
A Theory: Proofs and Complimentary Material

A.1 Proof of Lemma 3.1

Lemma. It holds that

Q̂πo

d (s, πo(s)) = Ro(s) + γdGo(s), max
a6=πo(s)

Q̂πo

d (s, a) = Re(s) + γdGe(s),

with
Go(s) ∼ GEV(µGEV

o (s), σGEV
o , 0), Ge(s) ∼ GEV(µGEV

e (s), σGEV
e , 0),

where GEV is the Generalized Extreme Value distribution and

µGEV
o (s) = µo(s) + σoΦ

−1
(

1− 1

Ad−1

)
,

σGEV
o = σo

[
Φ−1

(
1− 1

eAd−1

)
− Φ−1

(
1− 1

Ad−1

)]
,

µGEV
e (s) = µe(s) + σeΦ

−1
(

1− 1

Ad −Ad−1
)
,

σGEV
e = σe

[
Φ−1

(
1− 1

e(Ad −Ad−1)

)
− Φ−1

(
1− 1

Ad −Ad−1
)]

. (7)

The function Φ−1 is the inverse of the CDF of the standard normal distribution.

Proof. For 1 ≤ i ≤ Ad−1, let N
(i)
o be independent random variables distributed

N
(i)
o ∼ N (µo(s), σ

2
o). According to (1), we have that

Q̂πo

d (s, a) =

[
max

(ak)dk=1∈A

[
d−1∑
t=0

γtr(st, at)

]
+ γdQ̂πo(sd, ad)

]
s0=s,a0=a

.

For the case of a = πo(s), using Assumption 2, we can replace the cumulative reward above with
Ro(s) and be left with

Q̂πo

d (s, πo(s)) = Ro(s) + γd max
(ak)dk=1∈A

Q̂πo(sd, ad)
∣∣
s0=s,a0=πo(s)

= Ro(s) + γd max
1≤i≤Ad−1

N (i)
o

= Ro(s) + γdGo(s),

where the second relation is due to Assumptions 1 together with 2, and the third follows from the
maximum of {N (i)

o }A
d−1

i=1 being GEV-distributed with the parameters in the statement, derived as
in [9]. Similarly, for a0 6= π0(s), we will have Ad −Ad−1 iid variables N (i)

e ∼ N (µe(s), σ
2
e) and,

consequently, Ge(s) as given in the statement.

A.2 Proof of Lemma 3.2

Lemma. It holds that

E
[
Q̂πo

d (s, πo(s))
]

= Qπo

d (s, πo(s)) + γdBo(σo, A, d),

E
[

max
a 6=πo(s)

Q̂πo

d (s, a)

]
= Qπo

d (s, a 6= πo(s)) + γdBe(σe, A, d),

where the biases Bo and Be, satisfying 0 ≤ Bo(σo, A, d) < Be(σe, A, d), are given by

Bo(σo, A, d) =

{
0 if d = 1,

σoΦ
−1 (1− 1

Ad−1

)
+ γEMσ

GEV
o otherwise,

Be(σe, A, d) =

{
0, if d = 1 and A = 2

σeΦ
−1
(

1− 1
Ad−Ad−1

)
+ γEMσ

GEV
e , otherwise.

(8)

The constant γEM ≈ 0.58 is the Euler–Mascheroni constant.
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Proof. First, obviously, the maximum over a set containing a single random variable has the distribu-
tion of that single element. Hence, there is no overestimation bias in the single-element case; i.e.,
the bias is 0 for the sub-tree of a = πo(s) with d = 1, and the sub-tree of a 6= πo(s) with d = 1 and
A = 2.

Next, let X be s.t. X ∼ GEV(µGEV, σGEV, 0). From [9], we have that

E [X] = µGEV + γEMσ
GEV. (9)

Applying Lemma 3.1, we have that

E
[
Q̂πo

d (s, πo(s))
]

= E
[
Ro(s) + γdGo(s)

]
= Ro(s) + γdE [Go(s)] (10)

= Ro(s) + γd
[
µo(s) + σoΦ

−1
(

1− 1

Ad−1

)
+ γEMσ

GEV
o

]
(11)

= Qπo

d (s, πo(s)) + γdBo(σo, A, d), (12)
where relation (10) is due to the rewards being deterministic (Assumption 2), relation (11) follows
from Lemma 3.1 together with (9), and relation (12) is due to the definition of Qπo

d (s, πo(s)) in (1),

together with Assumptions 1 and 2. The calculation for the expectation E
[
maxa 6=πo(s) Q̂

πo

d (s, a)
]

follows the same steps.

