
A Loss Derivation

In this section we provide a more detailed derivation of the proposed loss function (Equation 17).

L
PD-EnD2

= KL[p(⇡|x,�)kp(⇡|�̂+1)]

=� Ep(⇡|x,�)

⇥
ln p(⇡|�̂+1)

⇤
+ Ep(⇡|x,�)

⇥
ln p(⇡|x,�)

⇤

=� Ep(⇡|x,�)

⇥ KX

k=1

�̂k ln⇡k
⇤
+ KL[p(⇡|x,�)kp(⇡|1)] + Z

=�Ep(⇡|x,�)

⇥ KX

k=1

⇡̂k ln⇡k
⇤

| {z }
Reconstruction term

+
KL[p(⇡|x,�)kp(⇡|1)]

�̂0| {z }
Prior

(18)

We make use of the fact that the negative entropy of the Dirichlet distribution is equivalent to the
reverse KL-divergence to a flat Dirichlet, up to an additive constant which doesn’t depend on the
model. Additionally, we can see that by adding +1 to the target concentration parameters �̂, we are
now minimizing an upper bound to the KL-divergence between the mean and the ensemble. Then we
divide through by �̂0 and drop the additive constant. This yields a loss which is remarkable similar to
an ELBO. Note that the parameter �̂0 weights the reconstruction term, which forces the model to
produce a sharper Dirichlet [7], and the KL-divergence to a flat Dirichlet, which balances the effect
of the reconstruction term.

B Synthetic Experiments

In addition to the first-order gradient analysis conducted in section 3, we ran an experiment on a
the synthetic spiral dataset used in the original Ensemble Distribution Distillation paper [13]. We
considered data with 3, 6, 10 and 20 classes to demonstrate at which point standard EnD2 begins
degradation. Identical hyper-parameters and models were used for both EnD2 and PD-EnD2. The
spiral dataset is such that the variation in ensemble precision across different input locations can be
enormous: rare points right on the arms of the spiral can have several orders of magnitude larger
precisions than in other locations. This leads to numerical instabilities and NaN occasionally in
PD-EnD2 due to division by precision. We resolved this by using a single LayerNorm layer just
before the final output layer. Using LayerNorm (or similar) for standard EnD2 via Dirichlet NLL
prevented convergence altogether and was not used. We suspect that a more numerically stable
implementation of the loss would not require LayerNorm. Note that adding LayerNorm did not
improve the results for PD-EnD2: it only prevented any training run from aborting due to NaNs in
the loss.

The results in Table 5 show that on 3 classes both EnD2 and PD-EnD2 can match both the ensemble
and the single model in terms of error. As the number of classes is increased, the PD-EnD2 consistently
yields lower error rates. In contrast, standard EnD2 displays growing error rates and failure of
convergence for 20 classes. Note, we explicitly did not use the heuristic temperature tricks from [13]
in order to compare pure forms of the Dirichlet Likelihood of PD-EnD2 reverse KL objectives. The
results generally agree with the analysis presented in Section 3, where it is clear that even for 10
classes for reverse KL loss ⇢ is larger than for the Dirichlet-NLL loss.

Table 5: Error rates (%) on heldout data for synthetic data with 3–20 classes

Model 3 6 10 20

Single 1.48 1.93 0.99 0.75
EnD2 1.98 2.38 4.92 -
PD-EnD2 1.22 1.57 0.61 0.52
Ensemble 1.1 1.6 0.5 0.5

Additionally, we examined the models’ median precisions (↵0 and compared to the ensemble’s
approximate precision obtained via Stirling’s approximation. We used median over the heldout
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(a) Ensemble 3 Classes (b) EnD2 3 Classes (c) PD-EnD2 3 Classes

(d) Ensemble 10 Classes (e) EnD2 10 Classes (f) PD-EnD2 10 Classes

Figure 4: Total Uncertainty heat maps for models with 3 and 10 classes for Ensemble, EnD2 and
PD-EnD2 models.

dataset as the presence of rare inputs points right at the center of the spiral arms, whose precisions
were orders of magnitude larger, greatly affected the mean. The results show that standard EnD2

yields low precisions which decrease as the number of classes grows, while PD-EnD2 consistently
yields precisions comparable to the ensemble.

