A Proof of Theorem 2.2

A. 1 Derivation of the self-consistent equation

We start from (16) and rely on the following power counting principles: Each derivative provides a smallness-factor of $1 / \sqrt{m}$ because G is a function of Y / \sqrt{m} and Y^{*} / \sqrt{m}, while each independent summation costs a factor of $n_{1} \sim m$. However, we cannot have too many independent summations for if any index appears only once in the cumulant, then the latter vanishes identically by the independence property of cumulants. For example, if $i_{2}, \ldots, i_{2 k} \neq i_{1}$, then the random variables $Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k-1} i_{2 k}}$ are independent of $Y_{i_{1} i_{2}}$ in the probability space of the random variables $\left\{w_{i_{1} a}\right\}_{a=1}^{n_{0}}$ conditioned on the remaining random variables. By the law of total expectation and the independence property it follows that

$$
\kappa\left(Y_{i_{1} i_{2}}, \ldots, Y_{i_{2 k-1} i_{2 k}}\right)=0
$$

in this case. Thus we only need to sum over those cumulants in which each W - and X-index appears at least twice (we call i the W-index of $Y_{i j}, Y_{j i}^{*}$ and j the X-index). In the extreme case where each W - and X-index appears exactly twice, we either have a single cycle, or a union of cycles on disjoint index sets. In the latter case the cumulant vanishes identically by the independence property. In the former case, for a cycle of length $2 k$ there are k indices each, we obtain a factor of n_{1}^{-1} from the normalised sum, a factor of $m^{-2 k / 2}=m^{-k}$ from the derivatives, a factor of $n_{1}^{k} m^{k}$ from the summations, and finally a factor of n_{0}^{1-k} from the cumulant in Proposition 3.2 i.e.

$$
\frac{1}{n_{1}} \frac{1}{m^{k}} n_{1}^{k} m^{k} n_{0}^{1-k} \sim 1
$$

and the power counting is neutral. On the contrary, when some index appears three times, the overall power counting described above is smaller by a factor of $1 / \sqrt{m}$, and thus negligible to leading order. In particular this argument shows that cycles of odd length only negligible as they cannot arise on indices in which each W - and X-index appears exactly twice.

Thus, together with Proposition 3.2 we have (recalling that the shorthand notation \approx indicates equalities up to an error of $n_{0}^{-1 / 2}$)

$$
\begin{align*}
1+z \mathbf{E} g= & \frac{1}{n_{1} m} \sum_{k \geq 1} \sum_{i_{1}, \ldots, i_{2 k}} \frac{\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{3} i_{4}}, Y_{i_{5} i_{6}}, \ldots, Y_{i_{2 k-1} i_{2 k}}\right)}{(k-1)!} \mathbf{E} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
\approx & \frac{1}{n_{1} m} \sum_{k \geq 1} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k} i_{1}}^{*}\right) \mathbf{E} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
= & \frac{1}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{1}}^{*}\right) \mathbf{E} \partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
& +\frac{1}{n_{1} m} \sum_{k \geq 2} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k} i_{1}}^{*}\right) \mathbf{E} \partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
\approx & \frac{\theta_{1}}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} \mathbf{E} \partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}+\frac{1}{n_{1} m} \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \mathbf{E} \partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}, \tag{21}
\end{align*}
$$

where the summations \sum^{*} are understood over pairwise distinct indices. Here in the second line the factorial $(k-1)$! disappears since there are exactly $(k-1)$! ways to map the variables $Y_{i_{3} i_{4}}, Y_{i_{5} i_{6}} \ldots, Y_{i_{2 k-1} i_{2 k}}$ into $Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k} i_{1}}^{*}$ with distinct $i_{1}, \ldots, i_{2 k}$. From this point onwards, we will omit reference to \mathbf{E} to simplify notation slightly.
We now need to compute the partial derivatives in 21. The proof of the following lemma is included in Appendix C

Lemma A.1. Let $G(z)=(M-z)^{-1}, z \in \mathbb{H}$, be the resolvent of the random matrix $M=\frac{1}{m} Y Y^{*} \in$ $\mathbb{R}^{n_{1} \times n_{1}}$. Then, it holds that

$$
\begin{align*}
\partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} & =G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right) \tag{22a}\\
\partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} & \approx-\partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right) \tag{22b}
\end{align*}
$$

Thus, using Lemma A. 1 in (21) we have

$$
\begin{align*}
1+z g \approx & \frac{\theta_{1}}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right) \\
& -\frac{1}{n_{1} m} \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right) \\
= & \theta_{1} g-\theta_{1} \frac{n_{1}}{m} g\left\langle\frac{Y^{*} G Y}{m}\right\rangle \\
& -\left(g-\frac{n_{1}}{m} g\left\langle\frac{Y^{*} G Y}{m}\right\rangle\right) \frac{1}{m} \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{3}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}(G Y)_{i_{3} i_{2 k}} \tag{23}
\end{align*}
$$

where $\left\langle\frac{Y^{*} G Y}{m}\right\rangle:=\frac{1}{n_{1}} \operatorname{Tr} \frac{Y^{*} G Y}{m}=1+z g$ from (15). Again, we stress that the equalities are meant in expectation. Moreover, shifting the index in the above summation, we get

