algorithm Implementation
PGD https://github.com/MadryLab/robustness

TRADES https://github.com/yaodongyu/TRADES
MART https://github.com/YisenWang/MART

F Further experimental details

In this appendix, we provide further experimental details beyond those given in the main text. All
experiments were run across twelve NVIDIA RTX 5000 GPUs.

Training hyperparameters and data loading. We record the hyperparameters used for training
the neural networks in Section 6 on MNIST and CIFAR-10 below.

• MNIST. We train CNNs with two convolutional layers and two feed-forward layers. In
particular, we use the architecture from the MNIST PyTorch tutorial; the full architecture
is described in the following file: https://github.com/pytorch/examples/blob/
master/mnist/main.py. We use a batch size of 128. All adversarial perturbations are
defined over the perturbation set ∆ = {δ ∈ Rd : ∥δ∥∞ ≤ 0.3}. All models were trained
for 50 epochs with the Adadelta optimizer, and we used a learning rate of 1.0.

• CIFAR-10. We train ResNet-18 and ResNet-50 classifiers with SGD and an initial learning
rate of 0.01. We use 0.9 for the momentum, and we use weight decay with a penalty weight
of 3.5 × 10−3. We train all classifiers for 200 epochs, and we decay the learning rate
by a factor of 10 at epochs 150, 175, and 190. In general, this is longer than CIFAR-10
classifiers are generally trained. We increased the number of epochs to allow the dual
variable to converge before the first learning rate step. For completeness, we ran all baselines
using the more standard training scheme of 120 total epochs with learning rate decays after
epochs 55, 75, and 90; we noticed almost no difference in the final performance of the
baselines for this shorter schedule. We also apply random crops and random horizontal
flips to the training data. All adversarial perturbations are defined over the perturbation set
∆ = {δ ∈ Rd : ∥δ∥∞ ≤ 8/255}.

Baseline implementations. As mentioned in the main text, we reran all baselines by adapting
implementations released in prior work. In particular, our implementations of the baseline methods
are based on the public implementations recorded in Table 3. These methods are all implemented in
our repository, which is publicly available at the following link: https://github.com/arobey1/
advbench.

Baseline hyperparameters. Throughout the experiments section, we trained numerous baseline
classifiers to offer points of comparison to our methods. In this section, we list the hyperparameters
used for each of these methods:

• PGD. On MNIST, we used 7 projected gradient ascent steps with a step size of 0.1. On
CIFAR-10, unless otherwise stated, we used 10 projected gradient ascent steps with a step
size of 2/255. Note that in Table 7, we varied the number of ascent steps for PGD.

• CLP & ALP. The same step sizes and number of ascent steps were used for CLP and ALP
as we reported above for PGD. In line with [42], we used a trade-off weight of λ = 1.0 for
both methods on MNIST and CIFAR-10.

• TRADES. The same step sizes and number of ascent steps were used for TRADES as we
reported above for PGD. Following [53], we used a trade-of weight of β = 1/λ = 6.0 for
both datasets.

• MART. The same step sizes and number of ascent steps were used for MART as we reported
above for PGD. Following [54], we used a trade-off weight of λ = 5.0 for both datasets.

32

https://github.com/MadryLab/robustness
https://github.com/yaodongyu/TRADES
https://github.com/YisenWang/MART
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://github.com/arobey1/advbench
https://github.com/arobey1/advbench

DALE hyperparameters. Unlike methods many of the baselines described above, DALE does not
require the user to manually tune a weight which controls the trade-off between multiple objectives.
Instead, we use a primal-dual scheme to dynamically and adaptively update the weight on the clean
objective. Below, we provide some discussion of the hyperparameters inherent to our primal-dual
approach.

• Margin ρ. For MNIST, we found that a margin of 0.1 yielded strong performance.
• Dual step size ηd. We found that the dual step size should be chosen to

be significantly smaller than the primal step size. By sweeping over ηd ∈
{0.1, 0.05, 0.01, 0.005, 0.005, 0.0001, 0.0005}, we found that a dual step size of ηd = 0.001
worked well in practice for CIFAR-10.

