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Abstract

In practical instances of nonconvex matrix factorization, the rank of the true solution
r⋆ is often unknown, so the rank r of the model can be overspecified as r > r⋆.
This over-parameterized regime of matrix factorization significantly slows down the
convergence of local search algorithms, from a linear rate with r = r⋆ to a sublinear
rate when r > r⋆. We propose an inexpensive preconditioner for the matrix
sensing variant of nonconvex matrix factorization that restores the convergence
rate of gradient descent back to linear, even in the over-parameterized case, while
also making it agnostic to possible ill-conditioning in the ground truth. Classical
gradient descent in a neighborhood of the solution slows down due to the need for
the model matrix factor to become singular. Our key result is that this singularity
can be corrected by ℓ2 regularization with a specific range of values for the damping
parameter. In fact, a good damping parameter can be inexpensively estimated
from the current iterate. The resulting algorithm, which we call preconditioned
gradient descent or PrecGD, is stable under noise, and converges linearly to an
information theoretically optimal error bound. Our numerical experiments find that
PrecGD works equally well in restoring the linear convergence of other variants of
nonconvex matrix factorization in the over-parameterized regime.

1 Introduction

Numerous problems in machine learning can be reduced to the matrix factorization problem of
recovering a low-rank positive semidefinite matrix M⋆ ⪰ 0, given a small number of potentially
noisy observations [1–7]. In every case, the most common approach is to formulate an n×n candidate
matrix M = XXT in factored form, and to minimize a nonconvex empirical loss f(X) over its n× r
low-rank factor X . But in most real applications of nonconvex matrix factorization, the rank of the
ground truth r⋆ = rank(M⋆) is unknown. It is reasonable to choose the rank r of the model XXT

conservatively, setting it to be potentially larger than r⋆, given that the ground truth can be exactly
recovered so long as r ≥ r⋆. In practice, this will often lead to an over-parameterized regime, in
which r > r⋆, and we have specified more degrees of freedom in our model XXT than exists in the
underlying ground truth M⋆.

Zhuo et al. [8] recently pointed out that nonconvex matrix factorization becomes substantially less
efficient in the over-parameterized regime. For the prototypical instance of matrix factorization
known as matrix sensing (see Section 3 below for details) it is well-known that, if r = r⋆, then
(classic) gradient descent or GD

Xk+1 = Xk − α∇f(Xk) (GD)
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converges at a linear rate, to an ϵ-accurate iterate in O(κ log(1/ϵ)) iterations, where κ =
λ1(M

⋆)/λr∗(M
⋆) is the condition number of the ground truth [9, 10]. But in the case that r > r⋆,

Zhuo et al. [8] proved that gradient descent slows down to a sublinear convergence rate, now requir-
ing poly(1/ϵ) iterations to yield a comparable ϵ-accurate solution. This is a dramatic, exponential
slow-down: whereas 10 digits of accuracy can be expected in a just few hundred iterations when
r = r⋆, tens of thousands of iterations might produce just 1-2 accurate digits once r > r⋆. The
slow-down occurs even if r is just off by one, as in r = r⋆ + 1.

It is helpful to understand this pheonomenon by viewing over-parameterization as a special, extreme
case of ill-conditioning, where the condition number of the ground truth, κ, is taken to infinity. In
this limit, the classic linear rate O(κ log(1/ϵ)) breaks down, and in reality, the convergence rate
deterioriates to sublinear.

In this paper, we present an inexpensive preconditioner for gradient descent. The resulting algorithm,
which we call PrecGD, corrects for both ill-conditioning and over-parameterization at the same time,
without viewing them as distinct concepts. We prove, for the matrix sensing variant of nonconvex
matrix factorization, that the preconditioner restores the convergence rate of gradient descent back to
linear, even in the over-parameterized case, while also making it agnostic to possible ill-conditioning
in the ground truth. Moreover, PrecGD maintains a similar per-iteration cost to regular gradient
descent, is stable under noise, and converges linearly to an information theoretically optimal error
bound.

We also perform numerical experiments on other variants of nonconvex matrix factorization, with
different choices of the empirical loss function f . In particular, we consider different ℓp norms with
1 ≤ p < 2, in order to gauge the effectiveness of PrecGD for increasingly nonsmooth loss functions.
Our numerical experiments find that, if regular gradient descent is capable of converging quickly
when the rank is known r = r⋆, then PrecGD restores this rapid converging behavior when r > r⋆.
PrecGD is able to overcome ill-conditioning in the ground truth, and converge reliably without
exhibiting sporadic behavior.

2 Proposed Algorithm: Preconditioned Gradient Descent

Our preconditioner is inspired by a recent work of Tong et al. [11] on matrix sensing with an ill-
conditioned ground truth M⋆. Over-parameterization can be viewed as the limit of this regime, in
which λr(M

⋆), the r-th largest eigenvalue of M⋆, is allowed to approach all the way to zero. For
finite but potentially very small values of λr(M

⋆) > 0, Tong et al. [11] suggests the following
iterations, which they named scaled gradient descent or ScaledGD:

Xk+1 = Xk − α∇f(Xk)(X
T
k Xk)

−1. (ScaledGD)

They prove that the scaling allows the iteration to make a large, constant amount of progress at every
iteration, independent of the value of λr(M

⋆) > 0. However, applying this same scheme to the
over-parameterized case with λr(M

⋆) = 0 results in an inconsistent, sporadic behavior.

The issues encountered by both regular GD and ScaledGD with over-parameterization r > r⋆

can be explained by the fact that our iterate Xk must necessarily become singular as our rank-r
model XkX

T
k converges towards the rank-r⋆ ground truth M⋆. For GD, this singularity causes the

per-iteration progress itself to decay, so that more and more iterations are required for each fixed
amount of progress. ScaledGD corrects for this decay in per-iteration progress by suitably rescaling
the search direction. However, the rescaling itself requires inverting a near-singular matrix, which
causes algorithm to take on sporadic values.

A classical remedy to issues posed by singular matrices is ℓ2 regularization, in which the singular
matrix is made “less singular” by adding a small identity perturbation. Applying this idea to ScaledGD
yields the following iterations

Xk+1 = Xk − α∇f(Xk)(X
T
k Xk + ηkIr)

−1, (PrecGD)

where ηk ≥ 0 is the damping parameter specific to the k-th iteration. There are several interpretations
to this scheme, but the most helpful is to view η as a parameter that allows us to interpolate between
ScaledGD (with η = 0) and regular GD (in the limit η → ∞). In this paper, we prove for matrix
sensing that, if the k-th damping parameter ηk is chosen within a constant factor of the error

Clb∥XkX
T
k −M⋆∥F ≤ ηk ≤ Cub∥XkX

T
k −M⋆∥F , where Clb, Cub > 0 are abs. const. (1)
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Figure 1: PrecGD converges linearly in the overparameterized regime. Convergence of regular
gradient descent (GD), ScaledGD and PrecGD for noiseless matrix sensing (with data taken from [12,
13]) from the same initial points and using the same learning rate α = 2× 10−2. (Left r = r∗) Set
n = 4 and r∗ = r = 2. All three methods convergence at a linear rate, though GD converges at
a slower rate due to ill-conditioning in the ground truth. (Right r > r∗) With n = 4, r = 4 and
r∗ = 2, over-parameterization causes gradient descent to slow down to a sublinear rate. ScaledGD
also behaves sporadically. Only PrecGD converges linearly to the ground truth.

then the resulting iterations are guaranteed to converge linearly, at a rate that is independent of both
over-parameterization and ill-conditioning in the ground truth M⋆. With noisy measurements, setting
ηk to satisfy (1) will allow the iterations to converge to an error bound that is well-known to be
minimax optimal up to logarithmic factors [14].

We refer to the resulting iterations (with a properly chosen ηk) as preconditioned gradient descent, or
PrecGD for short. For matrix sensing with noiseless measurements, an optimal ηk that satisfies the
condition (1) is obtained for free by setting ηk =

√
f(Xk). In the case of noisy measurements, we

show that a good choice of ηk is available based on an approximation of the noise variance.

3 Background and Related Work

Notations. We use ∥ · ∥F to denote the Frobenius norm of a matrix and ⟨·, ·⟩ is the corresponding
inner product. We use ≳ to denote an inequality that hides a constant factor. The big-O notation
Õ hides logarithimic factors. The gradient of the objective is denoted by ∇f(X) ∈ Rn×r. The
eigenvalues are assumed to be in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λr.

The symmetric, linear variant of matrix factorization known as matrix sensing aims to recover a
positive semidefinite, rank-r⋆ ground truth matrix M⋆, from a small number m of possibly noisy
measurements

y = A(M⋆) + ϵ, where A(M⋆) = [⟨A1,M
⋆⟩, ⟨A2,M

⋆⟩, . . . , ⟨Am,M⋆⟩]T ,

in which A is a linear measurement operator, and the length-m vector ϵ models the unknown
measurement noise. A distinguishing feature of matrix sensing is that A is assumed to satisfy the
restricted isometry property [14, 15]. Throughout this paper, we will always assume that A satisfies
RIP with parameters (2r, δ).

Definition 1 (RIP). The linear operatorA satisfies RIP with parameters (2r, δ) if there exists constants
0 ≤ δ < 1 and m > 0 such that, for every rank-2r matrix M , we have

(1− δ)∥M∥2F ≤
1

m
∥A(M)∥2 ≤ (1 + δ)∥M∥2F .

A common approach for matrix sensing is to use a simple algorithm like gradient descent to minimize
the nonconvex loss function:

f(X) =
1

m

∥∥y −A(XXT )
∥∥ =

1

m

∥∥A(M⋆ −XXT ) + ϵ
∥∥2 . (2)
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Recent work has provided a theoretical explanation for the empirical success of this nonconvex
approach. Two lines of work have emerged.

Local Guarantees. One line of work studies gradient descent initialized inside a neighborhood
of the ground truth where X0X

T
0 ≈ M⋆ already holds [10, 16–19]. Such an initial point can be

found using spectral initialization, see also [18, 20–23]. With exact rank r = r⋆, previous authors
showed that gradient descent converges at a linear rate [9, 10]. In the over-parameterized regime,
however, local restricted convexity no longer holds, so the linear convergence rate is lost. Zhuo
et al. [8] showed that while spectral initialization continues to work under over-parameterization,
gradient descent now slows down to a sublinear rate, but it still converges to a statistical error bound
of Õ(σ2nr⋆/m), where σ denotes the noise variance. This is known to be minimax optimal up to
logarithmic factors [14]. In this paper, we prove that PrecGD with a damping parameter ηk satisfying
(1) also converges to an Õ(σ2nr⋆/m) statistical error bound.

Global Guarantees. A separate line of work [13, 24–31] established global properties of the
landscapes of the nonconvex objective f in (2) and its variants and showed that local search methods
can converge globally. With exact rank r = r⋆, Bhojanapalli et al. [24] proved that f has no spurious
local minima, and that all saddles points have a strictly negative descent direction (strict saddle
property [32], see also [28, 33]). In the over-parameterized regime, however, we are no longer
guaranteed to recover the ground truth in polynomial time.

Other related work. Here we mention some other techniques can be use to solve matrix sensing
in the over-parameterized regime. Classically, matrix factorization was solved via its convex SDP
relaxation [14, 15, 34–36]. The resulting O(n3) to O(n6) time complexity [37] limits this technique
to smaller problems, but these guarantees hold without prior knowledge on the true rank r⋆. First-
order methods, such as ADMM [38–40] and soft-thresholding [41], can be used to solve these convex
problems with a per-iteration complexity comparable to nonconvex gradient descent, but they likewise
suffer from a sublinear convergence rate. Local recovery via spectral initialization was originally
proposed for alternating minimization and other projection techniques [21, 23, 34, 42–45]. These
also continue to work, though a drawback here is a higher per-iteration cost when compared to
simple gradient methods. Finally, we mention a recent result of Li et al. [46], which showed in
the over-parameterized regime that gradient descent with early termination enjoys an algorithmic
regularization effect.