$$
\begin{aligned}
& \frac{1}{m} \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{3}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}(G Y)_{i_{3} i_{2 k}} \\
& =\theta_{2} \frac{n_{1}}{n_{0}} \frac{1}{m} \sum_{k \geq 1} \frac{\theta_{2}^{k}}{n_{1} n_{0}^{k-1}} \sum_{i_{3}, \ldots, i_{2 k+2}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k+1} i_{2 k+2}}}(G Y)_{i_{3} i_{2 k+2}} \\
& =\theta_{2}^{2} \frac{n_{1}}{n_{0}} \frac{1}{n_{1} m} \sum_{i_{3}, i_{4}}^{*} \partial_{Y_{i_{3} i_{4}}}(G Y)_{i_{3} i_{4}} \\
& \quad+\theta_{2} \frac{n_{1}}{n_{0}} \frac{1}{n_{1} m} \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{3}, \ldots, i_{2 k+2}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k+1} i_{2 k+2}}}(G Y)_{i_{3} i_{2 k+2}} \\
& \approx \theta_{2}^{2} \frac{n_{1}}{n_{0}}\left(g-\frac{n_{1}}{m} g\left\langle\frac{Y^{*} G Y}{m}\right\rangle\right)+\theta_{2} \frac{n_{1}}{n_{0}}\left(1+z g-\theta_{1} g+\theta_{1} \frac{n_{1}}{m} g\left\langle\frac{Y^{*} G Y}{m}\right\rangle\right) \\
& =\theta_{2} \frac{n_{1}}{n_{0}}(1+z g)-\theta_{2}\left(\theta_{1}-\theta_{2}\right) \frac{n_{1}}{n_{0}} g\left(1-\frac{n_{1}}{m}(1+z g)\right),
\end{aligned}
$$

where in the third step we used (21). Finally, together with 23), we have

$$
\begin{align*}
1+z g \approx & \theta_{1} g\left(1-\frac{n_{1}}{m}(1+z g)\right)-\theta_{2} \frac{n_{1}}{n_{0}} g(1+z g)\left(1-\frac{n_{1}}{m}(1+z g)\right) \\
& +\theta_{2}\left(\theta_{1}-\theta_{2}\right) \frac{n_{1}}{n_{0}} g^{2}\left(1-\frac{n_{1}}{m}(1+z g)\right)^{2}, \tag{24}
\end{align*}
$$

which corresponds to the desired equation (6) as $n_{0}, n_{1}, m \rightarrow \infty$. Thus, (24) combined with the concentration inequality given in Lemma 3.4 completes the proof of Theorem 2.2

Proof of Theorem 2.2 . We need to show the concentration w.r.t. $\mathbf{E}_{W, X} \equiv \mathbf{E}$. By the triangle and Jensen inequality we have

$$
\begin{aligned}
\mathbf{E}|g(z)-\mathbf{E} g(z)|^{4} & \lesssim \mathbf{E}\left|g(z)-\mathbf{E}_{W} g(z)\right|^{4}+\mathbf{E}_{X}\left|\mathbf{E}_{W} g(z)-\mathbf{E} g(z)\right|^{4} \\
& \leq \mathbf{E}_{X}\left(\mathbf{E}_{W}\left|g(z)-\mathbf{E}_{W} g(z)\right|^{4}\right)+\mathbf{E}_{W}\left(\mathbf{E}_{X}\left|g(z)-\mathbf{E}_{X} g(z)\right|^{4}\right) \lesssim \frac{2}{n_{1}^{2}(\Im z)^{4}}
\end{aligned}
$$

and thus the almost sure convergence follows from the Borel-Cantelli Lemma, completing the proof of Theorem 2.2 together with (24).

A. 2 Proof of Proposition 3.2

In light of the central limit theorem, we have that in the asymptotic limit the random variables

$$
\left(\frac{W X}{\sqrt{n_{0}}}\right)_{i j}=\frac{1}{\sqrt{n_{0}}} \sum_{k=1}^{n_{0}} W_{i k} X_{k j}
$$

are approximately $\mathcal{N}\left(0, \sigma_{w}^{2} \sigma_{x}^{2}\right)$-normally distributed. Our next goal is to compute their cumulants. The first cumulant or expectation vanishes identically. For the second cumulant we obtain:
Lemma A.2. The cumulant of $\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}$ and $\frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}$ is nonzero only if $i_{1}=i_{3}$ and $i_{2}=i_{4}$, and in this case it holds that

$$
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{2} i_{1}}^{*}}{\sqrt{n_{0}}}\right)=\sigma_{w}^{2} \sigma_{x}^{2}
$$

Proof. We have

$$
\begin{aligned}
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}\right) & =\frac{1}{n_{0}} \mathbf{E}(W X)_{i_{1} i_{2}}(W X)_{i_{3} i_{4}} \\
& =\frac{1}{n_{0}} \sum_{k_{1}, k_{2}=1}^{n_{0}} \mathbf{E} W_{i_{1} k_{1}} X_{k_{1} i_{2}} W_{i_{3} k_{2}} X_{k_{2} i_{4}} \\
& =\frac{1}{n_{0}} \sum_{k_{1}=1}^{n_{0}} \delta_{i_{1} i_{3}} \delta_{i_{2} i_{4}} \mathbf{E} W_{i_{1} k_{1}}^{2} X_{k_{1} i_{2}}^{2}=\delta_{i_{1} i_{3}} \delta_{i_{2} i_{4}} \sigma_{w}^{2} \sigma_{x}^{2} .
\end{aligned}
$$

Thus, the second cumulant is nonzero if $i_{1}=i_{3}$ and $i_{2}=i_{4}$, and in this case it is exactly the variance of the random variable $\frac{(W X)_{i j}}{\sqrt{n_{0}}}$.

