
A PPO

Proximal Policy Optimization (PPO) [56] is an actor-critic RL algorithm that learns a policy πθ
and a value function Vθ with the goal of finding an optimal policy for a given MDP. PPO alternates
between sampling data through interaction with the environment and optimizing an objective function
using stochastic gradient ascent. At each iteration, PPO maximizes the following objective:

JPPO = Jπ − α1JV + α2Sπθ , (7)

where α1, α2 are weights for the different loss terms, Sπθ is the entropy bonus for aiding exploration,
JV is the value function loss defined as

JV =
(
Vθ(s)− V target

t

)2
.

The policy objective term Jπ is based on the policy gradient objective which can be estimated using
importance sampling in off-policy settings (i.e. when the policy used for collecting data is different
from the policy we want to optimize):

JPG(θ) =
∑
a∈A

πθ(a|s)Âθold(s, a) = Ea∼πθold

[
πθ(a|s)
πθold(a|s)

Âθold(s, a)

]
, (8)

where Â(·) is an estimate of the advantage function, θold are the policy parameters before the update,
πθold is the behavior policy used to collect trajectories (i.e. that generates the training distribution of
states and actions), and πθ is the policy we want to optimize (i.e. that generates the true distribution
of states and actions).

This objective can also be written as

JPG(θ) = Ea∼πθold
[
r(θ)Âθold(s, a)

]
, (9)

where

rθ =
πθ(a|s)
πθold(a|s)

is the importance weight for estimating the advantage function.

PPO is inspired by TRPO [55], which constrains the update so that the policy does not change too
much in one step. This significantly improves training stability and leads to better results than vanilla
policy gradient algorithms. TRPO achieves this by minimizing the KL divergence between the old
(i.e. before an update) and the new (i.e. after an update) policy. PPO implements the constraint in a
simpler way by using a clipped surrogate objective instead of the more complicated TRPO objective.
More specifically, PPO imposes the constraint by forcing r(θ) to stay within a small interval around
1, precisely [1− ε, 1 + ε], where ε is a hyperparameter. The policy objective term from equation (7)
becomes

Jπ = Eπ
[
min

(
rθÂ, clip (rθ, 1− ε, 1 + ε) Â

)]
,

where Â = Âθold(s, a) for brevity. The function clip(r(θ), 1− ε, 1 + ε) clips the ratio to be no more
than 1 + ε and no less than 1− ε. The objective function of PPO takes the minimum one between
the original value and the clipped version so that agents are discouraged from increasing the policy
update to extremes for better rewards.

Note that the use of the Adam optimizer [36] allows loss components of different magnitudes so
we can use Gπ and GV from equations (3) and (4) to be used as part of the DrAC objective in
equation (5) with the same loss coefficient αr. This alleviates the burden of hyperparameter search
and means that DrAC only introduces a single extra parameter αr.
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B Naive Application of Data Augmentation in RL

In this section, we further clarify why a naive application of data augmentation with certain RL
algorithms is theoretically unsound. This argument applies for all algorithms that use importance
sampling for estimating the policy gradient loss, including TRPO, PPO, IMPALA, or ACER. The use
of importance sampling is typically employed when the algorithm performs more than a single policy
update using the same data in order to correct for the off-policy nature of the updates. For brevity, we
will use PPO to explain this problem.

The correct estimate of the policy gradient objective used in PPO is the one in equation (1) (or
equivalently, equation (8)) which does not use the augmented observations at all since we are
estimating advantages for the actual observations, A(s, a). The probability distribution used to
sample advantages is πold(a|s) (rather than πold(a|f(s)) since we can only interact with the envi-
ronment via the true observations and not the augmented ones (because the reward and transition
functions are not defined for augmented observations). Hence, the correct importance sampling
estimate uses π(a|s)/πold(a|s). Using π(a|f(s))/πold(a|f(s)) instead would be incorrect for the
reasons mentioned above. What we argue is that, in the case of RAD, the only way to use the
augmented observations f(s) is in the policy gradient objective, whether by π(a|f(s))/πold(a|f(s))
or π(a|f(s))/πold(a|s), depending on the exact implementation, but both of these are incorrect.
In contrast, DrAC does not change the policy gradient objective at all which remains the one in
equation (1) and instead uses the augmented observations in the additional regularization losses, as
shown in equations (3), (4), and (5).