4 Sublinear Convergence of Gradient Descent

In order to understand how to improve gradient descent in the over-parameterized regime, we must
first understand why existing methods fail. For an algorithm that moves in a search direction D with
step-size α, it is a standard technique to measure the corresponding decrement in f with a Taylor-like
expansion

f(X − αD) ≤ f(X)− α ⟨∇f(X), D⟩︸ ︷︷ ︸
linear progress

+α2 (L/2)∥D∥2F︸ ︷︷ ︸
inverse step-size

(3)

in which L is the usual gradient Lipschitz constant (see e.g. Nocedal and Wright [47, Chapter 3]). A
good search direction D is one that maximizes the linear progress ⟨∇f(X), D⟩ while also keeping
the inverse step-size (L/2)∥D∥2F sufficiently small in order to allow a reasonably large step to be
taken. As we will show in this section, the main issue with gradient descent in the over-parameterized
regime is the first term, namely, that the linear progress goes down to zero as the algorithm makes
progress towards the solution.

Classical gradient descent uses the search direction D = ∇f(X). Here, a common technique is
to bound the linear progress at each iteration by a condition known as gradient dominance (or the
Polyak-Łojasiewicz or PL inequality), which is written as

⟨∇f(X), D⟩ = ∥∇f(X)∥2F ≥ µ(f(X)− f⋆) where µ > 0 and f⋆ = min
X

f(X). (4)

Substituting the inequality (4) into the Taylor-like expansion (3) leads to

f(X − αD) ≤ f(X)− α∥∇f(X)∥2F + α2(L/2)∥∇f(X)∥2F
f(X − αD)− f⋆ ≤ [1− µα(1− αL/2)] · (f(X)− f⋆). (5)
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Here, we can always pick a small enough step-size α to guarantee linear convergence:

Q = 1− µα+ µα2L/2 < 1 =⇒ f(Xk)− f⋆ ≤ Qk[f(X0)− f⋆]. (6)

In particular, picking the optimal step-size α = 1/L minimizes the convergence quotient Q =
1 − 1/(2κ), where κ = L/µ is the usual condition number. This shows that, with an optimal
step-size, gradient descent needs at most O(κ log(1/ϵ)) iterations to find an ϵ-suboptimal X .

Matrix sensing with exact rank r = r⋆ is easily shown to satisfy gradient dominance (4) by manipu-
lating existing results on (restricted) local strong convexity. In the over-parameterized case r > r⋆,
however, local strong convexity is lost, and gradient dominance can fail to hold. Indeed, consider
the following instance of matrix sensing, with true rank r⋆ = 1, search rank r = 2, and A set to the
identity

f(X) = ∥XXT − zzT ∥2F where X =

[
1 0
0 ξ

]
and z =

[
1
0

]
. (7)

We can verify that ∥∇f(X)∥2 = 4ξ2[f(X) − f⋆], and this suggests that f satisfies gradient dom-
inance (4) with a constant of µ ≤ 2ξ2. But ξ is itself a variable that goes to zero as the candidate
XXT approaches to ground truth zzT . For every fixed µ > 0 in the gradient dominance condition
(4), we can find a counterexample X in (7) with ξ <

√
µ/2. Therefore, we must conclude that

gradient dominance fails to hold, because the inequality in (4) can only hold for µ = 0.

In fact, this same example also shows why classical gradient descent slows down to a sublinear rate.
Applying gradient descent Xk+1 = Xk − α∇f(Xk) with fixed step-size α to (7) yields a sequence
of iterates of the same form

X0 =

[
1 0
0 ξ0

]
, Xk+1 =

[
1 0
0 ξk+1

]
=

[
1 0
0 ξk − αξ3k

]
,

from which we can verify that f(Xk+1) = (1−αξ2k)
4 ·f(Xk). As each k-th XkX

T
k approaches zzT ,

the element ξk converges towards zero, and the convergence quotient Q = (1− αξ2k)
4 approaches 1.

We see a process of diminishing returns: every improvement to f worsens the quotient Q, thereby
reducing the progress achievable in the subsequent step. This is precisely the notion that characterizes
sublinear convergence.

5 Linear Convergence for the Noiseless Case

To understand how it is possible make gradient descent converge linearly in the over-parameterized
regime, we begin by considering gradient method under a change of metric. Let P be a real symmetric,
positive definite nr × nr matrix. We define a corresponding P -inner product, P -norm, and dual
P -norm on Rn×r as follows

⟨X,Y ⟩P
def
= vec(X)TPvec(Y ), ∥X∥P

def
=
√
⟨X,X⟩P , ∥X∥P∗

def
=
√
vec(X)TP−1vec(X),

where vec : Rn×r → Rnr is the usual column-stacking operation. Consider descending in the
direction D satisfying vec(D) = P−1vec(∇f(X)); the resulting decrement in f can be quantified
by a P -norm analog of the Taylor-like expansion (3)

f(X − αD) ≤ f(X)− α⟨∇f(X), D⟩+ α2(LP /2)∥D∥2P (8)

= f(X)− α(1− α(LP /2))∥∇f(X)∥2P∗ (9)

where LP is a P -norm gradient Lipschitz constant. If we can demonstrate gradient dominance under
the dual P -norm,

∥∇f(X)∥2P∗ ≥ µP (f(X)− f⋆) where µP > 0 and f⋆ = min f(X), (10)

then we have the desired linear convergence

f(X − αD)− f⋆ ≤ [1− µPα(1− αLP /2)] · (f(X)− f⋆) (11)
= [1− 1/(2κP )] · (f(X)− f⋆) with α = 1/LP , (12)

in which the condition number κP = LP /µP should be upper-bounded. To make the most progress
per iteration, we want to pick a metric P to make the condition number κP as small as possible.
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The best choice of P for the fastest convergence is simply the Hessian∇2f(X) itself, but this simply
recovers Newton’s method, which would force us to invert a large nr × nr matrix to compute the
search direction D at every iteration. Instead, we look for a preconditioner P that is cheap to apply
while still assuring a relatively small condition number κP . The following choice is particularly
interesting (the Kronecker product ⊗ is defined to satisfy vec(AXBT ) = (B ⊗A)vec(X))

P = (XTX + ηIr)⊗ In = XTX ⊗ In + ηInr,

because the resulting D = ∇f(X)(XTX + ηI)−1 allow us to interpolate between regular GD and
the ScaledGD of Tong et al. [11]. Indeed, we recover regular GD in the limit η →∞, but as we saw
in Section 4, gradient dominance (10) fails to hold, so the condition number κP = LP /µP grows
unbounded as µP → 0. Instead, setting η = 0 recovers ScaledGD. The key insight of Tong et al.
[11] is that under this choice of P, gradient dominance (10) is guaranteed to hold, with a large value
of µP that is independent of the current iterate and the ground truth. But as we will now show, this
change of metric can magnify the Lipschitz constant LP by a factor of λ−1

min(X
TX), so the condition

number κP = LP /µP becomes unbounded in the over-parameterized regime.

Lemma 2 (Lipschitz-like inequality). Let ∥D∥P = ∥D(XTX + ηIr)
1/2∥F . Then we have

f(X +D) ≤ f(X) + ⟨∇f(X), D⟩+ 1

2
LP (X,D)∥D∥2P

where

LP (X,D) = 2(1 + δ)

[
4 +

2∥XXT −M⋆∥F + 4∥D∥P
λmin(XTX) + η

+

(
∥D∥P

λmin(XTX) + η

)2
]

Lemma 3 (Bounded gradient). For the search direction D = ∇f(X)(XTX + ηI)−1, we have
∥D∥2P = ∥∇f(X)∥2P∗ ≤ 16(1 + δ)f(X).

The proofs of Lemma 2 and Lemma 3 follows from straightforward linear algebra, and can be found
in the Appendix. Substituting Lemma 3 into Lemma 2, we see for ScaledGD (with η = 0) that the
Lipschitz-like constant is bounded as follows

LP (X,D) ≲
(
∥XXT −M⋆∥F /λmin(X

TX)
)2

. (13)

In the exact rank case r = r⋆, the distance of X from singularity can be lower-bounded, within a
“good” neighborhood of the ground truth, since λmin(X

TX) = λr(X
TX) and

∥XXT −M⋆∥F ≤ ρλr(M
⋆), ρ < 1 =⇒ λr(X

TX) ≥ (1− ρ)λr(M
⋆) > 0. (14)

Within this “good” neighborhood, substituting (14) into (13) yields a Lipschitz constant LP that
depends only on the radius ρ. The resulting iterations converge rapidly, independent of any ill-
conditioning in the model XXT nor in the ground-truth M⋆. In turn, ScaledGD can be initialized
within the good neighborhood using spectral initialization (see Proposition 6 below).

In the over-parameterized case r > r⋆, however, the iterate X must become singular in order for
XXT to converge to M⋆, and the radius of the “good” neighorhood reduces to zero. The ScaledGD
direction guarantees a large linear progress no matter how singular X may be, but the method may
not be able to take a substantial step in this direction if X becomes singular too quickly. To illustrate:
the algorithm would fail entirely if it lands at on a point where λmin(X

TX) = 0 but XXT ̸= M⋆.

While regular GD struggles to make the smallest eigenvalues of XXT converge to zero, ScaledGD
gets in trouble by making these eigenvalues converge quickly. In finding a good mix between these
two methods, an intuitive idea is to use the damping parameter η to control the rate at which X
becomes singular. More rigorously, we can pick an η ≈ ∥XXT − ZZT ∥F and use Lemma 2 to
keep the Lipschitz constant LP bounded. Substituting Lemma 3 into Lemma 2 and using RIP to
upper-bound f(X) ≤ (1 + δ)∥XXT −M⋆∥2F and δ ≤ 1 yields

η ≥ Clb∥XXT − ZZT ∥F =⇒ LP (X,D) ≤ 16 + 136/Clb + 256/C2
lb. (15)

However, the gradient dominance condition (10) will necessarily fail if η is set too large. Our
main result in this paper is that keeping η within the same order of magnitude as the error norm
∥XXT − ZZT ∥F is enough to maintain gradient dominance. The following is the noiseless version
of this result.
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Theorem 4 (Noiseless gradient dominance). Let minX f(X) = 0 for M⋆ ̸= 0. Suppose that X
satisfies f(X) ≤ ρ2 · (1 − δ)λ2

r⋆(M
⋆) with radius ρ > 0 that satisfies ρ2/(1 − ρ2) ≤ (1 − δ2)/2.

Then, we have
η ≤ Cub∥XXT − ZZT ∥F =⇒ ∥∇f(X)∥2P∗ ≥ 2µP f(X)

where

µP =

(√
1 + δ2

2
− δ

)2

·min


(

Cub√
2− 1

)−1

,

(
1 + 3Cub

√
(r − r⋆)

1− δ2

)−1
 . (16)

The proof of Theorem 4 is involved and we defer the details to the Appendix. In the noiseless case,
we get a good estimate of η for free as a consequence of RIP:

η =
√
f(X) =⇒

√
1− δ∥XXT −M⋆∥F ≤ η ≤

√
1 + δ∥XXT −M⋆∥F .

Repeating (8)-(12) with Lemma 2, (15) and (16) yields our main result below.
Corollary 5 (Linear convergence). Let X satisfy the same initial conditions as in Theorem 4. The
search direction D = ∇f(X)(XTX + ηI)−1 with damping parameter η =

√
f(X) and step-size

α ≤ 1/LP yields
f(X − αD) ≤ (1− αµP /2) f(X)

where LP is as in (15) with Clb =
√
1− δ and µP is as in (16) with Cub =

√
1 + δ.

For a fixed RIP constant δ, Corollary 5 says that PrecGD converges at a linear rate that is independent
of the current iterate X , and also independent of possible ill-conditioning in the ground truth.
However, it does require an initial point X0 that satisfies

∥A(X0X
T
0 −M∗)∥2 < ρ2(1− δ)λr∗(M

⋆)2 (17)

with a radius ρ > 0 satisfying ρ2/(1− ρ2) ≤ (1− δ2)/2. Such an initial point can be found using
spectral initialization, even if the measurements are tainted with noise. Concretely, we choose the
initial point X0 as

X0 = Pr

(
1

m

m∑
i=1

yiAi

)
where Pr(M) = arg min

X∈Rn×r
∥XXT −M∥F , (18)

where we recall that y = A(M⋆) + ϵ are the m possibly noisy measurements collected of the ground
truth, and that the rank-r projection operator can be efficiently implemented with a singular value
decomposition. The proof of the following proposition can be found in the appendix.

Proposition 6 (Spectral Initialization). Suppose that δ ≤ (8κ
√
r∗)−1 and m ≳ 1+δ

1−δ
σ2rn logn
ρ2λ2

r⋆
(M⋆)

where κ = λ1(M
⋆)/λr⋆(M

⋆). Then, with high probability, the initial point X0 produced by (18)
satisfies the radius condition (17).