We now consider four random entries, and we compute

$$
\frac{1}{n_{0}^{2}} \kappa\left((W X)_{i_{1} i_{2}},(W X)_{i_{3} i_{4}},(W X)_{i_{5} i_{6}},(W X)_{i_{7} i_{8}}\right)
$$

We observe that the cumulant vanishes identically if any index appears exactly once by the independence property, and thus each W - and X-index must appear exactly twice. This is only possible if we have two cycles on two indices each, or a single four-cycle. The cumulant of the former vanishes identically by independence ant thus the only non-vanishing 4-cumulant is

$$
\begin{aligned}
& \kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{2} i_{3}}^{*}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{4} i_{1}}^{*}}{\sqrt{n_{0}}}\right) \\
& =\frac{1}{n_{0}^{2}} \mathbf{E}(W X)_{i_{1} i_{2}}(W X)_{i_{2} i_{3}}^{*}(W X)_{i_{3} i_{4}}(W X)_{i_{4} i_{1}}^{*} \\
& =\frac{1}{n_{0}^{2}} \sum_{k_{1}, k_{2}, k_{3}, k_{4}=1}^{n_{0}} \quad \mathbf{E} W_{i_{1} k_{1}} X_{k_{1} i_{2}} W_{i_{3} k_{2}} X_{k_{2} i_{2}} W_{i_{3} k_{3}} X_{k_{3} i_{4}} W_{i_{1} k_{4}} X_{k_{4} i_{4}} \\
& =\frac{1}{n_{0}^{2}} \sum_{k_{1}=1}^{n_{0}} \mathbf{E} W_{i_{1} k_{1}}^{2} X_{k_{1} i_{2}}^{2} W_{i_{3} k_{1}}^{2} X_{k_{1} i_{4}}^{2}=\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}\right)^{2}}{n_{0}}
\end{aligned}
$$

Here for the first equality we used (14) where all but the trivial partition vanish identically since in some expectation a single index appears. This result can be generalised:
Lemma A.3. For $k \geq 2$ and pairwise distinct indices we have

$$
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{2} i_{3}}^{*}}{\sqrt{n_{0}}}, \frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}, \ldots, \frac{(W X)_{i_{2 k} i_{1}}^{*}}{\sqrt{n_{0}}}\right)=\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}\right)^{k}}{n_{0}^{k-1}}+\mathcal{O}\left(n_{0}^{-k}\right)
$$

Proof. As illustrated for the case with four random variables, to have a nonzero cumulant, we can encode the $2 k$ random variables as a cycle graph of length $2 k$. Then, the only contribution comes from

$$
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}, \ldots, \frac{(W X)_{i_{2 k} i_{1}}^{*}}{\sqrt{n_{0}}}\right)=\frac{1}{n_{0}^{k}} \mathbf{E}(W X)_{i_{1} i_{2}} \cdots(W X)_{i_{2 k} i_{1}}^{*}=\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}\right)^{k}}{n_{0}^{k-1}}+\mathcal{O}\left(n_{0}^{-k}\right)
$$

which completes the proof.

Finally, we compute the cumulants of the entries of the random matrix Y. Since the activation function f is applied component-wise, it follows from the previous results that the only contribution comes from $\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k} i_{1}}^{*}\right)$ for $k \geq 1$ and $i_{1}, \ldots, i_{2 k}$ distinct, thus proving that Y has cycle correlations.

Proof of Proposition 3.2. From the Berry-Esséen Theorem it follows that

$$
\begin{aligned}
\kappa\left(Y_{i j}\right) & =\mathbf{E} Y_{i j}=\int_{\mathbb{R}} f(x) \frac{e^{-x^{2} / 2 \sigma_{w}^{2} \sigma_{x}^{2}}}{\sigma_{w} \sigma_{x} \sqrt{2 \pi}} \mathrm{~d} x+\mathcal{O}\left(n_{0}^{-1 / 2}\right) \\
& =\int_{\mathbb{R}} f\left(\sigma_{w} \sigma_{x} x\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x+\mathcal{O}\left(n_{0}^{-1 / 2}\right)=\mathcal{O}\left(n_{0}^{-1 / 2}\right),
\end{aligned}
$$

and

$$
\kappa\left(Y_{i j}, Y_{j i}^{*}\right)=\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right) \int_{\mathbb{R}} f^{2}\left(\sigma_{w} \sigma_{x} x\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x=\theta_{1}(f)\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right)
$$

since the random variables $(W X)_{i j} / \sqrt{n_{0}}$ are approximately centred Gaussian with variance $\sigma_{w}^{2} \sigma_{x}^{2}$. Let $k>1$. Then, since f is a smooth function with compact support, we have that f is in C^{l} for some integer $l>1+\frac{2 k^{2}}{k-1}$. Using the Fourier inversion theorem, it follows that