C Cycle-Consistency

Here is a description of the cycle-consistency metric proposed by Aytar et al. [3] and also used in Lee
et al. [44] for analyzing the learned representations of RL agents. Given two trajectories V and U ,
vi ∈ V first locates its nearest neighbor in the other trajectory uj = argminu∈U ‖h(vi)− h(u)‖

2,
where h(·) denotes the output of the penultimate layer of trained agents. Then, the nearest neighbor
of uj ∈ V is located, i.e., vk = argminv∈V ‖h(uj)− h(uj)‖2, and vi is defined as cycle-consistent
if |i − k| ≤ 1, i.e., it can return to the original point. Note that this cycle-consistency implies that
two trajectories are accurately aligned in the hidden space. Similar to [3], we also evaluate the
three-way cycle-consistency by measuring whether vi remains cycle-consistent along both paths,
V → U → J → V and V → J → U → V , where J is the third trajectory.

D Automatic Data Augmentation Algorithms

In this section, we provide more details about the automatic augmentation approaches, as well as
pseudocodes for all three methods we propose.

RL2-DrAC uses an LSTM [27] network to select an effective augmentation from a given set, which
is used to update the agent’s policy and value function according to the DrAC objective from
Equation (5). We will refer to this network as a (recurrent) selection policy. The LSTM network takes
as inputs the previously selected augmentation and the average return obtained after performing one
update of the DrAC agent with this augmentation (using Algorithm 1 with K=1). The LSTM outputs
an augmentation from the given set and is rewarded using the average return obtained by the agent
after one update with the selected augmentation. The LSTM is trained using REINFORCE [68]. See
Algorithm 3 for a pseudocode of RL2-DrAC.

Meta-DrAC meta-learns the weights of a convolutional neural network (CNN) which is used to
augment the observations in order to update the agent’s policy and value function according to the
DrAC objective from Equation (5). For each DrAC update of the agent, we split the trajectories in the
replay buffer into meta-train and meta-test using a 9 to 1 ratio. The CNN’s weights are updated using
MAML [20] where the objective function is maximizing the average return obtained by DrAC (after
an update using Algorithm 1 with K = 1 and the CNN as the transformation f ).
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Algorithm 2 UCB-DrAC

1: Hyperparameters: Set of image transformations F = {f1, . . . , fn}, exploration coefficient c,
window for estimating the Q-functions W, number of updates K, initial policy parameters πθ,
initial value function Vφ.

2: N(f) = 1, ∀ f ∈ F . Initialize the number of times each augmentation was selected
3: Q(f) = 0, ∀ f ∈ F . Initialize the Q-functions for all augmentations
4: R(f) = FIFO(W ), ∀ f ∈ F . Initialize the lists of returns for all augmentations
5: for k = 1, . . . ,K do
6: fk = argmaxf∈F

[
Q(f) + c

√
log(k)
N(f)

]
. Use UCB to select an augmentation

7: Update the policy and value function according to Algorithm 1 with f = fk and K = 1:
8: θ ← argmaxθ JDrAC . Update the policy
9: φ← argmaxφ JDrAC . Update the value function

10: Compute the mean return obtained by the new policy rk.
11: Add rk to the R(fk) list using the first-in-first-out rule.
12: Q(fk)← 1

|R(fk)|
∑
r∈R(fk)

r

13: N(fk)← N(fk) + 1
14: end for

Algorithm 3 RL2-DrAC

1: Hyperparameters: Set of image transformations F = {f1, . . . , fn}, number of updates K,
initial policy πθ, initial value function Vφ.