However, if the measurements y are noisy, then
√
f(X) = ∥A(XXT −M⋆) + ε∥ now gives a

biased estimate of our desired damping parameter η. In the next section, we show that a good choice
of ηk is available based on an approximation of the noise variance.

6 Extension to Noisy Setting

In this section, we extend our analysis to the matrix sensing with noisy measurements. Our main goal
is to show that, with a proper choice of the damping coefficient η, the proposed algorithm converges
linearly to an “optimal” estimation error.
Theorem 7 (Noisy measurements with optimal η). Suppose that the noise vector ϵ ∈ Rm has sub-
Gaussian entries with zero mean and variance σ2 = 1

m

∑m
i=1 E[ϵ2i ]. Moreover, suppose that ηk =

1√
m
∥A(XkX

T
k −M∗)∥, for k = 0, 1, . . . ,K, and that the initial point X0 satisfies ∥A(X0X

T
0 −

M∗)∥2 < ρ2(1−δ)λr∗(M
⋆)2. Consider k∗ = argmink ηk, and suppose that the step-size α ≤ 1/L,

where L > 0 is a constant that only depends on δ. Then, with high probability, we have

∥Xk∗XT
k∗ −M⋆∥2F ≲ max

{
1 + δ

1− δ

(
1− α

µP

2

)K
∥X0X

T
0 −M∗∥2F , Estat

}
, (19)

where Estat := σ2nr logn
µP (1−δ)m .
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Assuming fixed parameters for the problem, the above theorem shows that PrecGD outputs a solution
with an estimation error of O (Estat) in O (log (1/Estat)) iterations. Moreover, the error O (Estat)
is minimax optimal (modulo logarithmic factors), and cannot be improved significantly. In particu-
lar, Candes and Plan [14] showed that any estimator X̂ must satisfy ∥X̂X̂T −M∗∥2F ≳ σ2nr/m
with non-negligible probability. The classical methods for achieving this minimax rate suffer from
computationally-prohibitive per iteration costs [15, 21, 48]. Regular gradient descent alleviates
this issue at the expense of a slower convergence rate of O(

√
1/Estat) [8]. Our proposed PrecGD

achieves the best of both worlds: it converges to the minimax optimal error with cheap per-iteration
complexity of O(nr2 + r3), while benefiting from an exponentially faster convergence rate than
regular gradient descent in the over-parameterized regime.

Theorem 7 highlights the critical role of the damping coefficient η in the guaranteed linear convergence
of the algorithm. In the noiseless regime, we showed in the previous section that an “optimal” choice
η =

√
f(X) is available for free. In the noisy setting, however, the same choice of η becomes biased

by the noise variance, and is therefore no longer optimal. As is typically the case for regularized
estimation methods [49–51], selecting the ideal parameter would amount to some kind of resampling,
such as via cross-validation or bootstrapping [52–54], which is generally expensive to implement and
use in practice. As an alternative approach, we show in our next theorem that a good choice of η is
available based on an approximation of the noise variance σ2.
Theorem 8 (Noisy measurements with variance proxy). Suppose that the noise vector ϵ ∈ Rm has
sub-Gaussian entries with zero mean and variance σ2 = 1

m

∑m
i=1 E[ϵ2i ]. Moreover, suppose that

ηk =
√
|f(Xk)− σ̂2| for k = 0, 1, . . . ,K, where σ̂2 is an approximation of σ2, and that the initial

point X0 satisfies ∥A(X0X
T
0 −M∗)∥2F < ρ2(1− δ)λr∗(M

⋆)2. Consider k∗ = argmink ηk, and
suppose that the step-size α ≤ 1/L, where L > 0 is a constant that only depends on δ. Then, with
high probability, we have

∥Xk∗XT
k∗ −M∗∥2F ≲ max

{
1 + δ

1− δ

(
1− α

µP

2

)K
∥X0X

T
0 −M∗∥2F , Estat, Edev, Evar

}
, (20)

where

Estat :=
σ2nr log n

µP (1− δ)m
, Edev :=

σ2

1− δ

√
log n

m
, Evar := |σ2 − σ̂2|. (21)

In the above theorem, Edev captures the deviation of the empirical variance 1
m

∑m
i=1 ϵ

2
i from its

expectation σ2. On the other hand, Evar captures the approximation error of the true variance.
According to Theorem 8, it is possible to chose the damping factor ηk merely based on f(Xk) and
an approximation of σ2, at the expense of a suboptimal estimation error rate. In particular, suppose
that the noise variance is known precisely, i.e., σ̂2 = σ2. Then, the above theorem implies that the
estimation error is reduced to

∥Xk∗XT
k∗ −M∗∥2F ≲ max {Estat, Edev} after O

(
log

(
1

max {Estat, Edev}

))
iterations.

If m is not too large, i.e., m ≲ σ2n2r2 log n, the estimation error can be improved to ∥Xk∗XT
k∗ −

M∗∥2F ≲ Estat, which is again optimal (modulo logarithmic factors). As m increases, the estimation
error will become smaller, but the convergence rate will decrease. This suboptimal rate is due to the
heavy tail phenomenon arising from the concentration of the noise variance. In particular, one can
write

f(X)− σ2 =
1

m
∥A(XXT −M⋆)∥2 + 1

m
∥ϵ∥2 − σ2︸ ︷︷ ︸

variance deviation

+
2

m
⟨A(ZZT −XXT ), ϵ⟩︸ ︷︷ ︸

cross-term

(22)

Evidently, f(X)− σ2 is in the order of 1
m∥A(XXT −M⋆)∥2 if both variance deviation and cross-

term are dominated by 1
m∥A(XXT −M⋆)∥2. In the proof of Theorem 8, we show that, with high

probability, the variance deviation is upper bounded by (1− δ)Edev and it dominates the cross-term.
This implies that the choice of η =

√
|f(X)− σ2| behaves similar to 1√

m
∥A(XXT −M⋆)∥, and

hence, the result of Theorem 7 can be invoked, so long as
1

m
∥A(XXT −M⋆)∥2 ≥ (1− δ)∥XXT −M⋆∥2F ≳ (1− δ)Edev.
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7 Numerical Experiments

Finally, we numerically compare PrecGD on other matrix factorization problems that fall outside of
the matrix sensing framework. We consider the ℓp empirical loss fp(X) =

∑m
i=1 |⟨Ai, XXT−M⋆⟩|p

for 1 ≤ p < 2, in order to gauge the effectiveness of PrecGD for increasing nonsmooth loss functions.
Here, we set the damping parameter ηk = [fp(Xk)]

1/p as a heuristic for the error ∥XXT −M⋆∥F .
The data matrices A1, . . . , Am were taken from [13, Example 12], the ground truth M⋆ = ZZT was
constructed by sampling each column of Z ∈ Rn×r⋆ from the standard Gaussian, and then rescaling
the last column to achieve a desired condition number.

The recent work of Tong et al. [55] showed that in the exactly-parameterized setting, ScaledGD
works well for the ℓ1 loss function. In particular, if the initial point is close to the ground truth, then
with a Polyak stepsize αk = f(Xk)/∥∇f(Xk)∥∗P , ScaledGD converges linearly to the ground truth.
However, these theoretical guarantees no longer hold in the over-parameterized regime.

When r > r∗, our numerical experiments show that ScaledGD blows up due to singularity near the
ground truth while PrecGD continues to converge linearly in this nonsmooth, over-parameterized
setting. In Figure 2 we compare GD, ScaledGD and PrecGD in the exact and over-parameterized
regimes for the ℓp norm, with p = 1.1, 1.4 and 1.7. For ScaledGD and PrecGD, we used a modified
version of the Polyak step-size where αk = f(Xk)

p/∥∇f(Xk)∥∗P . For GD we use a decaying
stepsize. When r = r∗, we see that both ScaledGD and PrecGD converge linearly, but GD stagnates
due to ill-conditioning of the ground truth. When r > r∗, GD still converges slowly and ScaledGD
blows up very quickly, while PrecGD continues to converge reliably.
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Figure 2: Nonconvex matrix factorization with the ℓp empirical loss. We compare ℓp matrix
sensing with n = 10 and r⋆ = 2 and A taken from [13]. The ground truth is chosen to be ill-
conditioned (κ = 102). For ScaledGD and PrecGD, we use the Polyak step-size in [55]. For GD
we use a decaying step-size. (Top r = r∗) For all three values of p, GD stagnates due to the
ill-conditioning of the ground truth, while ScaledGD and PrecGD converge linearly in all three cases.
(Bottom r > r∗) With r = 4, the problem is over-parameterized. GD again converges slowly and
ScaledGD is sporadic due to near-singularity caused by over-parameterization. Once again we see
PrecGD converge at a linear rate.

8 Conclusions

In this paper, we propose a preconditioned gradient descent or PrecGD for nonconvex matrix
factorization with a comparable per-iteration cost to classical gradient descent. For over-parameterized
matrix sensing, gradient descent slows down to a sublinear convergence rate, but PrecGD restores

9



the convergence rate back to linear, while also making the iterations immune to ill-conditioning in
the ground truth. While the thoeretical analysis in our paper uses some properties specific to RIP
matrix sensing, our numerical experiments find that PrecGD works well for even for nonsmooth loss
functions. We believe that these current results can be extended to similar problems such as matrix
completion and robust PCA, where properties like incoherence can be used to select the damping
parameter ηk with the desired properties, so that PrecGD converges linearly as well. It remains future
work to provide rigorous justification for these observations.
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A Preliminaries for the Noiseless Case

Recall that the matrix inner product is defined ⟨X,Y ⟩ def
= Tr

(
XTY

)
, and that it induces the Frobenius

norm as ∥X∥F =
√
⟨X,X⟩. The vectorization vec(X) is the usual column-stacking operation that

turns an m × n matrix into a length-mn vector; it preserves the matrix inner product ⟨X,Y ⟩ =
vec(X)Tvec(Y ) and the Frobenius norm ∥vec(X)∥ = ∥X∥F . The Kronecker product⊗ is implicitly
defined to satisfy vec(AXBT ) = (B ⊗A)vecX .

We denote λi(M) and σi(M) as the i-th eigenvalue and singular value of a symmetric matrix
M = MT , ordered from the most positive to the most negative. We will often write λmax(M) and
λmin(M) to index the most positive and most negative eigenvalues, and σmax(M) and σmin(M) for
the largest and smallest singular values.

We denote A = [vec(A1), . . . , vec(Am)]T as the matrix representation of A, and note that A(X) =
A vec(X). For fixed X and M⋆, we can rewrite f in terms of the error matrix E or its vectorization
e as follows

f(X) = ∥A(E)∥2 = ∥Ae∥2 where E = XXT −M⋆, e = vec(E). (23)

The gradient satisfies for any matrix D ∈ Rn×r

⟨∇f(X), D⟩ = 2
〈
A
(
XDT +DXT

)
,A (E)

〉
. (24)

Letting J denote the Jacobian of the vectorized error e with respect to X implicitly as the matrix that
satisfies

J vec(Y ) = vec(XY T + Y XT ) for all Y ∈ Rn×r. (25)

allows us to write the gradient exactly as vec(∇f(X)) = 2JTATAe. The noisy versions of (23)
and (24) are obvious, though we will defer these to Section E.

Recall that A is assumed to satisfy RIP (Definition 1) with parameters (2r, δ). Here, we set m = 1
without loss of generality to avoid carrying the normalizing constant; the resulting RIP inequality
reads

(1− δ)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δ)∥M∥2F for all M such that rank(M) ≤ 2r, (26)

where we recall that 0 ≤ δ < 1. It is easy to see that RIP preserves the Cauchy–Schwarz identity for
all rank-2r matrices G and H:

⟨A(G),A(H)⟩ ≤ ∥A(G)∥∥A(H)∥ ≤ (1 + δ)∥G∥F ∥H∥F . (27)

As before, we introduce the preconditioner matrix P as

P
def
= XTX + ηIr, P

def
= P ⊗ In = (XTX + ηIr)⊗ In

and define a corresponding P -inner product, P -norm, and dual P -norm on Rn×r as follows

⟨X,Y ⟩P
def
= vec(X)TPvec(Y ) =

〈
XP 1/2, Y P 1/2

〉
= Tr

(
XPY T

)
, (28a)

∥X∥P
def
=
√
⟨X,X⟩P = ∥P1/2vec(X)∥ = ∥XP 1/2∥F , (28b)

∥X∥P∗
def
= max

∥Y ∥P=1
⟨Y,X⟩ = ∥P−1/2vec(X)∥ = ∥XP−1/2∥F . (28c)

Finally, we will sometimes need to factorize the ground truth M⋆ = ZZT in terms of the low-rank
factor Z ∈ Rn×r⋆ .