Table 6: Precisions on heldout data for synthetic data with 3-20 classes

Model 3 6 10 20

EnD2 278.7 13.6 11.75 -
PD-EnD2 4413.5 2791.2 2691.5 3985.2
Ensemble 14350.7 10275.9 8859.8 6049.4

Finally, we examined the behaviour of the uncertainty estimates produced by the ensemble and the
distribution-distilled models using heat maps of total and knowledge uncertainty values across a fine
grid of inputs. These results are presented in Figures 4 and 5, which depict the total and knowledge
uncertainty, respectively, for the original ensemble and models distribution distilled via EnD2 and
PD-EnD2. Clearly all models behave similarly where there are 3 classes, but EnD2 yields poor
behaviour and doesn’t match the ensemble for 10 classes. These results generally agree with the plots
of ⇢ versus the number of classes, which show that for standard EnD2 (Dirichet NLL) there is an
immediate drop in ⇢, while for the proposed approach ⇢ remains high.

C Sequence Ensemble Distribution Distillation

In this section we describe how to generalize distribution distillation to autoregressive models,
yielding Sequence Ensemble Distributions Distillation (SEnD2). Much of this section is a direct
adaption of [17] to Prior Network models.

Autoregressive Prior Networks Unlike ensembles of classification models, which can be interpreted
as samples from an implicit conditional distribution over discrete output distributions, ensembles
of autoregressive models can be interpreted as samples of prefix trees sampled from a distribu-
tion over prefix trees conditioned on the input x. Unfortunately, it is not possible to explicitly
parametrize such a distribution in practice. However, it was shown in [17], ensemble-combination for
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(a) Ensemble 3 Classes (b) EnD2 3 Classes (c) PD-EnD2 3 Classes

(d) Ensemble 10 Classes (e) EnD2 10 Classes (f) PD-EnD2 10 Classes

Figure 5: Knowledge Uncertainty heat maps for models with 3 and 10 classes for Ensemble, EnD2

and PD-EnD2 models.

autoregressive models should be done as a token-level Bayesian model average (BMA). Ensembles
of auto-regressive models can therefore be interpreted as samples from a distribution over output
distributions conditioned on the input and the context.
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Let’s examine how to emulate an ensemble of auto-regressive models using Prior Networks. Consider
an autoregressive Prior Network (APN) p(⇡l|y<l,x;�) which yields a distribution over output
distributions ⇡l = [P(yl = !1), · · · , P(yl = !K)]T at every timestep:
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Given this model, the Token-level BMA can be straightforwardly emulated as follows:
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We obtain predictions by running beam search decoding with a beam of size S.

Measures of Uncertainty Let’s examine how given this model we can obtain measures of sequence-
level total and knowledge uncertainty. Total Uncertainty will be given by the sequence-level entropy:
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Here, we use the chain-rule of entropy to decompose the sequence level entropy into a sum of
expected token-level entropies. For an Autoregressive Prior Network, we will estimate this as follows:
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Here we combine information from multiple beam search hypotheses by averaging across all hy-
potheses in the beam, as done in [17].

To obtain estimates of knowledge uncertainty, we will consider sequence level measures of ensemble
diversity [17]. We will consider mutual information I, expected pairwise KL-divergence K and
reverse mutual information M. First, we will express sequence-level mutual information as a sum of
token-level mutual information, averaged across all hypotheses within a beam:
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Note, that this is an asymptotically inexact approximation, as it is intractable to compute a true
estimate of sequence-level mutual information, as discussed in [17]. We can obtain an approximation
for sequence level EPKL with similar properties:
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Finally, we can compute sequence level reverse mutual information, which we express as the sum of
token-level revese mutual information. It is important to highlight that for this measure we obtain an
asymptotically exact approximation which is partciularly useful for strucutred tasks [17]:
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PD-SEnD2 training criterion We can extend the proposed Proxy-Dirichlet reverse-KL-divergence
training criterion to sequence distribution distillation by constructing a Proxy Dirichlet target with
parameters ⇡̂l and �(l)

0 for each time-step l. Then, the loss is trivially an expectation over all
time-steps:
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D Ensemble Distribution Distillation for Speech Recognition

Table 7 presents the predictive performance and calibration, in terms of NLL, of ASR models on
two additional datasets: LibriSpeech test-other and the AMI meeting transcription corpus [38]. The
results show that PD-SEnD2 doesn’t quite reach the same performance as Sequence Distillation or
the ensemble, but isn’t far behind and also has the second best NLL performance consistently across
all datasets. These results suggest that the model is underfit and alternative training setups should be
considered, which we leave to be explored in future work.