2: Initialize the selection poicy as an LSTM network g with parameters ψ.
3: f0 ∼ F . Randomly initialize the augmentation
4: r0 ← 0 . Initialize the average return
5: for k = 1, . . . ,K do
6: fk ∼ gψ(fk−1, rk−1) . Select an augmentation according to the recurrent policy
7: Update the policy and value function according to Algorithm 1 with f = fk and K = 1:
8: θ ← argmaxθ JDrAC . Update the policy
9: φ← argmaxφ JDrAC . Update the value function

10: Compute the mean return obtained by the new policy rk.
11: Reward gψ with rk.
12: Update gψ using REINFORCE.
13: end for

Algorithm 4 Meta-DrAC
1: Hyperparameters: Distribution over tasks (or levels) q(m), number of updates K, step size

parameters α and β, initial policy πθ, initial value function Vφ.
2: Initialize the set of all training levels D = {l}Li=1.
3: Initialize the augmentation as a CNN g with parameters ψ.
4: for k = 1, . . . ,K do
5: Sample a batch of tasks mi ∼ q(m)
6: for all mi do
7: Collect trajectories on task mi using the current policy.
8: Update the policy and value function according to Algorithm 1 with f = fk and K = 1:
9: θ ← argmaxθ JDrAC . Update the policy

10: φ← argmaxφ JDrAC . Update the value function
11: Compute the return of the new agent on task mi after being updated with gψ , rmi(gψ)
12: ψ′i ← ψ + α∇ψrmi(gψ)
13: end for
14: ψ ← ψ + β∇ψ

∑
mi∼q(m) rmi(gψ′

i
)

15: end for
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Table 3: List of hyperparameters used to obtain the results in this paper.

Hyperparameter Value

γ 0.999
λ 0.95

# timesteps per rollout 256
# epochs per rollout 3

# minibatches per epoch 8
entropy bonus 0.01

clip range 0.2
reward normalization yes

learning rate 5e-4
# workers 1

# environments per worker 64
# total timesteps 25M

optimizer Adam
LSTM no

frame stack no
αr 0.1
c 0.1
K 10

E Hyperparameters

We use Kostrikov [37]’s implementation of PPO [56], on top of which all our methods are build. The
agent is parameterized by the ResNet architecture from [17] which was used to obtain the best results
in Cobbe et al. [12]. Following Cobbe et al. [12], we also share parameters between the policy an
value networks. To improve stability when training with DrAC, we only backpropagate gradients
through π(a|f(s, ν)) and V (f(s, ν)) in equations (3) and (4), respectively. Unless otherwise noted,
we use the best hyperparameters found in Cobbe et al. [12] for the easy mode of Procgen (i.e. same
experimental setup as the one used here), namely:

We use the Adam [36] optimizer for all our experiments. Note that by using Adam, we do not need
separate coefficients for the policy and value regularization terms (since Adam rescales gradients for
each loss component accordingly).

For DrAC, we did a grid search for the regularization coefficient αr ∈
[0.0001, 0.01, 0.05, 0.1, 0.5, 1.0] used in equation (5) and found that the best value is αr = 0.1,
which was used to produce all the results in this paper.

For UCB-DrAC, we did grid searches for the exploration coefficient c ∈ [0.0, 0.1, 0.5, 1.0, 5.0] and
the size of the sliding window used to compute the Q-values K ∈ [10, 50, 100]. We found that the
best values are c = 0.1 and K = 10, which were used to obtain the results shown here.

For RL2-DrAC, we performed a hyperparameter search for the dimension of recurrent hidden state
h ∈ [16, 32, 64], for the learning rate l ∈ [3e − 4, 5e − 4, 7e − 4], and for the entropy coefficient
e ∈ [1e− 4, 1e− 3, 1e− 2] and found h = 32, l = 5e− 4, and e = 1e− 3 to work best. We used
Adam with ε = 1e− 5 as the optimizer.

For Meta-DrAC, the convolutional network whose weights we meta-learn consists of a single
convolutional layer with 3 input and 3 output channels, kernel size 3, stride 1 and 0 padding. At each
epoch, we perform one meta-update where we unroll the inner optimizer using the training set and
compute the meta-test return on the validation set. We did the same hyperparameter grid searches
as for RL2-DrAC and found that the best values were l = 7e− 4 and e = 1e− 2 in this case. The
buffer of experience (collected before each PPO update) was split into 90% for meta-training and
10% for meta-testing.
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Figure 5: Behavior of UCB for different values of its exploration coefficient c on Dodgeball. When c
is too small, UCB might converge to a suboptimal augmentation. On the other hand, when c is too
large, UCB might take too long to converge.