B Proof of Lipschitz-like Inequality (Lemma 2)

In this section we give a proof of Lemma 2, which is a Lipschitz-like inequality under the P -
norm. Recall that we proved linear convergence for PrecGD by lower-bounding the linear progress
⟨∇f(X), D⟩ and upper-bounding ∥D∥P .
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Lemma 9 (Lipschitz-like inequality; Lemma 2 restated). Let ∥D∥P = ∥D(XTX + ηI)1/2∥F . Then
we have

f(X +D) ≤ f(X) + ⟨∇f(X), D⟩+ 1

2
LP (X,D)∥D∥2P

where

LP (X,D) = 2(1 + δ)

[
4 +

2∥XXT −M⋆∥F + 4∥D∥P
λmin(XTX) + η

+

(
∥D∥P

λmin(XTX) + η

)2
]

Proof. Recall that E = XXT −M⋆. We obtain a Taylor expansion of the quartic polynomial f by
directly expanding the quadratic terms

f(X +D) = ∥A((X +D)(X +D)T −M⋆)∥2

= ∥A(E)∥2 + 2⟨A(E),A(XDT +DXT )⟩︸ ︷︷ ︸
f(X)+⟨∇f(X),D⟩

+2⟨A(E),A(DDT )⟩+ ∥A(XDT +DXT )∥2︸ ︷︷ ︸
1
2 ⟨∇2f(X)[D],D⟩

+ 2⟨A(XDT +DXT ),A(DDT )⟩︸ ︷︷ ︸
1
6 ⟨∇3f(X)[D,D],D⟩

+ ∥A(DDT )∥2︸ ︷︷ ︸
1
24 ⟨∇4f(X)[D,D,D],D⟩

.

We evoke RIP to preserve Cauchy–Schwarz as in (27), and then bound the second, third, and fourth
order terms

T =2⟨A(E),A(DDT )⟩+ ∥A(XDT +DXT )∥2 + 2⟨A(XDT +DXT ),A(DDT )⟩+ ∥A(DDT )∥2

≤(1 + δ)
(
2∥E∥F ∥DDT ∥F + ∥XDT +DXT ∥2 + 2∥XDT +DXT ∥F ∥DDT ∥F + ∥DDT ∥2F

)
≤(1 + δ)

(
2∥E∥F ∥D∥2F + 4∥XDT ∥2 + 4∥XDT ∥F ∥D∥2F + ∥D∥4F

)
(29)

where the third line uses ∥DDT ∥F ≤ ∥D∥2F and ∥XDT + DXT ∥F ≤ 2∥XDT ∥F . Now, write
d = vec(D) and observe that

∥D∥2F = dT d = (dTP1/2)P−1(P1/2d) ≤ (dTPd)λmax(P
−1) = ∥D∥2P /λmin(P). (30)

Similarly, we have

∥XDT ∥F = ∥XP−1/2P 1/2DT ∥F ≤ σmax(XP−1/2)∥P 1/2DT ∥F ≤ ∥D∥P . (31)

The final inequality uses ∥P 1/2DT ∥F = ∥DP 1/2∥F = ∥D∥P and that

σmax(XP−1/2) = σmax[X(XTX + ηI)−1/2] = σmax(X)/
√

σ2
max(X) + η ≤ 1. (32)

Substituting (30) and (31) into (29) yields

T ≤ (1 + δ)

(
2∥E∥F

∥D∥2P
λmin(P)

+ 4∥D∥2P +
4∥D∥3P
λmin(P)

+
∥D∥4P
λ2
min(P)

)
=

1

2
LP (X,D)∥D∥2P

where we substitute λmin(P) = λmin(X
TX) + η.

C Proof of Bounded Gradient (Lemma 3)

In this section we prove Lemma 3, which shows that the gradient measured in the dual P -norm
∥∇f(X)∥P∗ is controlled by the objective value as

√
f(X).

Lemma 10 (Bounded Gradient; Lemma 3 restated). For the search direction D = ∇f(X)(XTX +
ηI)−1, we have ∥D∥2P = ∥∇f(X)∥2P∗ ≤ 16(1 + δ)f(X).

Proof. We apply the variation definition of the dual P -norm in (28c) to the gradient in (24) to obtain

∥∇f(X)∥P∗ = max
∥Y ∥P=1

⟨∇f(X), Y ⟩ = max
∥Y ∥P=1

2
〈
A(XY T + Y XT ),A(E)

〉
(a)
≤ 2∥A(E)∥ max

∥Y ∥P=1
∥A(XY T + Y XT )∥

(b)
≤ 4
√

(1 + δ)f(X) max
∥Y ∥P=1

∥XY T ∥F

14



Here (a) applies Cauchy–Schwarz; and (b) substitutes f(X) = ∥A(E)∥2 and ∥A(M)∥ ≤√
1 + δ∥M∥F for rank-2r matrix M and ∥XY T +Y XT ∥F ≤ 2∥XY T ∥F . Now, we bound the final

term

max
∥Y ∥P=1

∥XY T ∥F = max
∥Y P 1/2∥F=1

∥XY T ∥F = max
∥Ỹ ∥F=1

∥XP−1/2Ỹ T ∥F = σmax(XP−1/2) ≤ 1

where the final inequality uses (32).

D Proof of Gradient Dominance (Theorem 4)

In this section we prove our first main result: the gradient ∇f(X) satisfies gradient dominance the
P -norm. This is the key insight that allowed us to establish the linear convergence rate of PrecGD in
the main text. The theorem is restated below.
Theorem 11 (Gradient Dominance; Theorem 4 restated). Let minX f(X) = 0 for M⋆ ̸= 0. Suppose
that X satisfies f(X) ≤ ρ2·(1−δ)λ2

r⋆(M
⋆) with radius ρ > 0 that satisfies ρ2/(1−ρ2) ≤ (1−δ2)/2.

Then, we have

η ≤ Cub∥XXT −M⋆∥F =⇒ ∥∇f(X)∥2P∗ ≥ µP f(X)

where

µP =

(√
1 + δ2

2
− δ

)2

·min


(
1 +

Cub√
2− 1

)−1

,

(
1 + 3Cub

√
(r − r⋆)

1− δ2

)−1
 . (33)

The theorem is a consequence of the following lemma, which shows that the PL constant µP > 0 is
driven in part by the alignment between the model XXT and the ground truth M⋆, and in part in the
relationship between η and the singular values of X . We defer its proof to Section D.1 and first use it
to prove Theorem 4.
Lemma 12 (Gradient lower bound). Let XXT = UΛUT where Λ = diag(λ1, . . . , λr) , λ1 ≥
· · · ≥ λr ≥ 0, and UTU = Ir denote the usual eigenvalue decomposition. Let Uk denote the first k
columns of U . Then, we have

∥∇f(X)∥2P∗ ≥ max
k∈{1,2,...,r}

2(cos θk − δ)2

1 + η/λk
∥XXT −M⋆∥2F (34)

where each θk is defined

sin θk =

∥∥(I − UkU
T
k

)
(XXT −M⋆)

(
I − UkU

T
k

)∥∥
F

∥XXT −M⋆∥F
. (35)

From Lemma 12, we see that deriving a PL constant µP requires balancing two goals: (1) ensuring
that cos θk is large with respect to the RIP constant δ; (2) ensuring that λk(X

TX) is large with
respect to the damping parameter η.

As we will soon show, in the case that k = r, the corresponding cos θr is guaranteed to be large with
respect to δ, once XXT converges towards M⋆. At the same time, we have by Weyl’s inequality

λk(X
TX) = λk(XXT ) ≥ λk(M

⋆)− ∥XXT −M⋆∥F for all k ∈ {1, 2, . . . , r}.
Therefore, when k = r⋆ and XXT is close to M⋆, the corresponding λr⋆(X

TX) is guaranteed to
be large with respect to η . However, in order to use Lemma 12 to derive a PL constant µP > 0, we
actually need cos θk and λk(X

TX) to both be large for the same value of k. It turns out that when
η ≳ ∥XXT −M⋆∥F , it is possible to prove this claim using an inductive argument.

Before we present the complete argument and prove Theorem 4, we state one more lemma that will
be used in the proof.
Lemma 13 (Basis alignment). Define the n× k matrix Uk in terms of the first k eigenvectors of X
as in Lemma 12. Let Z ∈ Rn×r⋆ satisfy λmin(Z

TZ) > 0 and suppose that ∥XXT − ZZT ∥F ≤
ρλmin(Z

TZ) with ρ ≤ 1/
√
2. Then,

∥ZT (I − UkU
T
k )Z∥F

∥XXT − ZZT ∥F
≤ 1√

2

ρ√
1− ρ2

for all k ≥ r⋆. (36)
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Essentially, this lemma states that as the rank-r matrix XXT converges to the rank-r⋆ matrix M⋆,
the top r⋆ eigenvectors of XXT must necessarily rotate into alignment with M⋆. In fact, this is
easily verified to be sharp by considering the r = r⋆ = 1 case; we defer its proof to Section D.2.

With Lemma 12 and Lemma 13, we are ready to prove Theorem 4.

Proof of Theorem 4. We pick some µ satisfying δ < µ < 1 and prove that ρ2

1−ρ2 ≤ 1− µ2 implies
∥∇f(X)∥2P∗ ≥ µP f(X) where

µP = (µ− δ)2 ·min

{(
1 +

Cub√
2− 1

)−1

,

(
1 + 3Cub

√
r − r⋆

1− µ2

)−1
}
. (37)

Then, setting 1− µ2 = 1
2 (1− δ2) yields our desired claim.

To begin, note that the hypothesis ρ2

1−ρ2 ≤ 1−µ2 ≤ 1 implies ρ ≤ 1/
√
2. Denote E = XXT −M⋆.

We have

∥∇f(X)∥2P∗

f(X)

(a)
≥ ∥∇f(X)∥2P∗

(1 + δ)∥E∥2F

(b)
≥ 2(cos θk − δ)2

(1 + δ)(1 + η/λk(XTX))

(c)
≥ (cos θk − δ)2

1 + η/λk(XTX)
for all k ≥ r⋆.

(38)

Step (a) follows from RIP; Step (b) applies Lemma 12; Step (c) applies 1 + δ ≤ 2. Equation (38)
proves gradient dominance if we can show that both λk(X

TX) and cos θk are large for the same k.
We begin with k = r⋆. Here we have by RIP and by hypothesis

(1− δ)∥XXT −M⋆∥2F ≤ f(X) ≤ ρ2 · (1− δ)λ2
min(Z

TZ), (39)

which by Weyl’s inequality yields

λr⋆(X
TX) = λr⋆(XXT ) ≥ λr⋆(M

⋆)− ∥XXT −M⋆∥F ≥ (1− ρ)λr⋆(M
⋆).

This, combined with (39) and our hypothesis η ≤ Cub∥XXT − ZZT ∥F and ρ ≤ 1/
√
2 gives

η

λr⋆(XTX)
≤ ρCubλr⋆(M

⋆)

(1− ρ)λr⋆(M⋆)
=

ρCub

1− ρ
≤ Cub√

2− 1
, (40)

which shows that λr⋆(X
TX) is large. If cos θk ≥ µ is also large, then substituting (40) into (38)

yields gradient dominance

∥∇f(X)∥2P∗

f(X)
≥ (µ− δ)2

(
1 +

Cub√
2− 1

)−1

,

and this yields the first term in (37). If cos θk < µ is actually small, then sin2 θk > 1− µ2 is large.
We will show that this lower bound on sin θk actually implies that λk+1(X

TX) will be large.

To see this, let us write XXT = UkΛkU
T
k +R where the n× k matrix of eigenvectors Uk is defined

as in Lemma 12, Λk is the corresponding k × k diagonal matrix of eigenvalues, and UT
k R = 0.