• Primal step size ηp. As described at the beginning of this appendix, we used ηp = 1.0 for
MNIST and ηp = 0.01 for CIFAR-10.

• Temperature T. In practice, we found that the temperature should be chosen so
that the noise coefficient

√
2ηT is relatively small. By sweeping over

√
2ηT ∈

{10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, we found that robust performance began to de-
grade for

√
2ηT > 10−4. For MNIST, we found that

√
2ηT = 10−3 worked well; on

CIFAR-10, we used
√
2ηT = 10−4.

33

Table 4: Accuracy and computational complexity on MNIST. In this table, we report the test
accuracy and computational complexity of our method and various state-of-the-art baselines on
MNIST. In particular, all methods are trained using a four-layer CNN architecture, and we use a
perturbation set of ∆ = {δ ∈ Rd : ∥δ∥∞ ≤ 0.3}. Our results are highlighted in gray.

Test accuracy (%) Performance (sec.)

Algorithm ρ Clean FGSM PGD10 Batch Epoch
ERM - 99.3 14.3 1.46 0.007 3.47

FGSM - 98.3 98.1 13.0 0.011 5.48
PGD - 98.1 95.5 93.1 0.039 18.2
CLP - 98.0 95.4 92.2 0.047 21.9
ALP - 98.1 95.5 92.5 0.048 22.0

TRADES - 98.9 96.5 94.0 0.055 25.8
MART - 98.9 96.1 93.5 0.043 20.4

DALE 1.0 99.1 97.7 94.5 0.053 25.4

G Further experiments

G.1 MNIST

We first consider the MNIST dataset [102]. All models use a four-layer CNN architecture trained
using the Adadelta optimizer [103]. To evaluate the robust performance of trained models, we report
the test accuracy with respect to two independent adversaries. In particular, we use a 1-step and a
10-step PGD adversary to evaluate robust performance; we denote these adversaries by FGSM and
PGD10 respectively.

A summary of the performance of DALE and various state-of-the-art baselines is shown in Table 4.
Notice that DALE marginally outperforms each of the baselines in robust accuracy, while maintaining
a clean accuracy that is similar to that of ERM. This indicates that on MNIST, DALE is able to reach
high robust accuracies without trading off in nominal performance. This table also shows a runtime
analysis of each of the methods. Notably, DALE and TRADES have similar running times, which is
likely due to the fact in our implementation of DALE, we use the same KL-divergence loss to search
for challenging perturbations.

G.2 CIFAR-10

We next consider the CIFAR10 dataset [104]. Throughout this section, we use the ResNet-18
architecture trained using SGD, and we consider adversaries which can can generate perturbations δ
lying within the perturbation set ∆ = {δ ∈ Rd : ∥δ∥∞ ≤ 8/255}. To this end, we use evaluate the
robust performance of trained models using FGSM and PGD20 adversaries. For all of the classifiers
trained using DALE, we use the KL-divergence loss for ℓpert and ℓro, and we use the cross-entropy
loss for ℓnom.

In Table 5, we show a summary of our results on CIFAR-10. One notable aspect of our results is
that DALE trained with ρ = 0.8 is the only model to achieve greater than 85% clean accuracy and
greater than 50% robust accuracy. This indicates that DALE is more successfully able to mitigate the
trade-off between robustness and nominal performance. And indeed, the baselines that have relatively
high robust accuracy (TRADES and MART) suffer a significant drop in clean accuracy relative to
DALE (-4.3% for TRADES and -6.1% for MART when compared with DALE trained with ρ = 0.8).
Table 5 also shows a comparison of the computation time for each of the methods. These results
indicate that the computational complexity of DALE is on a par with TRADES.