For Rand-FM [44] we use the recommended hyperparameters in the authors’ released implementation,
which were the best values for CoinRun [11], one of the Procgen games used for evaluation in [44].

For IBAC-SNI [28] we also use the authors’ open sourced implementation. We use the parameters
corresponding to IBAC-SNI λ = .5. We use weight regularization with l2 = .0001, data augmentation
turned on, and a value of β = .0001 which turns on the variational information bottleneck, and
selective noise injection turned on. This corresponds to the best version of this approach, as found by
the authors after evaluating it on CoinRun [11]. While IBAC-SNI outperforms the other methods on
maze-like games such as heist, maze, and miner, it is still significantly worse than our approach on
the entire Procgen benchmark.

For both baselines, Rand-FM and IBAC-SNI, we use the same experimental setup for training and
testing as the one used for our methods. Hence, we train them for 25M frames on the easy mode of
each Procgen game, using (the same) 200 levels for training and the rest of the levels for testing.

F Analysis of UCB’s Behavior

In Figure 4, we show the behavior of UCB during training, along with train and test performance
on the respective environments. In the case of Ninja, UCB converges to always selecting the best
augmentation only after 15M training steps. This is because the augmentations have similar effects
on the agent early in training, so it takes longer to find the best augmentation from the given set.
In contrast, on Dodgeball, UCB finds the most effective augmentation much earlier in training
because there is a significant difference between the effect of various augmentations. Early discovery
of an effective augmentation leads to significant improvements over PPO, for both train and test
environments.

Another important factor is the exploration coefficient used by UCB (see equation (6)) to balance
the exploration and exploitation of different augmentations. Figure 5 compares UCB’s behavior for
different values of the exploration coefficient. Note that if the coefficient is 0, UCB always selects the
augmentation with the largest Q-value. This can sometimes lead to UCB converging on a suboptimal
augmentation due to the lack of exploration. However, if the exploration term of equation (6) is too
large relative to the differences in the Q-values among various augmentations, UCB might take too
long to converge. In our experiments, we found that an exploration coefficient of 0.1 results in a good
exploration-exploitation balance and works well across all Procgen games.
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G Procgen Benchmark

Figure 6: Screenshots of multiple procedurally-generated levels from 15 Procgen environments:
StarPilot, CaveFlyer, Dodgeball, FruitBot, Chaser, Miner, Jumper, Leaper, Maze, BigFish, Heist,
Climber, Plunder, Ninja, BossFight (from left to right, top to bottom).

H Best Augmentations

Table 4: Best augmentation type for each game, as evaluated on the test environments.

Game BigFish StarPilot FruitBot BossFight Ninja Plunder CaveFlyer CoinRun

Best Augmentation crop crop crop flip color-jitter crop rotate random-conv

Table 5: Best augmentation type for each game, as evaluated on the test environments.

Game Jumper Chaser Climber Dodgeball Heist Leaper Maze Miner

Best Augmentation random-conv crop color-jitter crop crop crop crop color-jitter

I Computational Resources

Each of our experiments were run on a single NVIDIA GTX 1080 GPU and 8 CPUs. Trainig
UCB-DrAC on one of the Procgen games for 25m steps takes about 7 hours on this hardware. In
contrast, one experiment on DMC takes about 1 hour. To thoroughly compare our approach to all
relevant methods and ablations, we ran 29 models (see Table 1, with RAD and DrAC run with each
of the 8 augmentations) on 16 Procgen games and 3 models on 12 DMC tasks, 10 seeds each, leading
to 5000 experiments, each taking 1-8 hours on a GPU. In total, this amounts to approximately 25000
hours of GPU needed to run all the experiments for this paper.
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J Breakdown of Procgen Scores

Table 6: Procgen scores on train levels after training on 25M environment steps. The mean and
standard deviation are computed using 10 runs. The best augmentation for each game is used when
computing the results for DrAC and RAD.