Denote Πk = I − UkU
T
k and note that

∥Πk(XXT −M⋆)Πk∥F = ∥ΠkXXTΠk −ΠkM
⋆Πk∥F = ∥R−ΠkM

⋆Πk∥F .
By the subaddivity of the norm ∥R−ΠkM

⋆Πk∥F ≤ ∥R∥F + ∥ΠkM
⋆Πk∥F . Dividing both sides

by ∥E∥F yields

sin θk =
∥R−ΠkM

⋆Πk∥F
∥E∥F

≤ ∥ΠkM
⋆Πk∥F

∥E∥F
+
∥R∥F
∥E∥F

.

Since ρ ≤ 1/
√
2 by assumption, Lemma 13 yields

∥ΠkM
⋆Πk∥F

∥E∥F
≤ 1√

2

ρ√
1− ρ2

≤ ρ.

In addition,
∥R∥F ≤ ∥R∥ ·

√
rank(R) = λk+1(XXT ) ·

√
r − k.

16



Combining the two inequalities above we get√
1− µ2 ≤ sin θk ≤

1√
2

ρ√
1− ρ2

+
√
r − k ·

λk+1

(
XTX

)
∥E∥F

.

Rearranging, we get

λk+1

(
XTX

)
∥E∥F

≥ 1√
r − k

(√
1− µ2 − 1√

2

ρ√
1− ρ2

)
≥
(
1− 1√

2

)√
1− µ2

r − k
.

Note that the last inequality above follows from the assumption that ρ2

1−ρ2 ≤ 1−µ2. Now substituting

η ≤ Cub∥XXT −M⋆∥F and r − k ≤ r − r⋆ and noting that
(
1− 1√

2

)
≤ 1/3 we get

η

λk+1(XTX)
≤ Cub

∥XXT −M⋆∥F
λk+1(XTX)

≤ 3Cub

√
r − k

1− µ2
≤ 3Cub

√
r − r⋆

1− µ2
, (41)

which shows that λk+1(X
TX) is large.

If cos θk+1 ≥ µ is also large, then substituting (41) into (38) yields gradient dominance

∥∇f(X)∥2P∗

f(X)
≥ (cos θk+1 − δ)2

1 + η/λ2
k+1(X)

≥ (µ− δ)2
(
1 + 3Cub

√
r − r⋆

1− µ2

)−1

, (42)

and this yields the second term in (37) so we are done. If cos θk+1 < µ then we can simply repeat
the argument above to show that λk+1(X

TX) is large. We can repeat this process until k + 1 = r.
At this point, we have

cos2 θr = 1− sin2 θr ≥ 1− 1

2

ρ2

1− ρ2
≥ µ2

where we used our hypothesis 1− µ2 ≥ ρ2

1−ρ2 ≥ 1
2

ρ2

1−ρ2 , and substituting (41) into (38) again yields
gradient dominance in (42).

D.1 Proof of Gradient Lower Bound (Lemma 12)

In this section we prove Lemma 12, where we prove gradient dominance ∥∇f(X)∥2P∗ ≥ µP f(X)
with a PL constant µP that is proportional to cos θk − δ and to λk(X

TX)/η. We first prove the
following result which will be useful in the proof of Lemma 12.

Lemma 14. Let A satisfy RIP with parameters (ζ, δ), where ζ = rank([X,Z]). Then, we have

∥∇f(X)∥P∗ ≥ max
∥Y ∥P≤1

⟨XY T + Y XT , E⟩ − δ∥XY T + Y XT ∥F ∥E∥F (43)

Proof. Let Y maximize the right-hand side of (43) and let W be the matrix corrresponding to the
orthogonal projection onto range(X) + range(Y ). Set Ỹ = WY , then

⟨XỸ T + Ỹ XT , E⟩ = ⟨XY T , EW ⟩+ ⟨Y XT ,WE⟩ = ⟨XY T + Y XT , E⟩.

On the other hand, we have

∥XỸ T + Ỹ XT ∥F = ∥W
(
XY T + Y XT

)
W∥F ≤ ∥XY T + Y XT ∥F

and
∥Ỹ ∥P = ∥WY P 1/2∥F ≤ ∥Y P 1/2∥F = ∥Y ∥P .

This means that Ỹ is feasible and makes the right-hand side at least as large as Y . Since Y is the
maximizer by definition, we conclude that Ỹ also maximizes the right-hand side of (43).

By definition, range(Ỹ ) ⊂ range(X) + range(Z), so (2r, δ)-RIP implies

|⟨A(XỸ T + Ỹ XT ), A(E)⟩ − ⟨XỸ T + Ỹ XT , E⟩| ≤ δ∥XỸ T + Ỹ XT ∥F ∥E∥F .
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Now we have

∥∇f(X)∥P∗ = max
∥Y ∥P≤1

⟨A(XY T + Y XT ),A(E)⟩

≥ ⟨A(XỸ T + Ỹ XT ),A(E)⟩
≥ ⟨XỸ T + Ỹ XT , E⟩ − δ∥XỸ T + Ỹ XT ∥F ∥E∥F
= max

∥Y ∥P≤1
⟨XY T + Y XT , E⟩ − δ∥XY T + Y XT ∥F ∥E∥F .

This completes the proof.

Proof of Lemma 12. Let X =
∑r

i=1 σiuiv
T
i with ∥ui∥ = ∥vi∥ = 1 and σ1 ≥ · · · ≥ σr denote the

usual singular value decomposition. Observe that the preconditioned Jacobian JP−1/2 satisfies

JP−1/2vec(Y ) = vec(XP−1/2Y T + Y P−1/2XT ) = vec

(
r∑

i=1

uiy
T
i + yiu

T
i√

1 + η/σ2
i

)
where yi = Y vi. This motivates the following family of singular value decompositions

UkΣkV
T
k vec(Y ) = vec

(
k∑

i=1

uiy
T
i + yiu

T
i√

1 + η/σ2
i

)
for all k ∈ {1, 2, . . . , r}, JP−1/2 = UrΣrV

T
r .

(44)

Here, the n2 × ζk matrix Uk and the nr × ζk matrix Vk have orthonormal columns, and the rank
can be verified as ζk = nk − k(k − 1)/2 < nr ≤ n2. Now, we rewrite Lemma 14 by vectorizing
y = vec(Y ) and writing

∥∇f(X)∥P∗ ≥ max
∥P1/2y∥≤1

(
eTJy

∥e∥∥Jy∥
− δ

)
∥e∥∥Jy∥ (a)

= max
∥y′∥≤1

(
eTJP−1/2y

∥e∥∥JP−1/2y∥
− δ

)
∥e∥∥JP−1/2y∥

(b)
= max

∥y′∥≤1

(
eTUrΣrV

T
r y

∥e∥∥UrΣrVT
r y∥

− δ

)
∥e∥∥UrΣrV

T
r y∥

(c)
≥
(
eTUkU

T
k e

∥e∥∥UT
k e∥

− δ

)
∥e∥ ∥UT

k e∥
∥Σ−1

k UT
k e∥

(d)
≥
(
∥UT

k e∥
∥e∥

− δ

)
∥e∥λmin(Σk).

Step (a) makes a change of variables y ← P1/2y; Step (b) substitutes (44); Step (c) substitutes the
heuristic choice y = d/∥d∥ where d = VkΣ

−1
k UT

k e; Step (d) notes that eTUkU
T
k e = ∥UT

k e∥2
and that ∥Σ−1

k UT
k e∥ ≤ ∥UT

k e∥ · λmax(Σ
−1
k ) = ∥UT

k e∥/λmin(Σk). Finally, we can mechanically
verify from (44) that

cos2 θk
def
=
∥UT

k e∥2

∥e∥2
= 1− ∥(I −UT

kU
T
k )e∥2

∥e∥2
= 1− ∥(I − UkU

T
k )E(I − UkU

T
k )∥2F

∥E∥2F
where Uk = [u1, . . . , uk], and that

λ2
min(Σk) = min

∥yk∥=1

∥∥∥∥∥uky
T
k + yku

T
k√

1 + η/σ2
k

∥∥∥∥∥
2

F

= min
∥yk∥=1

2∥uk∥2∥yk∥2 + 2(uT
k yk)

2

1 + η/σ2
k

=
2

1 + η/σ2
k

.

D.2 Proof of Basis Alignment (Lemma 13)

Before we prove this lemma, we make two observations that simplifies the proof. First, even though
our goal is to prove the inequality (36) for all k ≥ r∗, it actually suffices to consider the case k = r∗.
This is because the numerator ∥ZT (I − UkU

T
k )Z∥F decreases monotonically as k increases. Indeed,

for any k ≥ r⋆, define V V T as below

I − UkU
T
k = I − Ur⋆U

T
r⋆ − V V T = (I − Ur⋆U

T
r⋆)(I − V V T ) = (I − V V T )(I − Ur⋆U

T
r⋆).
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Then, we have

∥ZT (I − UkU
T
k )Z∥F = ∥(I − UkU

T
k )ZZT (I − UkU

T
k )∥F

= ∥(I − V V T )(I − Ur⋆U
T
r⋆)ZZT (I − Ur⋆U

T
r⋆)(I − V V T )∥F

≤ ∥(I − Ur⋆U
T
r⋆)ZZT (I − Ur⋆U

T
r⋆)∥F .

Second, due to the rotational invariance of this problem, we can assume without loss of generality
that X,Z are of the form

X =

[
X1 0
0 X2

]
, Z =

[
Z1

Z2

]
. (45)

where X1 ∈ Rk×k, Z1 ∈ Rk×r⋆ and σmin(X1) ≥ σmax(X2). (Concretely, we compute the singular
value decomposition X = USV T with U ∈ Rn×n and V ∈ Rr×r, and then set X ← UTXV and
Z ← UTZ.) We first need to show that as XXT approaches ZZT , the dominant directions of X
must align with Z in a way as to make the Z2 portion of Z go to zero.
Lemma 15. Suppose that X,Z are in the form in (45), and k ≥ r⋆. If ∥XXT − ZZT ∥F ≤
ρλmin(Z

TZ) and ρ2 < 1/2, then λmin(Z
T
1 Z1) ≥ λmax(Z

T
2 Z2).

Proof. Denote γ = λmin(Z
T
1 Z1) and β = λmax(Z

T
2 Z2). We will assume γ < β and prove that

ρ2 ≥ 1/2, which contradicts our hypothesis. The claim is invariant to scaling of X and Z, so we
assume without loss of generality that λmin(Z

TZ) = 1. Our radius hypothesis then reads

∥XXT − ZZT ∥2F =

∥∥∥∥[X1X
T
1 − Z1Z

T
1 −Z1Z

T
2

−Z2Z
T
1 X2X

T
2 − Z2Z

T
2

]∥∥∥∥2
F

= ∥X1X
T
1 − Z1Z

T
1 ∥2F + 2⟨ZT

1 Z1, Z
T
2 Z2⟩+ ∥X2X

T
2 − Z2Z

T
2 ∥2F ≤ ρ2.

Now, we optimize over X1 and X2 to minimize the left-hand side. Recall by construction in (45) we
restricted σmin(X1) ≥ σmax(X2). Accordingly, we consider

min
X1,X2

{
∥X1X

T
1 − Z1Z

T
1 ∥2F + ∥X2X

T
2 − Z2Z

T
2 ∥2F : λmin(X1X

T
1 ) ≥ λmax(X2X

T
2 )
}
. (46)

We relax X1X
T
1 and X2X

T
2 into positive semidefinite matrices

(46) ≥ min
S1⪰0,S2⪰0

{∥S1 − Z1Z
T
1 ∥2F + ∥S2 − Z2Z

T
2 ∥2F : λmin(S1) ≥ λmax(S2)} (47)

The equation above is invariant to a change of basis for both S1 and S2, so we change the basis of S1

and S2 into the eigenbases of Z1Z
T
1 and Z2Z

T
2 to yield

(47) = min
s1≥0,s2≥0

{∥s1 − λ(Z1Z
T
1 )∥2 + ∥s2 − λ(Z2Z

T
2 )∥2 : min(s1) ≥ max(s2)} (48)

where λ(Z1Z
T
1 ) ≥ 0 and λ(Z2Z

T
2 ) ≥ 0 are the vector of eigenvalues. We lower-bound (48)

by dropping all the terms in the sum of squares except the one associated with λmin(Z
T
1 Z1) and

λmax(Z2Z
T
2 ) to obtain

(48) ≥ min
d1,d2∈R+

{[d1 − λmin(Z
T
1 Z1)]

2 + [d2 − λmax(Z2Z
T
2 )]

2 : d1 ≥ d2} (49)

= min
d1,d2∈R+

{[d1 − γ]2 + [d2 − β]2 : d1 ≥ d2} = (γ − β)2/2, (50)

where we use the fact that γ < β to argue that d1 = d2 at optimality. Now we have

ρ2 ≥ ∥X1X
T
1 − Z1Z

T
1 ∥2F + ∥X2X

T
2 − Z2Z

T
2 ∥2F + 2⟨ZT

1 Z1, Z
T
2 Z2⟩

≥ ∥X1X
T
1 − Z1Z

T
1 ∥2F + ∥X2X

T
2 − Z2Z

T
2 ∥2F + 2λmin(Z

T
1 Z1)λmax(Z

T
2 Z2)

≥ min
d1,d2∈R+

{[d1 − γ]2 + [d2 − β]2 : d1 ≥ d2}+ 2γβ

≥ (γ − β)2

2
+ 2γβ =

1

2
(γ + β)2.