Next, we show that
0 ≤ Bo(σo, A, d) < Be(σe, A, d). (13)

For this, let us define

B(n) =

{
0 n = 1

γEMΦ−1
(
1− 1

en

)
+ (1− γEM)Φ−1

(
1− 1

n

)
, n 6= 1.

Notice we now have Bo(σo, A, d) = σoB(Ad−1) and Be(σe, A, d) = σeB(Ad − Ad−1). Since
by Assumption 1 we have that σe > σo > 0, to prove (13) it is sufficient to show that
0 ≤ B(Ad−1) < B(Ad −Ad−1). Since B(n) is composed of two positive monotonically increasing
functions, it is a positive monotonically increasing function. So, whenever Ad−1 < Ad −Ad−1, we
also have that 0 ≤ B(Ad−1) < B(Ad −Ad−1) and, consequently, (13). Taking a log, we see it is
indeed the case for A > 2. For A = 2, we have equality and B(Ad−1) = B(Ad −Ad−1). But then,
(13) holds again, since σe > σo > 0.

A.3 Proof of Theorem 3.3

Theorem. The relation E

[
Q̂BCTS,πo

d (s, πo(s))

]
> E

[
maxa6=πo(s) Q̂

BCTS,πo

d (s, a)

]
, holds if and only

if Qπo

d (s, πo(s)) > maxa6=πo(s)Q
πo

d (s, a).

Proof. For the case of a = πo(s), we have

E

[
Q̂BCTS,πo

d (s, πo(s))

]
= E

[
Q̂πo

d (s, πo(s))

]
= Qπo

d (s, πo(s)) + γdBo(σo, A, d),

where the first relation holds by the definition in (3) and the second relation follows from Lemma 3.2.
Using the same arguments, for a 6= πo(s),

E

[
max
a 6=πo(s)

Q̂BCTS,πo

d (s, a)

]

= E

[
max
a 6=πo(s)

Q̂πo

d (s, a)

]
− γd [Be(σe, A, d)−Bo(σo, A, d)] + γdBe(σe, A, d)

= max
a 6=πo(s)

Qπo

d (s, a) + γdBo(σo, A, d),
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and the result immediately follows.

A.4 Proof of Lemma 3.4

Lemma. When Ad−1 � 1, the correction term in (3) can be approximated with

Be(σe, A, d)−Bo(σo, A, d) ≈
√

2 logA
(
σe
√
d− σo

√
d− 1

)
− (σe − σo)/2. (14)

Proof. In the following, we apply the approximation

Φ−1
(

1− 1

n

)
≈
√

2 log n− 0.5 (15)

from [3], which we empirically show to be highly accurate in Appendix A.7.

By definition (7),

σGEV
e = σe

[
Φ−1

(
1− 1

e(Ad −Ad−1)

)
− Φ−1

(
1− 1

Ad −Ad−1
)]

≈ σe
[
Φ−1

(
1− 1

eAd

)
− Φ−1

(
1− 1

Ad

)]
(16)

≈ σe
[√

2 log (eAd)−
√

2 log (Ad)

]
(17)

= σe
2 log(eAd)− 2 logAd√
2 log (eAd)) +

√
2 logAd

≈ σe√
2d logA

, (18)

where in (16) we applied (15); in relation (17) we use that Ad −Ad−1 ≈ Ad since Ad � 1; and in
relation (18) we approximate 1 + log(Ad) ≈ log(Ad), again because Ad � 1.

When Ad � 1, the second case of (8) holds, and thus

Be(σe, A, d) = σeΦ
−1
(

1− 1

Ad −Ad−1
)

+ γEMσ
GEV
e

≈ σe
(√

2d logA− 0.5
)

+ γEM
σe√

2d logA

≈ σe
(√

2d logA− 0.5
)
,

where the second relation follows from (15) and (18), while for the third relation we approximate√
2 log(Ad)(1 + γEM

2 log(Ad)
) ≈

√
2 log(Ad) since Ad � 1 (recall that γEM ≈ 0.58).

Applying the same derivation for Bo gives that

Bo(σo, A, d) ≈ σo
(√

2(d− 1) logA− 0.5
)
, (19)

and the result follows directly.