Game PPO Rand + FM IBAC-SNI DrAC RAD UCB-DrAC RL2-DrAC Meta-DrAC

BigFish 8.9± 1.5 6.0± 0.9 19.1± 0.819.1± 0.819.1± 0.8 13.1± 2.2 13.2± 2.8 13.2± 2.2 10.1± 1.9 9.28± 1.9
StarPilot 29.8± 2.3 26.3± 0.8 26.7± 0.7 38.0± 3.138.0± 3.138.0± 3.1 36.5± 3.9 35.3± 2.2 30.6± 2.6 30.5± 3.9
FruitBot 29.1± 1.1 29.2± 0.7 29.4± 0.8 29.4± 1.0 26.1± 3.0 29.5± 1.229.5± 1.229.5± 1.2 29.2± 1.0 29.4± 1.1
BossFight 8.5± 0.78.5± 0.78.5± 0.7 5.6± 0.7 7.9± 0.7 8.2± 1.0 8.1± 1.1 8.2± 0.8 8.4± 0.8 7.9± 0.5
Ninja 7.4± 0.7 7.2± 0.6 8.3± 0.8 8.8± 0.5 8.9± 0.98.9± 0.98.9± 0.9 8.5± 0.3 8.1± 0.6 7.8± 0.4
Plunder 6.0± 0.5 5.5± 0.7 6.0± 0.6 9.9± 1.3 8.4± 1.5 11.1± 1.611.1± 1.611.1± 1.6 5.3± 0.5 6.5± 0.5
CaveFlyer 6.8± 0.6 6.5± 0.5 6.2± 0.5 8.2± 0.78.2± 0.78.2± 0.7 6.0± 0.8 5.7± 0.6 5.3± 0.8 6.5± 0.7
CoinRun 9.3± 0.3 9.6± 0.6 9.6± 0.4 9.7± 0.29.7± 0.29.7± 0.2 9.6± 0.4 9.5± 0.3 9.1± 0.3 9.4± 0.2
Jumper 8.3± 0.4 8.9± 0.4 8.5± 0.6 9.1± 0.49.1± 0.49.1± 0.4 8.6± 0.4 8.1± 0.7 8.6± 0.4 8.4± 0.5
Chaser 4.9± 0.5 2.8± 0.7 3.1± 0.8 7.1± 0.57.1± 0.57.1± 0.5 6.4± 1.0 7.6± 1.0 4.5± 0.7 5.5± 0.8
Climber 8.4± 0.8 7.5± 0.8 7.1± 0.7 9.9± 0.89.9± 0.89.9± 0.8 9.3± 1.1 9.0± 0.4 7.9± 0.9 8.5± 0.5
Dodgeball 4.2± 0.5 4.3± 0.3 9.4± 0.69.4± 0.69.4± 0.6 7.5± 1.0 5.0± 0.7 8.3± 0.9 6.3± 1.1 4.8± 0.6
Heist 7.1± 0.57.1± 0.57.1± 0.5 6.0± 0.5 4.8± 0.7 6.8± 0.7 6.2± 0.9 6.9± 0.4 5.6± 0.8 6.6± 0.6
Leaper 5.5± 0.45.5± 0.45.5± 0.4 3.2± 0.7 2.7± 0.4 5.0± 0.7 4.9± 0.9 5.3± 0.5 2.7± 0.6 3.7± 0.6
Maze 9.1± 0.3 8.9± 0.6 8.2± 0.8 8.3± 0.7 8.4± 0.7 8.7± 0.6 7.0± 0.7 9.2± 0.29.2± 0.29.2± 0.2
Miner 12.2± 0.3 11.7± 0.8 8.5± 0.7 12.5± 0.3 12.6± 1.012.6± 1.012.6± 1.0 12.5± 0.2 10.9± 0.5 12.4± 0.3

Table 7: Procgen scores on test levels after training on 25M environment steps. The mean and
standard deviation are computed using 10 runs. The best augmentation for each game is used when
computing the results for DrAC and RAD.