$$
\begin{aligned}
f\left(x_{1}\right) & =\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}\left(t_{1}\right) e^{i t_{1} x_{1}} \mathrm{~d} t_{1} \\
& =\frac{1}{2 \pi} \int_{\left|t_{1}\right| \leq n_{0}^{\frac{k-1}{2 k}}} \hat{f}\left(t_{1}\right) e^{i t_{1} x_{1}} \mathrm{~d} t_{1}+\frac{1}{2 \pi} \int_{\left|t_{1}\right|>n_{0}^{\frac{k-1}{2 k}}} \hat{f}\left(t_{1}\right) e^{i t_{1} x_{1}} \mathrm{~d} t_{1} \\
& =\frac{1}{2 \pi} \int_{\left|t_{1}\right| \leq n_{0}^{\frac{k-1}{2 k}}} \hat{f}\left(t_{1}\right) e^{i t_{1} x_{1}} \mathrm{~d} t_{1}+\mathcal{O}\left(\left(n_{0}^{\frac{k-1}{2 k}}\right)^{1-l}\right),
\end{aligned}
$$

where we used $\left|\hat{f}\left(t_{1}\right)\right| \leq \frac{c}{\left(1+\left|t_{1}\right|\right)^{l}}$, for some positive constant c. For notational simplicity we work in the case $k=2$, but the argument when $k>2$ is the same. We compute

$$
\begin{aligned}
& \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, Y_{i_{4} i_{1}}^{*}\right) \\
& =\frac{1}{(2 \pi)^{4}} \int_{\forall i,\left|t_{i}\right| \leq n_{0}^{\frac{1}{4}}} \hat{f}\left(t_{1}\right) \hat{f}\left(t_{2}\right) \hat{f}\left(t_{3}\right) \hat{f}\left(t_{4}\right) \kappa\left(e^{i t_{1} Z_{i_{1} i_{2}}}, e^{i t_{2} Z_{i_{2} i_{3}}^{*}}, e^{i t_{3} Z_{i_{3} i_{4}}}, e^{i t_{4} Z_{i_{4} i_{1}}^{*}}\right) \mathrm{d} \boldsymbol{t}+\mathcal{O}\left(n_{0}^{-2}\right), \\
& =\frac{1}{(2 \pi)^{4}} \sum_{l_{1}, \ldots, l_{4} \geq 1} \int_{\forall i,\left|t_{i}\right| \leq n_{0}^{\frac{1}{4}}} \prod_{i=1}^{4}\left(\hat{f}\left(t_{i}\right) \frac{\left(i t_{i}\right)^{l_{i}}}{l_{i}!}\right) \kappa\left(\left(Z_{i_{1} i_{2}}\right)^{l_{1}},\left(Z_{i_{2} i_{3}}^{*}\right)^{l_{2}},\left(Z_{i_{3} i_{4}}\right)^{l_{3}},\left(Z_{i_{4} i_{1}}^{*}\right)^{l_{4}}\right) \mathrm{d} \boldsymbol{t}+\mathcal{O}\left(n_{0}^{-2}\right)
\end{aligned}
$$

where we introduced $Z:=W X / \sqrt{n_{0}}$ and in the second equality used that any cumulant involving the deterministic 1 vanishes identically. We now expand the cumulant involving powers of Z via the well known formula [21, Theorem 11.30] in terms of partitions of the set $\left\{1, \ldots, l_{1}+l_{2}+l_{3}+l_{4}\right\}$ whose joint with the partition $\left\{\left\{1, \ldots, l_{1}\right\}, \ldots,\left\{l_{1}+l_{2}+l_{3}+1, \ldots,+l_{1}+l_{2}+l_{3}+l_{4}\right\}\right\}$ is the trivial partition. By the independence property it is clear that the leading contribution comes from those partitions with one block connecting one copy of each of $Z_{i_{1} i_{2}}, Z_{i_{2} i_{3}}^{*}, Z_{i_{3} i_{4}}, Z_{i_{4} i_{1}}^{*}$ and the remaining
blocks being internal pairings. Since for odd l_{i} there are $l_{1}!!\cdots l_{4}!!$ such partitions it follows that

$$
\begin{aligned}
& \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, Y_{i_{4} i_{1}}^{*}\right) \\
& =\frac{1}{(2 \pi)^{4}} \sum_{\substack{l_{1}, \ldots, l_{4} \geq 1 \\
l_{i} \text { odd }}} \int_{\forall i,\left|t_{i}\right| \leq n_{0}^{\frac{1}{4}}} \prod_{i=1}^{4}\left(\hat{f}\left(t_{i}\right) \frac{\left(i t_{i}\right)^{l_{i}}}{\left(l_{i}-1\right)!!}\right) \kappa\left(Z_{i_{1} i_{2}}, Z_{i_{2} i_{3}}^{*}, Z_{i_{3} i_{4}}, Z_{i_{4} i_{1}}^{*}\right) \\
& \\
& \quad \times \operatorname{Var}\left(Z_{i_{1} i_{2}}\right)^{\left(l_{1}-1\right) / 2} \ldots \operatorname{Var}\left(Z_{i_{4} i_{1}}^{*}\right)^{\left(l_{4}-1\right) / 2} \mathrm{~d} \boldsymbol{t}+\mathcal{O}\left(n_{0}^{-3 / 2}\right) \\
& = \\
& =\frac{\sigma_{w}^{4} \sigma_{x}^{4}}{n_{0}} \frac{1}{(2 \pi)^{4}} \sum_{k_{1}, \ldots, k_{4} \geq 0} \int_{\forall i,\left|t_{i}\right| \leq n_{0}^{\frac{1}{4}}} t_{1} t_{2} t_{3} t_{4} \prod_{i=1}^{4}\left(\hat{f}\left(t_{i}\right) \frac{\left(-\sigma_{w}^{2} \sigma_{x}^{2} t_{i}^{2} / 2\right)^{k_{i}}}{k_{i}!}\right) \mathrm{d} \boldsymbol{t}+\mathcal{O}\left(n_{0}^{-3 / 2}\right) \\
& = \\
& \frac{1}{n_{0}}\left(\sigma_{w} \sigma_{x} \frac{1}{2 \pi} \int \widehat{f}^{\prime}(t) e^{-\sigma_{w}^{2} \sigma_{x}^{2} t^{2} / 2} \mathrm{~d} t\right)^{4}+\mathcal{O}\left(n_{0}^{-3 / 2}\right),
\end{aligned}
$$