A.5 Proof of Theorem 3.5

To prove Theorem 3.5, we first obtain the following non-approximate result.
Theorem A.1. The policy πBCTS

d (s) (see (4)) chooses a sub-optimal action with probability bounded
by:

Pr
(
πBCTS
d (s) /∈ arg max

a
Qπo

d (s, a)
)
≤

1 +
6
(
Qπo

d (s, πo(s))−maxa 6=πo(s)Q
πo

d (s, a)
)2

γ2dπ2
(

(σGEV
o )

2
+ (σGEV

e )
2
)

−1 .
(20)
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Proof. We first recall Cantelli’s inequality [7]: Let X be a real-valued random variable. Then, for
some λ > 0,

Pr (X − E [X] ≥ λ) ≤
(

1 +
λ2

Var[X]

)−1
. (21)

We choose
X := max

a6=πo(s)
Q̂BCTS,πo

d (s, a)− Q̂BCTS,πo

d (s, πo(s)).

We can now split the event of sub-optimal action choice as follows:

{πBCTS
d (s) /∈ arg max

a
Qπo

d (s, a)}

= {πo(s) ∈ arg max
a

Qπo

d (s, a) ∩X > 0}
⋃
{πo(s) /∈ arg max

a
Qπo

d (s, a) ∩X < 0}. (22)

Note that this division is possible because according to Assumptions 1 and 2, all actions different
than πo(s) have equal cumulative reward and value in expectation.

Next, we consider the two (deterministic) following possible cases.
Case I: πo(s) ∈ arg maxaQ

πo

d (s, a). Then, the second event in (22) is an empty set and we have
that

{πBCTS
d (s) /∈ arg max

a
Qπo

d (s, a)} = {X > 0}. (23)

Case II: πo(s) /∈ arg maxaQ
πo

d (s, a). Then, from symmetry, we will get
{πBCTS

d (s) /∈ arg maxaQ
πo

d (s, a)} = {X < 0}.
In the rest of the proof, we shall apply Cantelli’s inequality to upper bound P (X > 0) in Case I, i.e.,
to bound the sub-optimal action selection event. Afterward, we will explain how Case II yields the
same bound as in Case I.

Let us set
λ = −E [X] = Qπo

d (s, πo(s))− max
a 6=πo(s)

Qπo

d (s, a), (24)

where the second relation follows from the proof of Theorem 3.3. Next, we calculate the variance of
X using GEV theory [9]. For G ∼ GEV(µ, σ, 0), we have that Var [G] = σ2 π2

6 . Then,

Var [X] = Var
[

max
a 6=π(s)

Q̂BCTS,πo

d (s, a)− Q̂BCTS,πo

d (s, πo(s))

]
= Var

[
max
a 6=π(s)

Q̂BCTS,πo

d (s, a)

]
+ Var

[
Q̂BCTS,πo

d (s, πo(s))
]

= Var
[

max
a 6=π(s)

Q̂πo

d (s, a)

]
+ Var

[
Q̂πo

d (s, πo(s))
]

=
γ2d

(
σGEV
e

)2
π2

6
+
γ2d

(
σGEV
o

)2
π2

6
, (25)

where the third relation is because Var
[
Q̂BCTS,πo

d (s, a)
]

= Var
[
Q̂πo

d (s, a)
]

following (3); the last

relation follows from Q̂πo

d having a GEV distribution as given in Lemma 3.1.

Plugging (23), (24), and (25) into (21) gives the desired result for Case I. Finally, for Case II, we define
Y = −X and repeat exactly the same process to upper bound P (Y > 0). Since (E[Y ])2 = (E[X])2,
and Var[Y ] = Var[X], we obtain exactly the same bound as in Case I. This concludes the proof.

Theorem 3.5 now follows from Theorem A.1 after plugging the approximation (18) from the proof of
Lemma 3.4 in (20), and upper bounding the resulting expressions:

σGEV
e ≈ σe√

2d logA
≤ σe√

d logA
, σGEV

o ≈ σo√
2(d− 1) logA

≤ σo√
d logA

.
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A.6 Proof of Proposition 3.6

Proposition. Let v̂arn[X] be the variance estimator based on n samples of X. Then,

v̂arn=2[Q̂πo(s, a)] =
(
Q̂πo

1 (s, a)− Q̂πo
0 (s, a)

)2
/2 = δ2(s, a)/2,

where δ(s, a) is the Bellman error.