A closer look at the trade-off between accuracy and robustness. We next study the trade-off
between robustness and nominal performance of DALE for two separate architectures: ResNet-18
and ResNet-50. In our formulation, the parameter ρ explicitly captures this trade-off in the sense that
a smaller ρ will require a higher level of nominal performance, which in turn reduces the size of the
feasible set. This reduction has the effect of limiting the robust performance of the classifier.

34

Table 5: Accuracy and computational complexity on CIFAR-10. In this table, we report the
test accuracy and computational complexity of our method and various state-of-the-art baselines
on CIFAR-10. In particular, all methods are trained using a ResNet-18 architecture, and we use a
perturbation set of ∆ = {δ ∈ Rd : ∥δ∥∞ ≤ 8/255}. Our results are highlighted in gray. Of note is
the fact that our method advances the state-of-the-art both in adversarial and in clean accuracy.

Test accuracy (%) Performance (sec.)

Algorithm ρ Clean FGSM PGD20 Batch Epoch
ERM - 94.0 0.01 0.01 0.073 28.1

FGSM - 72.6 49.7 40.7 0.135 53.0
PGD - 83.8 53.7 48.1 0.735 287.9
CLP - 79.8 53.9 48.4 0.872 340.5
ALP - 75.9 55.0 48.8 0.873 341.2

TRADES - 80.7 55.2 49.6 1.081 422.0
MART - 78.9 55.6 49.8 0.805 314.1

DALE 0.5 86.0 54.4 48.4 1.097 421.4
DALE 0.8 85.0 55.4 50.1 1.098 422.6
DALE 1.1 82.1 55.2 51.7 1.097 421.0

Table 6: Evaluating the trade-off between robustness and accuracy. To evaluate the trade-off
between robustness and nominal performance, we train ResNet-18 and ResNet-50 models on CIFAR-
10 for different trade-off parameters ρ. Notice that across both architectures, the impact of increasing
ρ is to simultaneously decrease clean performance and increase robust performance.

ResNet-18 Resnet-50

ρ Clean FGSM PGD20 Clean FGSM PGD20

0.1 93.0 35.6 1.50 93.8 23.9 16.7
0.2 92.4 43.6 11.9 93.7 20.5 16.3
0.3 88.7 42.4 31.2 90.1 43.0 24.8
0.4 86.4 50.9 44.3 86.2 50.5 38.4
0.5 86.0 54.4 48.4 86.5 50.1 42.6
0.6 85.6 54.6 49.0 86.1 57.7 52.0
0.7 85.3 56.2 50.3 84.7 57.0 51.4
0.8 83.8 55.4 50.1 84.3 56.4 50.8
0.9 83.8 56.0 51.3 83.9 55.9 51.2
1.0 82.2 54.7 51.2 82.1 54.2 50.1
1.1 82.1 55.2 51.7 80.4 52.3 49.9

In Table 6, we illustrate this trade-off by varying ρ from 0.1 to 1.1. For both architectures, the
trade-off is clearly reflected in the fact that increasing the margin ρ has the simultaneous effect of
decreasing the clean accuracy and increasing the robust accuracy for both adversaries. We highlight
that for the ResNet-18 architecture, when the constraint is enforced with a relatively large margin
(e.g., ρ ≥ 1.0), DALE achieves nearly 52% robust accuracy against PGD20, which is nearly two
percentage points higher than any of the baseline classifiers in Table 1. On the other hand, when the
margin is relatively small (e.g., ρ ≤ 0.2), there is almost no trade-off in the clean accuracy relative to
ERM in Table 1, although as a result of this small margin, the robust performance takes a significant
hit. Interestingly, with regard to the classifiers trained using ResNet-50, it seems to be the case that
the margin ρ corresponding to the largest robust accuracy is different than the peak for ResNet-18.

Impact of the number of Langevin iterations. In Table 7, we study the impact of varying the
number of Langevin iterations L. For each row in this table, we train a ResNet-18 classifier with
ρ = 1.0; as before, we use the KL-divergence loss for ℓpert and ℓro, and we use the cross-entropy loss
for ℓnom. As one would expect, when L is small, the trained classifiers have relatively high clean

35

Table 7: Impact of the number of ascent steps. In this table, we show the impact of varying the
number of Langevin steps used by DALE in lines 4-7 of Algorithm 1. To offer a point of comparison,
we also show the impact of varying the number of ascent steps for PGD.