Finally, note that

γ + β = λmin(Z
T
1 Z1) + λmax(Z

T
2 Z2) ≥ λmin(Z

T
1 Z1 + ZT

2 Z2) = λmin(Z
TZ) = 1.

Therefore, we have ρ2 ≥ 1/2, a contradiction. This completes the proof.
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Now we are ready to prove Lemma 13.

Proof. As before, assume with out loss of generality that X,Z are of the form (45). From the proof
of Lemma 15 we already know

∥XXT − ZZT ∥2F = ∥X1X
T
1 − Z1Z

T
1 ∥2F + 2⟨ZT

1 Z1, Z
T
2 Z2⟩+ ∥X2X

T
2 − Z2Z

T
2 ∥2F .

Moreoever, we can compute

∥ZT (I − UkU
T
k )Z∥F =

∥∥∥∥∥
[
Z1

Z2

]T (
I −

[
Ik 0
0 0

])[
Z1

Z2

]∥∥∥∥∥
F

= ∥ZT
2 Z2∥F = ∥Z2Z

T
2 ∥F . (51)

We will show that in the neighborhood ∥XXT − ZZT ∥ ≤ ρλmin(Z
TZ) that

ρ ≤ 1/
√
2 =⇒ sinϕ

def
= ∥(I − UkU

T
k )Z∥F /σk(Z) = ∥Z2∥F /σr⋆(Z) ≤ ρ. (52)

Then we obtain

∥Z2Z
T
2 ∥2F

∥XXT − ZZT ∥2
(a)
≤ ∥Z2∥4F

2⟨ZT
1 Z1, ZT

2 Z2⟩
(b)
≤ ∥Z2∥4F

2λmin(ZT
1 Z1)∥Z2∥2F

(c)
≤ ∥Z2∥2F

2[λmin(ZTZ)− ∥Z2∥2F ]
=

sin2 ϕ

2[1− sin2 ϕ]
(53)

≤ 1

2

ρ2

1− ρ2
. (54)

Step (a) bounds the numerator as ∥Z2Z
T
2 ∥F ≤ ∥Z2∥2F and uses the fact that the denomina-

tor is greater than 2⟨ZT
1 Z1, Z

T
2 Z2⟩. Step (b) follows from the inequality ⟨ZT

1 Z1, Z
T
2 Z2⟩ ≥

λmin(Z
T
1 Z1)∥Z2Z

T
2 ∥F . Finally, step (c) bounds the minimum eigenvalue of ZT

1 Z1 by noting
that

λmin(Z
T
1 Z1) = λmin(Z

T
1 Z1 + ZT

2 Z2 − ZT
2 Z2)

≥ λmin(Z
T
1 Z1 + ZT

2 Z2)− λmax(Z
T
2 Z2)

≥ λmin(Z
TZ)− ∥Z2∥2F , (55)

where the last line bounds the operator norm of Z2 with the Frobenius norm.

To prove (52), we know from Lemma 15 that ρ ≤ 1/
√
2 implies that λmin(Z

T
1 Z1) ≥ λmax(Z

T
2 Z2).

This implies λmin(Z
T
1 Z1) ≥ 1

2λmin(Z
TZ), since

2λmin(Z
T
1 Z1) ≥ λmin(Z

T
1 Z1) + λmax(Z

T
2 Z2) ≥ λmin(Z

TZ)

This implies the following

∥XXT − ZZT ∥2F = ∥X1X
T
1 − Z1Z

T
1 ∥2F + 2⟨ZT

1 Z1, Z
T
2 Z2⟩+ ∥X2X

T
2 − Z2Z

T
2 ∥2F

≥ 2⟨ZT
1 Z1, Z

T
2 Z2⟩ ≥ 2λmin(Z

T
1 Z1)∥Z∥2F ≥ λmin(Z

TZ)∥Z∥2F
and we have therefore

ρ2λ2
min(Z

TZ) ≥ ∥XXT − ZZT ∥2F ≥ λmin(Z
TZ)∥Z∥2F ≥ λmin(Z

TZ)∥Z2∥2F
which this proves sin2 ϕ = ∥Z2∥2F /λmin(Z

TZ) ≤ ρ2 as desired.

E Preliminaries for the Noisy Case

E.1 Notations

In the following sections, we extend our proofs to the noisy setting. As before, we denote by
M⋆ = ZZT ∈ Rn×n our ground truth. Our measurements are of the form y = A(ZZT ) + ϵ ∈ Rm.
We make the standard assumption that the noise vector ϵ ∈ Rm has sub-Gaussian entries with zero
mean and variance σ2 = 1

m

∑m
i=1 E[ϵ2i ].
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In this case, the objective function can be written as

f(X) =
1

m
∥A(XXT )− y∥2 = fc(X) +

1

m
∥ϵ∥2 − 2

m
⟨A(XXT −M⋆), ϵ⟩,

where fc(X) = 1
m∥A(XXT −M⋆)∥2 is the objective function with clean measurements that are

not corrupted with noise. Note that compared to the noiseless case, we have rescaled our objective by
a factor of 1/m to emphasize the number of measurements m.

Moreover, we say that an event E happens with overwhelming or high probability, if its probability of
occurrence is at least 1− cn−c′ , for some 0 < c, c′ <∞. Moreover, to streamline the presentation,
we omit the statement “with high or overwhelming probabily” if it is implied by the context.

We make a few simplifications on notations. As before, we will use α to denote the step-size and D
to denote the local search direction. We will use lower case letters x and d to refer to vec(X) and
vec(D) respectively.

Similarly, we will write f(x) ∈ Rnr and ∇f(x) ∈ Rnr as the vectorized versions of f(X) and
its gradient. This notation is also used for fc(X). As before, we define P = XTX + ηIr and
P = (XTX + ηIr)⊗ In. For the vectorized version of the gradient, we simply define its P -norm
(and P ∗-norm) to be the same as the matrix version, that is,

∥∇f(x)∥P = ∥∇f(X)∥P , ∥∇f(x)∥P∗ = ∥∇f(X)∥P∗ .

We drop the iteration index k from our subsequent analysis, and refer to xk+1 and xk as x̃ and x,
respectively. Thus, with noisy measurements, the iterations of PrecGD take the form

Xk+1 = Xk − α∇f(Xk)(X
T
k Xk)

−1.

The vectorized version of the gradient update above can be written as x̃ = x− αd, where

d = vec(∇f(X)P−1) = vec

(
fc(X) +

1

m
∥ϵ∥2 − 2

m
⟨A(XXT −M⋆), ϵ⟩

)
= P−1∇fc(x)−

2

m
P−1

(
Ir ⊗

m∑
i=1

ϵiAi

)
x.

(56)

Inspired by the variational representation of the Frobenius norm, for any matrix H ∈ Rn×n we define
its restricted Frobenius norm as

∥H∥F,r = arg max
Y ∈S+

n ,rank(Y )≤r
⟨H,Y ⟩ , (57)

where S+
n is the set of n×n positive semidefinite matrices. It is easy to verify that ∥H∥F = ∥H∥F,n

and ∥H∥F,r =
√∑r

i=1 σi(H)2.

For any two real numbers a, b ∈ R, we say that a ≍ b if there exists some constant C1, C2 such that
C1b ≤ a ≤ C2b. Through out the section we will use one symbol C to denote constants that might
differ.

Finally, we also recall that µP , which is used repeatedly in this section, is the constant defined in (33).

E.2 Auxiliary Lemmas

Now we present a few auxiliary lemmas that we will use for the proof of the noisy case. At the core
of our subsequent proofs is the following standard concentration bound.

Lemma 16. Suppose that the number of measurements satisfies m ≳ σn log n. Then, with high
probability, we have

1

m

∥∥∥∥∥
m∑
i=1

Aiϵi

∥∥∥∥∥
2

≲

√
σ2n log n

m
,

where ∥ · ∥2 denotes the operator norm of a matrix.
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Lemma 16 will be used extensively in the proofs of Proposition 6, and Theorems 7 and 8.

Our strategy for establishing linear convergence is similar to that of the noiseless case. Essentially,
our goal is to show that with an appropriate step-size, there is sufficient decrement in the objective
value in terms of ∥∇fc(X)∥P∗ . Then applying Theorem 4 will result in the desired convergence rate.

In the noiseless case, we proved a Lipschitz-like inequality (Lemma 2) and bounded the Lipschitz
constant above in a neighborhood around the ground truth. Similar results hold in the noisy case.
However, because of the noise, it will be easier to directly work with the quartic polynomial fc(X −
αD) instead. In particular, we have the following lemma that characterizes how much progress we
make by taking a step in the direction D.
Lemma 17. For any descent direction D ∈ Rn×r and step-size α > 0 we have

fc(X − αD) ≤ fc(X)− α∇fc(X)TD +
α2

2
DT∇2fc(X)D (58)

+
(1 + δ)α3

m
∥D∥2F

(
2∥DXT +XDT ∥F + α∥D∥2F

)
. (59)

Proof. Directly expanding the quadratic fc(X − αD), we get

fc(X − αD) =
1

m
∥A((X − αD)(X − αD)T −M⋆)∥2

=
1

m
∥A(XXT −M⋆)∥2 − 2α

m
⟨A(XXT −M⋆),A(XDT +DXT )⟩

+
α2

m

[
2⟨A(XXT −M⋆),A(DDT )⟩+ ∥A(XDT +DXT )∥2

]
− 2α3

m
⟨A(XDT +DXT ),A(DDT )⟩+ α4

m
∥A(DDT )∥2.

We bound the third- and fourth- order terms

|⟨A(XDT +DXT ),A(DDT )⟩|
(a)
≤ ∥A(XDT +DXT )∥∥A(DDT )⟩∥
(b)
≤ (1 + δ)∥XDT +DXT ∥F ∥DDT ∥F
(c)
≤ (1 + δ)∥XDT +DXT ∥F ∥D∥2F

and

∥A(DDT )∥2
(b)
≤ (1 + δ)∥DDT ∥2F

(c)
≤ (1 + δ)∥D∥4F ,

Step (a) uses the Cauchy–Schwarz inequality; Step (b) applies (δ, 2r)-RIP; Step (c) bounds
∥DDT ∥F ≤ ∥D∥2F . Summing up these inequalities we get the desired result.

It turns out that in our proofs it will be easier to work with the vectorized version of (59), which we
can write as

fc(x−αd) ≤ fc(x)−α∇fc(x)T d+
α2

2
dT∇2fc(x)d+

(1 + δ)α3

m
∥d∥2

(
2∥JXd∥+ α∥d∥2

)
, (60)

where we recall that JX : Rnr → Rn2

is the linear operator that satisfies JXd = vec(XDT +DXT ).

Now we proceed to bound the higher-order terms in the Taylor-like expansion above.
Lemma 18 (Second-order term). We have

σmax(P
−1/2∇2fc(x)P

−1/2) ≤ 2(1 + δ)

m

(
8σ2

r(X) + ∥XXT − ZZT ∥F
σ2
r(X) + η

)
.

Proof. For any v ∈ Rnr where v = vec(V ), we have

m · vT∇2fc(x)v = 4⟨A(XXT − ZZT ),A(V V T ) + 2∥A(XV T + V XT )∥2

≤ 4∥A(XXT − ZZT )∥∥A(V V T )∥+ 2∥A(XV T + V XT )∥2

≤ 2(1 + δ)
(
∥XXT − ZZT ∥F ∥V V T ∥F + 2∥XV T + V XT ∥2F

)
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Now, let v = P−1/2u for u = vec(U). Then, V = UP−1/2 and

∥V V T ∥F = ∥UP−1UT ∥F ≤ σmax(P
−1)∥U∥2F =

∥U∥2F
σ2
r(X) + η

.