Game PPO Rand + FM IBAC-SNI DrAC RAD UCB-DrAC RL2-DrAC Meta-DrAC

BigFish 4.0± 1.2 0.6± 0.8 0.8± 0.9 8.7± 1.4 9.9± 1.79.9± 1.79.9± 1.7 9.7± 1.0 6.0± 0.5 3.3± 0.6
StarPilot 24.7± 3.4 8.8± 0.7 4.9± 0.8 29.5± 5.4 33.4± 5.133.4± 5.133.4± 5.1 30.2± 2.8 29.4± 2.0 26.6± 2.8
FruitBot 26.7± 0.8 24.5± 0.7 24.7± 0.8 28.2± 0.8 27.3± 1.8 28.3± 0.928.3± 0.928.3± 0.9 27.5± 1.6 27.4± 0.8
BossFight 7.7± 1.0 1.7± 0.9 1.0± 0.7 7.5± 0.8 7.9± 0.6 8.3± 0.88.3± 0.88.3± 0.8 7.6± 0.9 7.7± 0.7
Ninja 5.9± 0.7 6.1± 0.8 9.2± 0.69.2± 0.69.2± 0.6 7.0± 0.4 6.9± 0.8 6.9± 0.6 6.2± 0.5 5.9± 0.7
Plunder 5.0± 0.5 3.0± 0.6 2.1± 0.8 9.5± 1.09.5± 1.09.5± 1.0 8.5± 1.2 8.9± 1.0 4.6± 0.3 5.6± 0.4
CaveFlyer 5.1± 0.9 5.4± 0.8 8.0± 0.88.0± 0.88.0± 0.8 6.3± 0.8 5.1± 0.6 5.3± 0.9 4.1± 0.9 5.5± 0.4
CoinRun 8.5± 0.5 9.3± 0.49.3± 0.49.3± 0.4 8.7± 0.6 8.8± 0. 9.0± 0.8 8.5± 0.6 8.3± 0.5 8.6± 0.5
Jumper 5.8± 0.5 5.3± 0.6 3.6± 0.6 6.6± 0.46.6± 0.46.6± 0.4 6.5± 0.6 6.4± 0.6 6.5± 0.5 5.8± 0.7
Chaser 5.0± 0.8 1.4± 0.7 1.3± 0.5 5.7± 0.6 5.9± 1.0 6.7± 0.66.7± 0.66.7± 0.6 3.8± 0.5 5.1± 0.6
Climber 5.7± 0.8 5.3± 0.7 3.3± 0.6 7.1± 0.77.1± 0.77.1± 0.7 6.9± 0.8 6.5± 0.8 6.3± 0.5 6.6± 0.6
Dodgeball 11.7± 0.311.7± 0.311.7± 0.3 0.5± 0.4 1.4± 0.4 4.3± 0.8 2.8± 0.7 4.7± 0.7 3.0± 0.8 1.9± 0.5
Heist 2.4± 0.5 2.4± 0.6 9.8± 0.69.8± 0.69.8± 0.6 4.0± 0.8 4.1± 1.0 4.0± 0.7 2.4± 0.4 2.0± 0.6
Leaper 4.9± 0.7 6.2± 0.5 6.8± 0.66.8± 0.66.8± 0.6 5.3± 1.1 4.3± 1.0 5.0± 0.3 2.8± 0.7 3.3± 0.4
Maze 5.7± 0.6 8.0± 0.7 10.0± 0.710.0± 0.710.0± 0.7 6.6± 0.8 6.1± 1.0 6.3± 0.6 5.6± 0.3 5.2± 0.6
Miner 8.5± 0.5 7.7± 0.6 8.0± 0.6 9.8± 0.69.8± 0.69.8± 0.6 9.4± 1.2 9.7± 0.7 8.0± 0.4 9.2± 0.7
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Figure 7: Test performance of various approaches that automatically select an augmentation, namely
UCB-DrAC, RL2-DrAC, and Meta-DrAC. The mean and standard deviation are computed using 10
runs.
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Figure 8: Train performance of various approaches that automatically select an augmentation, namely
UCB-DrAC, RL2-DrAC, and Meta-DrAC. The mean and standard deviation are computed using 10
runs.
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Figure 9: Test performance of PPO, DrAC and its two ablations DrC and DrA (all with the best
augmentation for each game) that only regularize the critic or the actor, respectively. The mean and
standard deviation are computed using 10 runs.