Proof. We shall employ the known unbiased variance estimator:
v̂arn=2[Q̂πo(s, a)]

=
1

n− 1

n∑
d=0

(
Q̂πo

d (s, a)− 1

n

n∑
d=0

Q̂πo

d (s, a)

)2

(n=2)
=

(
Q̂πo

0 (s, a)− Q̂πo
0 (s, a) + Q̂πo

1 (s, a)

2

)2

+

(
Q̂πo

1 (s, a)− Q̂πo
0 (s, a) + Q̂πo

1 (s, a)

2

)2

=
1

4

(
Q̂πo

0 (s, a)− Q̂πo
1 (s, a)

)2
+

1

4

(
Q̂πo

1 (s, a)− Q̂πo
0 (s, a)

)2
=
δ2(s, a)

2

A.7 Approximate bounds bias

To show the validity of our approximation, we numerically evaluate the two sides of (5), i.e. the LHS
Be(σe, A, d)−Bo(σo, A, d)

as given in (8), vs. the RHS√
2 logA

(
σe
√
d− σo

√
d− 1

)
− (σe − σo)/2.

To compute the values, we arbitrarily choose A = 3, σo = 1, σe = 4, and increase d. We plot the
results in Fig. 6. As seen, the approximation is highly accurate for all values of Ad.
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Figure 6: Quality of approximation in Lemma 3.4.

B Experiments complementary material

B.1 Inference timing

We measure the average complete TS time per action selection. We provide the results together with
the respective scores per game and depth in Fig. 7. The scores are obtained via BCTS with a Batch-
BFS implementation, as reported in Section 5.1. As depth increases, the number of explored nodes
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in the tree grows exponentially, with runtime increasing accordingly. The plots depict the tradeoff
between improved scores and the corresponding price in terms of runtime per action selection.
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Figure 7: Score vs. inference time of each TS operation as a function of TS depth.

B.2 Training

In our training experiments we use the same training hyper-parameters as the original DQN paper
[32].

B.3 Ablation study: Training with propagated value from the tree nodes

Here, we present an ablation study for the correction to the Bellman update proposed in [14] in
the case of a TS policy. This correction modifies the training target: Instead of bootstrapping the
value from the transition sampled from the replay buffer, we use the cumulative reward and value
computed during the TS. In Fig. 8, we present training plots for Atari Space-Invaders for DQN with
TS of depths 2,3, and 4. Note that for depth 1, the correction is vacuous since it coincides with the
classic Bellman update. As seen, for Space-Invaders, the correction improves convergence in all
tested depths.
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Figure 8: Propagated value from the tree nodes: Ablation study for Space-Invaders conver-
gence. Episodic training cumulative reward of DQN with TS based on 5 seeds. We compare the
standard update method with the update based on the propagated value from the tree nodes, as
proposed in [14].

Lastly, we summarize the results for all tested games in Table 2. The table reveals that the correction
often improves training, though not always. Therefore, we treat it as a hyper-parameter that we sweep
over.

C Training: Wall-clock time

We provide in Fig. 9 convergence plots of DQN with TS for all tested Atari games, for depths 0 to
4. To showcase the time efficiency of using a tree-based policy, we give the scores with respect to
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Table 2: Ablation study: Propagated value (PV) from the tree nodes: Ablation study for scores
of all tested games. All agents of all depths were trained using DQN with TS, with similar train time
that amounts to 30 million frames of DQN. The reported scores were obtained as in [22]: Average of
200 testing episodes, from the agent snapshot that obtained the highest score during training.

Game d = 2 d = 3 d = 4
PV=False PV=True PV=False PV=True PV=False PV=True

Asteroids 2, 613 2, 472 4, 794 4, 693 17, 929 15, 434
Breakout 568 581 420 417 620 573
MsPacman 2, 514 2, 923 3, 498 3, 046 2, 748 4, 021
SpaceInvaders 1, 314 1, 602 1, 204 2, 132 1, 452 2, 550
VideoPinball 214, 168 244, 052 442, 347 366, 670 345, 742 301, 752

the wall-clock time. We run each training experiment for two days, which amount to roughly 30
million frames for depth 0 and 1 million frames for depth 4. For each run, we display the average
score together with std using 5 seeds.

Fig. 9 reveals the trade-off between deeper TS inference (action selection) time and the improvement
thanks to the deeper TS. For regular DQN (depth=0), each inference is the fastest, but generally leads
to lower scores than deeper trees. On the other hand, the deepest tree is not necessarily the most
time-efficient. In most cases here, there is a sweet-spot in depth 2 or 3 that gives the best score for the
same training time.
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Figure 9: Training convergence plots for tree search with DQN of depths up to 4.

D Hardware

We run our training experiments on a 10 core Intel(R) CPU i9-10900X @ 3.70GHz equipped with
NVIDIA Quadro GV100 32GB.
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