where in the penultimate step we used Lemmata A.2 A. 3 and in the ultimate step we used the Fourier property $\widehat{f}^{\prime}(t)=i t \hat{f}(t)$. Together with

$$
\begin{aligned}
\frac{\sigma_{w} \sigma_{x}}{2 \pi} \int \widehat{f}^{\prime}(t) e^{-\sigma_{w}^{2} \sigma_{x}^{2} t^{2} / 2} \mathrm{~d} t & =\frac{1}{\sqrt{2 \pi}} \int f^{\prime}(x) e^{-x^{2} / 2 \sigma_{w}^{2} \sigma_{x}^{2}} \mathrm{~d} x \\
& =\sigma_{w} \sigma_{x} \int f^{\prime}\left(\sigma_{w} \sigma_{x} x\right) \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x=\theta_{2}(f)^{1 / 2}
\end{aligned}
$$

we conclude

$$
\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, Y_{i_{4} i_{1}}^{*}\right)=\theta_{2}(f)^{2} n_{0}^{-1}\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right)
$$

just as claimed.

B Proof of Theorem 2.5

B. 1 Derivation of the self-consistent equation

We proceed as in Subsection A.1. We know from (15) that

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m}\left(\frac{Y^{*} G Y}{m}\right)_{i i}=\frac{n_{1}}{m}\left\langle\frac{Y Y^{*} G}{m}\right\rangle=\frac{n_{1}}{m}(1+z g) \tag{25}
\end{equation*}
$$

We further claim the following.
Lemma B.1. It holds that

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_{1}}\left(\frac{Y^{*} G Y}{m}\right)_{i j}=1+\mathcal{O}\left(\left(\theta_{1, b}(f) n_{1}\right)^{-1}\right) \tag{26}
\end{equation*}
$$

Together with (25), Lemma B. 1 implies

$$
\begin{equation*}
\frac{1}{m} \sum_{i \neq j}\left(\frac{Y^{*} G Y}{m}\right)_{i j} \approx 1-\frac{n_{1}}{m}(1+z g) \tag{27}
\end{equation*}
$$

Proof. Using the Woodbury matrix identity ${ }^{3}$, we have

$$
\frac{1}{m}\left(\frac{Y^{*} G Y}{m}\right)=\frac{1}{m^{2}} Y^{*}\left(\frac{Y Y^{*}}{m}-z\right)^{-1} Y=\frac{1}{m}+\frac{z}{m}\left(\frac{Y^{*} Y}{m}-z\right)^{-1}
$$

${ }^{3}$ For $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{r \times r}, U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{r \times n}$ the Woodbury matrix identity is given by

$$
(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

which implies

$$
\sum_{i, j} \frac{1}{m}\left(\frac{Y^{*} G Y}{m}\right)_{i j}=\sum_{i, j} \frac{1}{m} \delta_{i j}+\sum_{i, j} \frac{z}{m}\left(\frac{Y^{*} Y}{m}-z\right)_{i j}^{-1}=1+\sum_{i, j} \frac{z}{m}\left(\frac{Y^{*} Y}{m}-z\right)_{i j}^{-1}
$$

So, we need to show that $\sum_{i, j} \frac{z}{m}\left(\frac{Y^{*} Y}{m}-z\right)_{i j}^{-1}$ is approximately zero. Let $e:=\frac{1}{\sqrt{m}}[1 \cdots 1]^{T}$ be a normalized vector in \mathbb{R}^{m}. We then write

$$
\sum_{i, j} \frac{z}{m}\left(\frac{Y^{*} Y}{m}-z\right)_{i j}^{-1}=z\left\langle e,\left(\frac{Y^{*} Y}{m}-z\right)^{-1} e\right\rangle
$$

It turns out that e is approximately an eigenvector of $\frac{1}{m} Y^{*} Y$. Indeed, it holds that

$$
\mathbf{E}\left(\frac{Y^{*} Y}{m} e\right)_{i}=\frac{1}{m \sqrt{m}} \sum_{j=1}^{m} \sum_{k=1}^{n_{1}} \mathbf{E} Y_{i k}^{*} Y_{k j} \approx m^{-1 / 2} n_{1} \theta_{1, b}(f)=\left(n_{1} \theta_{1, b}(f)\right) e_{i}
$$

Moreover, the variance is approximately $\mathcal{O}\left(n_{1} / m\right)$, which means that the standard deviation is of order 1 , while the expectation of order n_{1}. Thus, e is approximately an eigenvector of $\frac{1}{m} Y^{*} Y$ with eigenvalue $n_{1} \theta_{1, b}(f)$. Since $\theta_{1, b}(f)$ is nonzero by assumption, we have that e is approximately an eigenvector of the matrix $\left(\frac{Y^{*} Y}{m}-z \mathbf{1}_{m}\right)^{-1}$ with eigenvalue $\left(n_{1} \theta_{1, b}(f)-z\right)^{-1}$, from which the result follows:

$$
\left|\left\langle e,\left(\frac{Y^{*} Y}{m}-z\right)^{-1} e\right\rangle\right| \approx\left|\left(n_{1} \theta_{1, b}(f)-z\right)^{-1}\right| \ll 1
$$

Given Lemma B. 1 and Proposition 3.3 , we can now prove the global law for the random matrix M with the cycle correlations.