E Technical Details

To increase the training stability of our method, in all experiments we convert the Dirichlet distribution
parameters to a higher numerical precision of 64 bits before computing the loss. This conversion
allows the model to express a higher range of possible values, which is often necessary for accurate
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Table 7: Predictive performance results for speech recognition in terms of WER and NLL.

Model LTC LTO AMI

WER NLL WER NLL WER NLL

Single 6.1 0.35 15.2 0.86 56.8 5.71
Ensemble 4.2 0.20 11.3 0.48 50.4 4.05
SEnD 6.2 0.36 15.5 0.90 56.0 6.06
PD-SEnD2 7.1 0.25 17.0 0.68 54.8 3.85

Table 8: Prediction and calibration results for image classification. MIMO with M = 2 was used.

ImageNet-val ImageNet-A ImageNet-C ImageNet-R

ACC NLL ECE MCE Brier ACC NLL ECE MCE Brier ACC NLL ECE MCE Brier ACC NLL ECE MCE Brier

Single 75.9±0.1 0.96 4.7 9.1 0.34 4.4±0.2 6.49 51.2 90.9 1.34 39.1±0.7 3.43 12.0 24.8 0.76 35.0±0.2 4.02 20.9 34.4 0.84
MIMO 76.8±NA 0.91 2.7 4.7 0.32 5.2±NA 5.90 47.4 90.0 1.29 41.3±0.1 3.05 8.1 18.2 0.72 37.0±0.3 3.67 17.6 27.7 0.79
EnD 77.0±0.1 0.89 1.6 3.8 0.32 3.9±0.1 5.90 46.6 90.9 1.29 40.6±0.4 3.09 5.8 14.3 0.72 36.8±0.2 3.66 16.1 26.2 0.79
EnD2 77.1±0.1 0.89 1.6 4.5 0.32 4.0±0.2 5.50 42.8 90.2 1.25 40.6±0.5 3.11 4.6 12.3 0.72 36.9±0.2 3.39 11.7 20.8 0.77
Ensemble 79.0±NA 0.81 2.4 6.7 0.30 3.9±NA 5.59 42.0 88.9 1.23 43.5±NA 2.90 4.6 9.7 0.69 38.8±NA 3.48 9.7 15.0 0.75

replication of the ensemble’s behavior. In addition, for increased numerical stability we also clip
all ↵k, limiting their maximal value to ↵max/K, where ↵max is the highest possible value of the
data type used for parameters. This procedure ensures that the value ↵0 does not overflow during
training. The issue of parameter overflow arises rather sporadically at early stages of training due to
the stochasticity of the optimization process: the model predicts high ↵k for one class of one example
in the batch, while all other outputs have significantly lower magnitudes.

Also, in practice we do not generate the transfer dataset due to the large output space size and the
number of training samples, making it quite hard to keep such a dataset on a regular storage device.
Instead, we load the ensemble into memory during training and obtain output distributions of its
members for each training batch in an online manner.

F Additional results on ImageNet and WMT’17 En-De

In this section we provide additional results for ImageNet and WMT’17 En-De. We also conduct
OOD detection using EPKL and RMI as the measures of uncertainty. The results generally confirm
the trends observed in the main body of the paper and show that all measures of uncertainty generally
behave similarly.

Image Classification
As an additional baseline, we have implemented a version of MIMO [25] on ImageNet. To the best
of our ability, we recreated the exact setup used in the original work with the differences that we ran
it in PyTorch and on GPUs, rather than TPUs. Furthermore, even in the repository, the authors state
that their code is TPU-optimized and offer no guarantees for GPUs. Our ImageNet MIMO model has
2 outputs, as was the case in the MIMO paper [25].