Also, ∥XV T + V XT ∥F ≤ 2∥XV T ∥F and

∥XV T ∥ = ∥XP−1/2UT ∥ ≤ σmax(XP−1/2)∥U∥F =

(
σ2
r(X)

σ2
r(X) + η

)1/2

∥U∥F .

Since ∥u∥ = ∥U∥F , it follows that

uTP−1/2∇2fc(x)P
−1/2u ≤ 2(1 + δ)

m

(
8σ2

r(X) + ∥XXT − ZZT ∥
σ2
r(X) + η

)
∥u∥2,

which gives the desired bound on the largest singular value.

The following lemma gives a bound on the third- and fourth-order terms in (60).
Lemma 19. Set d = P−1∇fc(x), then we have ∥Jd∥2 ≤ 8m2∥∇fc(x)∥2P∗ and ∥d∥2 ≤
∥∇fc(x)∥2P∗/η.

Proof. We have

∥JXd∥2 = ∥A(XDT +DXT )∥2 ≤ (1 + δ)∥XDT +DXT ∥2

= (1 + δ)∥JXd∥2 = m2(1 + δ)∥JP−1∇fc(x)∥2

≤ m2(1 + δ)σ2
max(JP

−1/2)∥P−1/2∇fc(x)∥2

= 4m2(1 + δ)
σ2
r

σ2
r + η

∥∇fc(x)∥2P∗ ≤ 8m2∥∇fc(x)∥2P∗

and

∥d∥2 = ∥P−1∇fc(x)∥2 ≤ σmax(P
−1)∥P−1/2∇fc(x)∥2

=
1

σ2
r + η

∥∇f(x)∥2P∗ ≤ ∥∇f(x)∥2P∗/η.

F Proof of Noisy Case with Optimal Damping Parameter

Now we are ready to prove Theorem 7, which we restate below for convenience.
Theorem 20 (Noisy measurements with optimal η). Suppose that the noise vector ϵ ∈ Rm has sub-
Gaussian entries with zero mean and variance σ2 = 1

m

∑m
i=1 E[ϵ2i ]. Moreover, suppose that ηk =

1√
m
∥A(XkX

T
k −M∗)∥, for k = 0, 1, . . . ,K, and that the initial point X0 satisfies ∥A(X0X

T
0 −

M∗)∥2 < ρ2(1 − δ)λr∗(M
⋆)2. Consider k∗ = argmink ηk, and suppose that α ≤ 1/L, where

L > 0 is a constant that only depends on δ. Then, with high probability, we have

∥Xk∗XT
k∗ −M⋆∥2F ≲ max

{
1 + δ

1− δ

(
1− α

µP

2

)K
∥X0X

T
0 −M∗∥2F , Estat

}
, (61)

where Estat := σ2nr logn
µP (1−δ)m .

Proof. Step I. Using Lemma 17 to establish sufficient decrement.

First, we write out the vectorized version of Lemma 60:

fc(x−αd) ≤ fc(x)−α∇fc(x)T d+
α2

2
dT∇2fc(x)d+

(1 + δ)α3

m
∥d∥2

(
2∥JXd∥+ α∥d∥2

)
. (62)

To simplify notation, we define the error term E(x) = 2
m (Ir ⊗

∑m
i=1 ϵiAi)x, so that the search

direction (56) can be rewritten as d = P−1(∇fc(x)− E(x)).
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Now plugging this d into (62) yields

fc(x− αd) ≤fc(x)− α∥∇fc(x)∥2P∗ + T1 + T2 + T3

where

T1 =α∇fc(x)TP−1E(x)

T2 =
α2

2

(
∇fc(x)TP−1∇2fc(x)P

−1∇fc(x) + E(x)TP−1∇2fc(x)P
−1E(x)

− 2∇fc(x)TP−1∇2fc(x)P
−1E(x)

)
T3 =(1 + δ)α3

(
∥P−1∇fc(x)−P−1E(x)∥2

) (
2∥JP−1∇fc(x)∥+ 2∥JP−1E(x)∥

+ α∥P−1∇fc(x)−P−1E(x)∥2
)
.

II. Bounding T1, T2 and T3.

We control each term in the above expression individually. First, we have

T1 = α∇fc(x)TP−1E(x) ≤ α∥P−1∇fc(x)∥P ∥E(x)∥P∗ = α∥∇fc(x)∥P∗∥E(x)∥P∗ .

To bound T2, first we note that for any vectors x, y ∈ Rn and any positive semidefinite matrix
P ∈ Sn

+, we always have (x+ y)TP (x+ y) ≤ 2(xTPx+ yTPy). Therefore we can bound

T2 ≤ α2
(
∇fc(x)TP−1∇2fc(x)P

−1∇fc(x) + E(x)TP−1∇2fc(x)P
−1E(x)

)
.

Next, we apply Lemma 18 to arrive at

1

2
σmax(P

−1/2∇2fc(x)P
−1/2)≤1 + δ

m

(
8σ2

r(X) + ∥XXT −M⋆∥
σ2
r(X) + η

)
def

≤ Lδ,

where Lδ is a constant that only depends on δ and m. Note that the last inequality follows from the
fact that η = O(∥XXT −M⋆∥).
Now based on the above inequality, we have

α2
(
∇fc(x)TP−1∇2fc(x)P

−1∇fc(x)
)
≤ 2α2Lδ∥∇fc(x)∥2P∗

α2
(
E(x)TP−1∇2fc(x)P

−1E(x)
)
≤ 2α2Lδ∥E(x)∥2P∗ ,

which implies
T2 ≤ 2α2Lδ∥∇fc(x)∥2P∗ + 2α2Lδ∥E(x)∥2P∗

Finally, to bound T3, we first write

∥P−1∇fc(x)−P−1E(x)∥2 ≤ 2∥P−1∇fc(x)∥2 + 2∥P−1E(x)∥2.

Moreover, invoking Lemma 19 leads to the following inequalities

∥P−1∇fc(x)∥2 ≤
∥∇fc(x)∥2P∗

η
, ∥P−1E(x)∥2 ≤ ∥E(x)∥

2
P∗

η
.

∥JP−1/2∇fc(x)∥ ≤ 2
√
2∥∇fc(x)∥P∗ , ∥JP−1/2E(x)∥ ≤ 2

√
2∥E(x)∥P∗ .

Combining the above inequalities with the definition of T3 leads to:

T3 ≤
4(1 + δ)α3

η

(
∥∇fc(x)∥2P∗ + ∥E(x)∥2P∗

)
×
(
2
√
2∥∇fc(x)∥P∗ + 2

√
2∥∇E(x)∥P∗ +

α

η
∥∇fc(x)∥2P∗ +

α

η
∥E(x)∥2P∗

)
.

III. Bounding the Error Term
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Next, we provide an upper bound on ∥E(x)∥P∗ . The following chain of inequalities hold with high
probability:

∥E(x)∥2P∗ = E(x)TP−1E(x) =

∥∥∥∥∥
(

2

m

m∑
i=1

ϵiAi

)
X(XTX + ηI)−1/2

∥∥∥∥∥
2

F

≤

∥∥∥∥∥
(

2

m

m∑
i=1

ϵiAi

)∥∥∥∥∥
2

2

∥∥∥X(XTX + ηI)−1/2
∥∥∥2
F

(a) ≤ C
σ2n log n

m

(
r∑

i=1

σ2
i (X)

σi(X)2 + η

)

≤ C
σ2rn log n

m
,

where C is an absolute constant and (a) follows from Lemma 16.

IV. Bounding all the terms using ∥∇fc(x)∥P∗

Combining the upper bound on ∥E(X)∥P∗ with the previous bounds for T1, T2, T3 and denoting
∆ = ∥∇fc(x)∥P∗, we have

T1 ≤ α∆

√
Cσ2rn log n

m
,

T2 ≤ 2α2Lδ∆
2 + 2α2Lδ

σ2rn log n

m

T3 ≤
4(1 + δ)α3

η

(
∆2 +

Cσ2rn log n

m

)(
α∆2

η
+

αCσ2rn log n

ηm
+ 2
√
2∆ + 2

√
2

√
Cσ2rn log n

m

)
Now, combining the upper bounds for T1, T2 and T3 with (62) yields

fc(x− αd) ≤ fc(x)− α∆2 + α∆

√
Cσ2rn log n

m
+ 2α2Lδ∆

2 + 2Cα2Lδ
σ2rn log n

m

+
4(1 + δ)α3

η

(
∆2 +

Cσ2rn log n

m

)(
α∆2

η
+

αCσ2rn log n

ηm
+ 2
√
2∆ + 2

√
2

√
Cσ2rn log n

m

)
.

(63)

The above inequality holds with high probability for every iteration of PrecGD.

V. Two cases

Now, we consider two cases. First, suppose that η ≤ 2
√

Cσ2nr logn
µPm . This implies that mink ηk ≤

2
√

Cσ2nr logn
µPm , and hence,

∥Xk∗XT
k∗ −M⋆∥2F ≲

1

1− δ

1

m
∥A(Xk∗XT

k∗ −M⋆)∥2 ≲ Estat

which completes the proof.

Otherwise, suppose that η > 2
√

Cσ2nr logn
µPm . Due to Theorem 4, we have ∆ ≥ 2

√
Cσ2rn logn

m ,
which leads to the following inequalities:

−α∆2 + α∆

√
Cσ2rn log n

m
≤ −α

2
∆2, 2α2Lδ∆

2 + 2Cα2Lδ
σ2rn log n

m
≤ 5

2
α2Lδ∆

2.

Similarly, we have

∆2 +
Cσ2rn log n

m
≤ 5

4
∆2, 2

√
2∆ + 2

√
2

√
Cσ2rn log n

m
≤ 3
√
2∆,
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and
α∆2

η
+

α

η

Cσ2rn log n

m
≤ 5

4

α∆2

η
.

Combined with (63), we have

fc(x− αd) ≤ fc(x)−
α

2
∆2 +

5

2
α2Lδ∆

2 +
4(1 + δ)α3

η

(
5

4
∆2

)(
3
√
2∆ +

5

4

α∆2

η

)
≤ fc(x)−

α

2
∆2

(
1− 5

2
Lδα− 60

√
2
α2∆

η
− 25α3

(
∆

η

)2
)
.

Similar to the noiseless case, we can bound the ratio ∆
η as

∆

η
=
∥∇fc(x)∥P∗

η
≤ (1 + δ)σmax(JP

−1/2)∥e∥
∥e∥

= (1 + δ)
σ2
max(X)

σ2
max(X) + η

≤ 1 + δ,

which in turn leads to

fc(x− αd) ≤ fc(x)−
α

2
∆2

(
1− 5

2
Lδα− 60

√
2α2(1 + δ)− 25α3(1 + δ)2

)
.

Now, assuming that the step-size satisfies α ≤ min
{

Lδ

60
√
2(1+δ)+25(1+δ)2

, 1
7Lδ

}
. Since Lδ

is a constant, we can simply write the condition above as α ≤ 1/L where L =

max
{

60
√
2(1+δ)+25(1+δ)2

Lδ
, 7Lδ

}
. Now note that

5

2
Lδ + 60

√
2(1 + δ)α+ 25(1 + δ)2α2 ≤ 7

2
Lδ

=⇒ 1− 5

2
Lδα− 60

√
2(1 + δ)α2 − 25(1 + δ)2α3 ≥ 1− 7

2
Lδα ≥

1

2
.

This implies that

fc(x− αd) ≤ fc(x)−
t∆2

4
≤
(
1− αµP

4

)
fc(x),

where in the last inequality, we used ∆2 ≥ µP fc(x), which is just the PL-inequality in Theorem 4.
Finally, since fc(x) satisfies the RIP condition, combining the two cases above we get

∥Xk∗XT
k∗ −M⋆∥2F ≲ max

{
1 + δ

1− δ

(
1− α

µP

2

)k
∥X0X

T
0 −M∗∥2F , Estat

}
, (64)

as desired.