Proof of Theorem 2.5. Applying Proposition 3.3 to (16) and using the same power counting argument as in (21) we obtain

$$
\begin{align*}
1+z g \approx & \frac{1}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{1}}^{*}\right) \partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}+\frac{1}{n_{1} m} \sum_{i_{1}, i_{2}, i_{3}}^{*} \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{3} i_{1}}^{*}\right) \partial_{Y_{i_{3} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
& +\frac{1}{n_{1} m} \sum_{k \geq 2} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \kappa\left(Y_{i_{1} i_{2}}, \ldots, Y_{i_{2 k} i_{1}}^{*}\right) \partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
\approx & \frac{\theta_{1}(f)}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} \partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}+\frac{\theta_{1, b}(f)}{n_{1} m} \sum_{i_{1}} \sum_{i_{2}, i_{3}}^{*} \partial_{Y_{i_{3} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \\
& +\frac{1}{n_{1} m} \sum_{k \geq 2} \frac{\theta_{2}^{k}(f)}{n_{0}^{k-1}} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \tag{28}
\end{align*}
$$

where we omitted reference to \mathbf{E} to simplify notation. Given Lemma A.1, we only need to compute $\partial_{{i_{3} i_{1}}_{*}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}$:

$$
\partial_{Y_{i_{3} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}=\sum_{j=1}^{n_{1}} \partial_{Y_{i_{3} i_{1}}^{*}}\left(Y_{i_{2} j}^{*} G_{j i_{1}}\right) \approx-G_{i_{1} i_{1}}\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{3}}
$$

where we omitted the contribution of $\partial_{Y_{i_{3} i_{1}}^{*}} Y_{i_{2} j}^{*}$ since it is very small. Plugging the partial derivatives into 28, we get

$$
\begin{aligned}
1+z g \approx & \frac{\theta_{1}(f)}{n_{1} m} \sum_{i_{1}, i_{2}}^{*} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right)-\frac{\theta_{1, b}(f)}{n_{1} m} \sum_{i_{1}} \sum_{i_{2}, i_{3}}^{*} G_{i_{1} i_{1}}\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{3}} \\
& -\frac{1}{n_{1} m} \sum_{k \geq 2} \frac{\theta_{2}^{k}(f)}{n_{0}^{k-1}} \sum_{i_{1}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right) \\
\approx & \theta_{1}(f) g\left(1-\frac{n_{1}}{m}(1+z g)\right)-\theta_{1, b}(f) g\left(1-\frac{n_{1}}{m}(1+z g)\right) \\
& -g\left(1-\frac{n_{1}}{m}(1+z g)\right) \sum_{k \geq 2} \frac{\theta_{2}^{k}}{n_{0}^{k-1}} \sum_{i_{3}, \ldots, i_{2 k}}^{*} \partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}}
\end{aligned}
$$

where in the second step we used (25) and (27). Finally, by shifting the index in the summation and doing some simple bookkeeping, we have

$$
\begin{aligned}
1+z g \approx & \left(\theta_{1}-\theta_{1, b}\right) g\left(1-\frac{n_{1}}{m}(1+z g)\right)-\theta_{2} \frac{n_{1}}{n_{0}} g(1+z g)\left(1-\frac{n_{1}}{m}(1+z g)\right) \\
& +\theta_{2}\left(\theta_{1}-\theta_{1, b}-\theta_{2}\right) \frac{n_{1}}{n_{0}} g^{2}\left(1-\frac{n_{1}}{m}(1+z g)\right)^{2},
\end{aligned}
$$

which corresponds to the self-consistent equation (6) as $n_{0}, n_{1}, m \rightarrow \infty$, where θ_{1} is replaced by $\theta_{1}-\theta_{1, b}$. In the same way as in the bias-free case, the concentration inequality of Lemma 3.4 can also be applied here, thereby concluding that g is approximately equal to its mean with high probability. The first claim of Theorem 2.5 then follows. The second claim follows easily from Lemma B. 1 Since $n_{1} \theta_{1, b}(f)$ is approximately an eigenvalue of the random matrix $\frac{1}{m} Y^{*} Y$, and since the nonzero eigenvalues of $Y^{*} Y$ are the same as the one of $Y Y^{*}$, we have that $\lambda_{\max } \approx n_{1} \theta_{1, b}(f)$ is an eigenvalue of M located away from the rest of the spectrum (called outlier). This concludes the proof of Theorem 2.5 .

B. 2 Proof of Proposition 3.3

In light of the central limit theorem, in the asymptotic limit the random variables $\frac{(W X)_{i j}}{\sqrt{n_{0}}}+B_{i}$ are approximately normally distributed with zero mean and variance $\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}$. In contrast to the bias-free case, here we have two different nonzero second cumulants of the entries of the random matrix $\frac{W X}{\sqrt{n_{0}}}+B$, and therefore also of the $Y_{i j}$'s.