The table 8 shows an expanded set of results which includes the MIMO baseline. Note that relative to
the MIMO paper ECE is reported as %, not as a fraction. The results demonstrate that on in-domain
data (ImageNet-val) MIMO’s predictive performance and calibrations are worse than the ensemble
and distilled models. However, on shifted data (ImageNet-A/C/R) it has consistently better predictive
performance than the distilled models, but overall worse in calibration performance relative to the
ensemble and distilled models. This suggests that the MIMO training procedure makes models more
robust to distributional shift, but doesn’t significantly improve calibration. However, the differences
between MIMO, the distilled models (EnD / PD-EnD2) and the ensemble are smaller than the
difference between them and a single model.

In addition to assessing predictive quality and calibration of MIMO, we also assess how well it
performs on the task of OOD detection. Here we provide results on discriminating between ImageNet
Val and ImageNet A/C/R using measures of Total Uncertainty (Entropy of predictive posterior) and
Knowledge Uncertainty (Mutual Information). The results show that MIMO performs worse than the
ensemble and EnD in all cases except for ImageNet-R using knowledge uncertainty, where it gives
the best overall performance. These results show that MIMO is certainly comparable to distribution
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distillation, but PD-EnD tends to yield better performance. Note, to the best of our knowledge, these
are the first OOD detection results using MIMO — the original paper did not examine this aspect.

Table 9: Out-of-distribution detection results for image classification in terms of % ROC-AUC.

ImageNet-O ImageNet-A ImageNet-C ImageNet-R

Total Knowledge Total Knowledge Total Knowledge Total Knowledge
H K I M H K I M H K I M H K I M

Single 50.7±0.3 - - - 85.8±0.1 - - - 79.9±0.4 - - - 83.0±0.2 - - -
MIMO 49.8 58.3 57.92 58.3 86.4 85.3 85.13 85.3 79.1 81.3 81.26 81.3 83.4 87.0 86.99 87.0
EnD 48.8±0.6 - - - 87.2±0.1 - - - 80.8±0.3 - - - 83.9±0.2 - - -
PD-EnD2 52.1±0.2 53.2±0.3 53.2±0.3 53.1±0.3 86.8±0.0 84.6±0.1 84.7±0.1 84.4±0.1 80.2±0.3 77.1±0.4 77.4±0.4 76.9±0.4 83.7±0.1 81.7±0.1 81.9±0.1 81.5±0.1

Ensemble 54.6 62.7 61.2 62.7 88.8 86.7 87.2 86.7 82.0 77.5 78.1 77.5 86.1 84.1 84.5 84.1
Proxy 54.6 62.7 56.2 62.9 88.8 86.7 89.0 86.5 82.0 77.5 82.1 77.3 86.1 84.1 86.3 84.0

These results show that MIMO is a comparable model in terms of quality, though computational
cost of inference is increased somewhat. An advantage of MIMO is that you do not need to train an
ensemble first and the do distillation — the cost of training is therefore lower. The primary limitation
of MIMO lies in how to generalize it to structured prediction tasks.

Machine Translation
Finaly, we also provide a full set of OOD detection results for NMT using additional measures of
uncertainty, which generally confirm the trends from section 5.

Table 10: Out-of-distribution detection results for machine translation in terms of % ROC-AUC.

Permuted Speech German French

Total Knowledge Total Knowledge Total Knowledge Total Knowledge
H I K M H I K M H I K M H I K M

Single 80.7±1.5 - - - 73.7±1.2 - - - 32.8±2.8 - - - 27.1±6.3 - - -
EnD 79.5±1.1 - - - 75.9±0.6 - - - 35.4±1.6 - - - 15.6±3.2 - - -
EnD2 78.3±1.6 96.9±0.2 96.9±0.3 97.1±0.3 77.0±0.3 76.3±0.2 80.4±0.1 78.5±0.2 38.3±1.6 71.4±0.6 67.6±1.1 70.9±0.7 15.9±3.0 63.8±3.5 51.9±4.1 60.1±3.6
Ensemble 83.7 97.2 97.4 97.4 67.8 74.4 74.0 73.7 39.5 76.3 80.2 82.4 25.0 63.6 69.9 73.6
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