24



2.5

5.0

7.5

10.0

12.5

15.0

Sc
or

e

BigFish

10

20

30

StarPilot

10

20

30
FruitBot

0

2

4

6

8

BossFight

4

6

8

Sc
or

e

Ninja

4

6

8

10

Plunder

3

4

5

6

7

8

CaveFlyer

6

7

8

9

CoinRun

6

7

8

9

Sc
or

e

Jumper

2

4

6

8
Chaser

2

4

6

8

Climber

2

4

6

8
Dodgeball

0 10 20
Step [1e6]

3

4

5

6

7

8

Sc
or

e

Heist

0 10 20
Step [1e6]

2

4

6

8
Leaper

0 10 20
Step [1e6]

5

6

7

8

9

Maze

0 10 20
Step [1e6]

2

4

6

8

10

12
Miner

PPO
DrAC
DrA
DrC

Figure 10: Train performance of PPO, DrAC and its two ablations DrC and DrA (all with the best
augmentation for each game) that only regularize the critic or the actor, respectively. The mean and
standard deviation are computed using 10 runs.

25



L DeepMind Control Suite Experiments

For our DMC experiments, we ran a grid search over the learning rate in [1e−4, 3e−4, 7e−4, 1e−3],
the number of minibatches in [32, 8, 16, 64], the entropy coefficient in [0.0, 0.01, 0.001, 0.0001], and
the number of PPO epochs per update in [3, 5, 10, 20]. For Walker Walk and Finger Spin we use 2
action repeats and for the others we use 4. We also use 3 stacked frames as observations. For Finger
Spin, we found 10 ppo epochs, 0.0 entropy coefficient, 16 minibatches, and 0.0001 learning rate
to be the best. For Cartpole Balance, we used the same except for 0.001 learning rate. For Walker
Walk, we used 5 ppo epochs, 0.001 entropy coefficient, 32 minibatches, and 0.001 learning rate. For
Cheetah Run, we used 3 ppo epochs, 0.0001 entropy coefficient, 64 minibatches, and 0.001 learning
rate. We use γ = 0.99, γ = 0.95 for the generalized advantage estimates, 2048 steps, 1 process,
value loss coefficient 0.5, and linear rate decay over 1 million environment steps. We also found crop
to be the best augmentation from our set of eight transformations. Any other hyperaparameters not
mentioned here were set to the same values as the ones used for Procgen as described above.

Figure 11: DMC environment examples. Top row: default backgrounds without any distractors.
Middle row: simple distractor backgrounds with ideal gas videos. Bottom row: natural distractor
backgrounds with Kinetics videos. Tasks from left to right: Finger Spin, Cheetah Run, Walker Walk.

0 0.2 0.4 0.6 0.8 1
Environment Step (106)

200

300

400

500

600

700

800

Av
er

ag
e 

Re
tu

rn

Cartpole Balance - Default
PPO
UCB-DrAC
RAD (best)

0 0.2 0.4 0.6 0.8 1
Environment Step (106)

0

100

200

300

400

500

600

Av
er

ag
e 

Re
tu

rn

Finger Spin - Default
PPO
UCB-DrAC
RAD (best)

0 0.2 0.4 0.6 0.8 1
Environment Step (106)

100

200

300

400

500

600

Av
er

ag
e 

Re
tu

rn

Walker Walk - Default
PPO
UCB-DrAC
RAD (best)

0 0.2 0.4 0.6 0.8 1
Environment Step (106)

0

50

100

150

200

250

Av
er

ag
e 

Re
tu

rn

Cheetah Run - Default
PPO
UCB-DrAC
RAD (best)

Figure 12: Average return on DMC tasks with default (i.e. no distractor) backgrounds with mean and
standard deviation computed over 5 seeds. UCB-DrAC outperforms PPO and RAD with the best
augmentations.
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Figure 13: Average return on DMC tasks with simple (i.e. synthetic) distractor backgrounds with
mean and standard deviation computed over 5 seeds. UCB-DrAC outperforms PPO and RAD with
the best augmentations.
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