Proof of Proposition 3.3. The first identity follows in a straightforward manner by assumption (8):

$$
\kappa\left(Y_{i j}\right)=\mathbf{E} Y_{i j}=\int_{\mathbb{R}} f(x) \frac{e^{-x^{2} / 2\left(\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}\right)}}{\sqrt{2 \pi\left(\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}\right)}} \mathrm{d} x+\mathcal{O}\left(n_{0}^{-1 / 2}\right)=\mathcal{O}\left(n_{0}^{-1 / 2}\right)
$$

For the second cumulant, we first compute

$$
\begin{aligned}
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}, \frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}+B_{i_{3}}\right) & =\mathbf{E}\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}\right)\left(\frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}+B_{i_{3}}\right) \\
& =\frac{1}{n_{0}} \mathbf{E}(W X)_{i_{1} i_{2}}(W X)_{i_{3} i_{4}}+\mathbf{E} B_{i_{1}} B_{i_{3}} \\
& =\delta_{i_{1} i_{3}} \delta_{i_{2} i_{4}} \sigma_{w}^{2} \sigma_{x}^{2}+\delta_{i_{1} i_{3}} \sigma_{b}^{2} .
\end{aligned}
$$

For $i_{1}=i_{3}$ and $i_{2}=i_{4}$, the cumulant $\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{1}}^{*}\right)$ follows easily:

$$
\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{1}}^{*}\right)=\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right) \int_{\mathbb{R}} f^{2}(x) \frac{e^{-x^{2} / 2\left(\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}\right)}}{\sqrt{2 \pi\left(\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}\right)}} \mathrm{d} x=\theta_{1}(f)\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right)
$$

On the other hand, for $i_{1}=i_{3}$ and $i_{2} \neq i_{4}$, to compute the cumulant $\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{4} i_{1}}^{*}\right)$, we need the characteristic function of $\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}$ and $\frac{(W X)_{i_{4} i_{1}}^{*}}{\sqrt{n_{0}}}+B_{i_{1}}$ which turns out to be asymptotically
equal to

$$
\exp \left(-\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2}\left(t_{1}^{2}+t_{2}^{2}\right)-\sigma_{b}^{2} t_{1} t_{2}\right)
$$

Now, we can compute the cumulant of $Y_{i_{1} i_{2}}$ and $Y_{i_{4} i_{1}}^{*}$:

$$
\begin{aligned}
\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{4} i_{1}}^{*}\right) & \approx \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} f\left(x_{1}\right) f\left(x_{2}\right) e^{-i \boldsymbol{t} \cdot \boldsymbol{x}} \exp \left(-\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2}\left(t_{1}^{2}+t_{2}^{2}\right)-\sigma_{b}^{2} t_{1} t_{2}\right) \mathrm{d} \boldsymbol{t} \mathrm{~d} \boldsymbol{x} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(t_{1}\right) \hat{f}\left(t_{2}\right) \exp \left(-\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2}\left(t_{1}^{2}+t_{2}^{2}\right)-\sigma_{b}^{2} t_{1} t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}
\end{aligned}
$$

where in the second step we applied the Fourier inversion theorem. We denote the covariance matrix Σ by

$$
\Sigma:=\left(\begin{array}{cc}
\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2} & \sigma_{b}^{2} \tag{29}\\
\sigma_{b}^{2} & \sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right)
$$

with determinant $\operatorname{det}(\Sigma)=\sigma_{w}^{2} \sigma_{x}^{2}\left(\sigma_{w}^{2} \sigma_{x}^{2}+2 \sigma_{b}^{2}\right)$ and inverse matrix

$$
\Sigma^{-1}=\frac{1}{\operatorname{det}(\Sigma)}\left(\begin{array}{cc}
\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2} & -\sigma_{b}^{2} \\
-\sigma_{b}^{2} & \sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}
\end{array}\right) .
$$

Again applying the Fourier inversion formula, we obtain

$$
\begin{aligned}
\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{4} i_{1}}^{*}\right) & \approx \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \hat{f}\left(t_{1}\right) \hat{f}\left(t_{2}\right) e^{-\frac{1}{2}\langle\boldsymbol{t}, \Sigma \boldsymbol{t}\rangle} \mathrm{d} \boldsymbol{t} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} f\left(x_{1}\right) f\left(x_{2}\right) \frac{2 \pi}{\sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}\left\langle\boldsymbol{x}, \Sigma^{-1} \boldsymbol{x}\right\rangle} \mathrm{d} \boldsymbol{x} \\
& =\frac{1}{2 \pi \sqrt{\sigma_{w}^{2} \sigma_{x}^{2}\left(\sigma_{w}^{2} \sigma_{x}^{2}+2 \sigma_{b}^{2}\right)}} \int_{\mathbb{R}^{2}} f\left(x_{1}\right) f\left(x_{2}\right) e^{-\frac{1}{2}\left\langle\boldsymbol{x}, \Sigma^{-1} \boldsymbol{x}\right\rangle} \mathrm{d} \boldsymbol{x}=\theta_{1, b}(f),
\end{aligned}
$$

where

$$
e^{-\frac{1}{2}\left\langle\boldsymbol{x}, \Sigma^{-1} \boldsymbol{x}\right\rangle}=\exp \left(-\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)-2 \sigma_{b}^{2} x_{1} x_{2}}{2 \sigma_{w}^{2} \sigma_{x}^{2}\left(\sigma_{w}^{2} \sigma_{x}^{2}+2 \sigma_{b}^{2}\right)}\right) .
$$