PGDL DALE

L Clean FGSM PGD20 Clean FGSM PGD20

1 92.9 52.3 23.7 87.2 46.6 39.0
2 90.9 49.9 36.6 85.4 53.6 47.1
3 87.7 50.6 41.5 84.0 55.0 50.2
4 84.5 52.2 43.3 82.8 55.0 50.7
5 83.6 53.5 47.9 82.5 54.9 50.7
10 83.8 53.7 48.1 82.2 54.7 51.2
15 82.9 54.0 48.0 81.0 54.7 51.0
20 83.0 54.4 48.3 81.0 54.7 51.4

accuracy and relatively low robust accuracy. To this end, increasing L has the simultaneous effect of
decreasing clean accuracy and increasing robust accuracy.

To offer a point of comparison, we also show the analogous results for PGD run using the cross-
entropy loss, where L is taken to be the number of steps of projected gradient ascent. As each
Langevin iteration of DALE effectively amounts to a step of projected gradient ascent with noise, we
expect that the impact of varying L in DALE will be analogous to the impact of varying the number
of training-time PGD steps. And indeed, as we increase L, the robust performance of PGD improves
and the clean performance decreases.

36

H On the convergence of Algorithm 1

Observe that Algorithm 1 is a primal-dual algorithm [105] in which the sampling procedure in steps 3–
7 is used to obtain an estimate of the stochastic gradient of the primal problem. When θ 7→ ℓ

(
fθ(·), ·

)
is convex (e.g., for linear, kernel, or logistic models), it is well-known that SGD converges almost
surely as long as this gradient estimate is unbiased [106]. As is typical with LMC, we omitted the
Metropolis-Hastings acceptance step in Algorithm 1 that would guarantee unbiased estimates [94].
Still, when g is log-concave (e.g., the softmax output of a CNN), this procedure approaches the true
distribution in total variation norm, which implies that its bias can be made arbitrarily small [81].
This is enough to guarantee almost sure convergence to a neighborhood of the optimum [107, 108].

The convergence properties of primal-dual methods are less well understood when θ 7→ ℓ
(
fθ(·), ·

)
is

non-convex. Nevertheless, a good estimate of the primal minimizer is enough to obtain an approximate
gradient for dual ascent [59, 60]. There is overwhelming empirical and theoretical evidence that this
is the case for overparametrized models, such as CNNs, trained using gradient descent [35–39]. We
can then run the primal (step 8) and dual (step 10) updates at different timescales so as to obtain a
good estimate of the primal minimizer before performing dual ascent.

37

I Further related work

Adversarial robustness. As described in Section 1, it is well-know that state-of-the-art classifiers
are susceptible to adversarial attacks [11–17, 26]. Toward addressing this challenging, a rapidly-
growing body of work has provided attack algorithms to generate data perturbations that fool
classifiers and defense algorithms which are designed to train robust classifiers to be robust against
these perturbations. However, despite the myriad of work in this field and significant improvements
on a number of well-known benchmarks [109–114, 27–31], there are still many open questions on
when adversarial learning is even possible and in what sense [67–71]. Unlike the majority of these
works, we exploit duality to derive a principled primal-dual style algorithm from first principles for
the adversarial robustness setting.

Constrained optimization. Also related are works that seek to enforce constraints on learning
problems [115]. While several heuristic algorithms exist for this setting, many focus on restricted
classes of constraints [116–120] and those that can handle more general constraints come at the
cost of added computation complexity [121, 122]. Moreover, each of these works seeks to enforce
constraints on a particular parameterization for the learning problem (such as directly on the weights
of a neural network) rather than on the underlying statistical problem, as we do in this paper. In
this way, our work is more related to the primal-dual style algorithms which often arise in convex
optimization [105, 77].

38