G Proof of Noisy Case with Variance Proxy (Theorem 8)

In this section we prove Theorem 8, which we restate below for convenience. The only difference
between this theorem and Theorem 7 is that we de not assume that we have access to the optimal
choice of η. Instead, we only assume that we have some proxy σ̂2 of the true variance of the noise.
For convenience we restate our result below.
Theorem 21 (Noisy measurements with variance proxy). Suppose that the noise vector ϵ ∈ Rm has
sub-Gaussian entries with zero mean and variance σ2 = 1

m

∑m
i=1 E[ϵ2i ]. Moreover, suppose that

ηk =
√
|f(Xk)− σ̂2| for k = 0, 1, . . . ,K, where σ̂2 is an approximation of σ2, and that the initial

point X0 satisfies ∥A(X0X
T
0 −M∗)∥2F < ρ2(1− δ)λr∗(M

⋆)2. Consider k∗ = argmink ηk, and
suppose that α ≤ 1/L, where L > 0 is a constant that only depends on δ. Then, with high probability,
we have

∥Xk∗XT
k∗ −M∗∥2F ≲ max

{
1 + δ

1− δ

(
1− α

µP

2

)K
∥X0X

T
0 −M∗∥2F , Estat, Edev, Evar

}
, (65)

where

Estat :=
σ2nr log n

µP (1− δ)m
, Edev :=

σ2

1− δ

√
log n

m
, Evar := |σ2 − σ̂2|2. (66)
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The proof of Theorem 8 is similar to that of Theorem 7, with a key difference that ηk =
1√
m
∥A(XkX

T
k −M⋆)∥ is replaced with ηk =

√
|f(xk)− σ̂2|. Our next lemma shows that this

alternative choice of damping parameter remains close to 1√
m
∥A(XkX

T
k −M⋆)∥, provided that the

error exceeds a certain threshold.
Lemma 22. Set η =

√
|f(x)− σ̂2|. Then, with high probability, we have√

1/4− δ

1 + δ

1√
m

∥∥A(XXT −M⋆)
∥∥ ≤ η ≤

√
7/4 + δ

1− δ

1√
m

∥∥A(XXT −M⋆)
∥∥

provided that

∥XXT −M⋆∥2F ≳ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
.

Proof. One can write

f(x) =
1

m
∥y −A(XXT )∥2 =

1

m
∥A(M⋆ −XXT ) + ϵ∥2

=
1

m
∥A(M⋆ −XXT )∥2 + 1

m
∥ϵ∥2 + 2

m

〈
A(M⋆ −XXT ), ϵ

〉
.

Due to the definition of the restricted Frobenius norm (57), we have

|
〈
A(M⋆ −XXT ), ϵ

〉
| ≤ ∥M⋆ −XXT ∥F

∥∥∥∥∥ 1

m

m∑
i=1

Aiϵi

∥∥∥∥∥
F,2r

.

Therefore, we have∣∣∣∣∣∣ 1m∥A(M⋆ −XXT )∥2 + 1

m
∥ϵ∥2 − σ̂2 − 2∥M⋆ −XXT ∥F

∥∥∥∥∥ 1

m

m∑
i=1

Aiϵi

∥∥∥∥∥
F,2r

∣∣∣∣∣∣ ≤ η2 (67)

∣∣∣∣∣∣ 1m∥A(M⋆ −XXT )∥2 + 1

m
∥ϵ∥2 − σ̂2 + 2∥M⋆ −XXT ∥F

∥∥∥∥∥ 1

m

m∑
i=1

Aiϵi

∥∥∥∥∥
F,2r

∣∣∣∣∣∣ ≥ η2. (68)

Since the error ϵi is sub-Gaussian with parameter σ, the random variable ϵ2i is sub-exponential with
parameter 16σ. Therefore,

P
(∣∣∣∣ 1m∥ϵ∥2 − σ2

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−Cmt2

σ2

)
.

Now, upon setting t =
√

σ2 logn
m , we have∣∣∣∣ 1m∥ϵ∥2 − σ2

∣∣∣∣ ≤
√

σ2 log n

m
,

Moreover, we have∥∥∥∥∥ 1

m

m∑
i=1

Aiϵi

∥∥∥∥∥
F,2r

≤
√
2r

∥∥∥∥∥ 1

m

m∑
i=1

Aiϵi

∥∥∥∥∥
2

≲

√
σ2rn log n

m
. (69)

Combining the above two inequalities with (67) leads to

η2 ≥ 1

m
∥A(M⋆ −XXT )∥2 − C∥M⋆ −XXT ∥F

√
σ2rn log n

m
−
√

σ2 log n

m
− |σ2 − σ̂2|

≥ (1− δ)∥XXT −M⋆∥2F − C∥XXT −M⋆∥F

√
σ2rn log n

m
−
√

σ2 log n

m
− |σ2 − σ̂2|.

(70)
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Now assuming that

∥XXT −M⋆∥2F ≥ max

{
16C2σ

2rn log n

m
, 4

√
σ2 log n

m
, 4|σ2 − σ̂2|

}
,

the inequality (70) can be further lower bounded as

η2 ≥ (1/4− δ)∥XXT −M⋆∥2F ≥
1/4− δ

1 + δ

1

m
∥A(XXT −M⋆)∥,

which completes the proof for the lower bound. The upper bound on η2 can be established in a similar
fashion.

Now we are ready to prove Theorem 8.

Proof. We consider two cases. First, suppose that

min
k

ηk ≲ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
.

Combined with (70), this implies that

(1− δ)∥Xk∗XT
k∗ −M⋆∥2F − C∥Xk∗XT

k∗ −M⋆∥F

√
σ2rn log n

m

≲ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
. (71)

Now, if ∥Xk∗XT
k∗ −M⋆∥F ≤ 2C

√
σ2rn logn

m , then the proof is complete. Therefore, suppose that

∥Xk∗XT
k∗ −M⋆∥F > 2C

√
σ2rn logn

m . This together with (71) leads to

∥Xk∗XT
k∗ −M⋆∥2F ≲

1

1/2− δ
max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
,

which again completes the proof. Finally, suppose that

min
k

ηk ≳ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
.

This combined with (67) implies that

(1 + δ)∥Xk∗XT
k∗ −M⋆∥2F + C∥Xk∗XT

k∗ −M⋆∥F

√
σ2rn log n

m

≳ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
,

for every k = 0, 1, . . . ,K. If ∥Xk∗XT
k∗ −M⋆∥F ≤ 2C

√
σ2rn logn

m , then the proof is complete.

Therefore, suppose that ∥Xk∗XT
k∗−M⋆∥F > 2C

√
σ2rn logn

m . This together with the above inequality
results in

∥XkX
T
k −M⋆∥2F ≳

1

3/2 + δ
max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}

≳ max

{
σ2rn log n

m
,

√
σ2 log n

m
, |σ2 − σ̂2|

}
for every k = 0, 1, . . . ,K. Therefore, Lemma 22 can be invoked to show that

ηk ≍
1√
m
∥A(XkX

T
k −M⋆)∥.

With this choice of ηk, the rest of the proof is identical to that of Theorem 7, and omitted for
brevity.
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H Proof for Spectral Initialization (Proposition 6)

In this section we prove that spectral initialization is able to generate a sufficiently good initial point
so that PrecGD achieves a linear convergence rate, even in the noisy case. For convenience we restate
our result below.
Proposition 23 (Spectral Initialization). Suppose that δ ≤ (8κ

√
r∗)−1 and m ≳ 1+δ

1−δ
σ2rn logn
ρ2λ2

r⋆
(M⋆)

where κ = λ1(M
⋆)/λr⋆(M

⋆). Then, with high probability, the initial point X0 produced by (18)
satisfies the radius condition (17).

Proof. Let A∗ : Rm → Rn×n be the dual of the linear operator A(·), defined as A∗(y) =∑m
i=1 yiAi. Based on this definition, the initial point X0 ∈ Rn×r satisfies X0 = Pr

(
1
mA

∗(y)
)
,

where we recall that
Pr(M) = arg min

X∈Rn×r
∥XXT −M∥F .

Define E = X0X
T
0 −M⋆, and note that rank(E) ≤ 2r. It follows that

∥E∥F =

√√√√ r∑
i=1

σi(E)2 +

2r∑
i=r+1

σi(E)2 ≤
√
2∥E∥F,2r

≤
√
2

∥∥∥∥X0X
T
0 −

1

m
A∗(y)

∥∥∥∥
F,2r

+
√
2

∥∥∥∥ 1

m
A∗(y)−M⋆

∥∥∥∥
F,2r

≤ 2
√
2

∥∥∥∥ 1

m
A∗(y)−M⋆

∥∥∥∥
F,2r

≤ 2
√
2

∥∥∥∥ 1

m
A∗(A(M⋆))−M⋆

∥∥∥∥
F,2r

+ 2
√
2

∥∥∥∥ 1

m
Aiϵi

∥∥∥∥
F,2r

≤ 2
√
2δ∥M⋆∥F + 2

√
2

∥∥∥∥ 1

m
Aiϵi

∥∥∥∥
F,2r

.

Now, note that ∥M⋆∥F ≤
√
r∗κλr∗(M

⋆). Moreover, due to Lemma 16, we have

2
√
2

∥∥∥∥ 1

m
Aiϵi

∥∥∥∥
F,2r

≤ 2
√
2
√
2r

∥∥∥∥ 1

m
Aiϵi

∥∥∥∥
2

≲

√
σ2rn log n

m
. (72)

This implies that

1

m
∥A(X0X

T
0 −M⋆)∥2 ≤ 16(1 + δ)r∗κ2λr∗(M

⋆)2δ2 + C
σ2rn log n

m

Therefore, upon choosing δ ≤ ρ

8
√
r∗κ

and m ≳ 1+δ
1−δ

σ2rn logn
ρ2λ2

r∗ (M
⋆)

, we have

1

m
∥A(XXT −M∗)∥2 ≤ ρ2(1− δ)λr∗(M

⋆)2 (73)

This completes the proof.

I Proof of Lemma 16

First we state a standard concentration inequality. A proof of this result can be found in Tropp [56].
Lemma 24 (Matrix Bernstein’s inequality). Suppose that {Wi}mi=1 are matrix-valued random
variables such that E[Wi] = 0 and ∥Wi∥2 ≤ R2 for all i = 1, . . . ,m. Then

P

(∥∥∥∥∥
m∑
i=1

Wi

∥∥∥∥∥ ≥ t

)
≤ n exp

(
−t2

2 ∥
∑m

i=1 E [W 2
i ]∥2 +

2R2

3 t

)
.

We also state a standard concentration bound for the operator norm of Gaussian ensembles. A simple
proof can be found in Wainwright [57].

29



Lemma 25. Let A ∈ Rn×n be a standard Gaussian ensemble with i.i.d. entries. Then the largest
singular value of A (or equivalently, the operator norm) satisfies

σmax(A) ≤ (2 + c)
√
n

with probability at least 1− 2 exp(−nc2/2).

For simplicity, we assume that the measurement matrices Ai, i = 1, . . .m are fixed and all satisfy
∥Ai∥ ≤ C

√
n. Due to Lemma 25, this assumption holds with high probability for Gaussian

measurement ensembles. Next, we provide the proof of Lemma 16.

Proof of Lemma 16. First, note that ∥Aiεi∥2 ≤ ∥Ai∥ · |εi|. The assumption ∥Ai∥ ≲
√
n implies

that ∥Aiεi∥ is sub-Gaussian with parameter C
√
nσ. Therefore, we have P(∥Aiε∥ ≳

√
nt) ≥

1− 2 exp
(
− t2

2σ2

)
. Applying the union bound yields

P( max
i=1,...,m

∥Aiε∥ ≥
√
nt) ≥ 1− 2m exp

(
− t2

2σ2

)
.

Moreover, one can write ∥∥∥∥∥
m∑
i=1

E[(Aiεi)
2]

∥∥∥∥∥ ≤
m∑
i=1

∥Ai∥2E[ε2i ] ≲ σ2mn (74)

Using Matrix Bernstein’s inequality, we get

P

(
1

m

∥∥∥∥∥
m∑
i=1

Aiε

∥∥∥∥∥ ≤ t

)
≥ 1− n exp

(
− t2m2

2Cσ2mn+ 2
3C

′√nmt

)
− 2m exp

(
− t2

2

)
.

Using t ≍
√

σ2n logn
m in the above inequality leads to

P

(
1

m

∥∥∥∥∥
m∑
i=1

Aiε

∥∥∥∥∥ ≲

√
σ2n log n

m

)
≥ 1− n−C − 2m exp

(
− t2

2

)
≳ 1− 3n−C ,

where the last inequality follows from the assumption m ≳ σn log n. This completes the proof.
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