To complete the proof, it remains to compute the joint cumulant of $Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, \ldots, Y_{i_{2 k} i_{1}}^{*}$ for $k>1$ and $i_{1}, \ldots, i_{2 k}$ distinct. For notational simplicity, we prove the statement for $k=2$. First, we use the cumulant asymptotics in order to asymptotically compute the characteristic function. The cumulants have match those of the bias-free case, except for

$$
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}, \frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}\right)=\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}
$$

In addition to all these cumulants, we also have

$$
\kappa\left(\frac{(W X)_{i_{1} i_{2}}}{\sqrt{n_{0}}}+B_{i_{1}}, \frac{(W X)_{i_{4} i_{1}}^{*}}{\sqrt{n_{0}}}+B_{i_{1}}\right)=\kappa\left(\frac{(W X)_{i_{2} i_{3}}^{*}}{\sqrt{n_{0}}}+B_{i_{3}}, \frac{(W X)_{i_{3} i_{4}}}{\sqrt{n_{0}}}+B_{i_{3}}\right)=\sigma_{b}^{2} .
$$

Therefore, the log-characteristic function is given by

$$
\begin{aligned}
& -\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2} \sum_{i=1}^{4} t_{i}^{2}-\sigma_{b}^{2}\left(t_{1} t_{4}+t_{2} t_{3}\right)+\sum_{n \geq 1} \frac{(-1)^{n-1}}{n}\left(\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}\right)^{2}}{n_{0}} \prod_{i=1}^{4} t_{i}+\mathcal{O}\left(n_{0}^{-2}\right)\right)^{n} \\
& =-\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2} \sum_{i=1}^{4} t_{i}^{2}-\sigma_{b}^{2}\left(t_{1} t_{4}+t_{2} t_{3}\right)+\log \left(1+\frac{\left(\sigma_{w}^{2} \sigma_{x}^{2}\right)^{2}}{n_{0}} \prod_{i=1}^{4} t_{i}+\mathcal{O}\left(n_{0}^{-2}\right)\right)
\end{aligned}
$$

for $t_{1}, t_{2}, t_{3}, t_{4} \in \mathbb{R}$ such that $\left|t_{i}\right|<n_{0}^{1 / 4}$. We obtain the characteristic function by taking the exponential of the above expression. By the same argument as in the proof of Proposition 3.2, we
have

$$
\begin{aligned}
& \kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, Y_{i_{4} i_{1}}^{*}\right) \\
& =\frac{1}{n_{0}}\left(\frac{\sigma_{w}^{2} \sigma_{x}^{2}}{(2 \pi)^{2}} \int \widehat{f}^{\prime}\left(t_{1}\right) \widehat{f}^{\prime}\left(t_{2}\right) \exp \left(-\frac{\sigma_{w}^{2} \sigma_{x}^{2}+\sigma_{b}^{2}}{2}\left(t_{1}^{2}+t_{2}^{2}\right)-\sigma_{b}^{2} t_{1} t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}\right)^{2}+\mathcal{O}\left(n_{0}^{-3 / 2}\right) \\
& =\left(\frac{1}{2 \pi \sqrt{\sigma_{w}^{2} \sigma_{x}^{2}\left(\sigma_{w}^{2} \sigma_{x}^{2}+2 \sigma_{b}^{2}\right)}} \int f\left(x_{1}\right) f\left(x_{2}\right) e^{-\frac{1}{2}\left\langle\boldsymbol{x}, \Sigma^{-1} \boldsymbol{x}\right\rangle} \mathrm{d} \boldsymbol{x}\right)^{2} \\
& \quad+\frac{1}{n_{0}}\left(\frac{\sigma_{w}^{2} \sigma_{x}^{2}}{2 \pi \sqrt{\sigma_{w}^{2} \sigma_{x}^{2}\left(\sigma_{w}^{2} \sigma_{x}^{2}+2 \sigma_{b}^{2}\right)}} \int f^{\prime}\left(x_{1}\right) f^{\prime}\left(x_{2}\right) e^{-\frac{1}{2}\left\langle\boldsymbol{x}, \Sigma^{-1} \boldsymbol{x}\right\rangle} \mathrm{d} \boldsymbol{x}\right)^{2}+\mathcal{O}\left(n_{0}^{-3 / 2}\right)
\end{aligned}
$$

where Σ is the matrix defined by (29). It then follows that

$$
\begin{aligned}
\kappa\left(Y_{i_{1} i_{2}}, Y_{i_{2} i_{3}}^{*}, Y_{i_{3} i_{4}}, Y_{i_{4} i_{1}}^{*}\right) & \approx \mathbf{E} Y_{i_{1} i_{2}} Y_{i_{2} i_{3}}^{*} Y_{i_{3} i_{4}} Y_{i_{4} i_{1}}^{*}-\mathbf{E} Y_{i_{1} i_{2}} Y_{i_{4} i_{1}}^{*} \mathbf{E} Y_{i_{2} i_{3}}^{*} Y_{i_{3} i_{4}} \\
& =\theta_{2}(f)^{2} n_{0}^{-1}\left(1+\mathcal{O}\left(n_{0}^{-1 / 2}\right)\right)
\end{aligned}
$$

as desired. The proof for $k>2$ is similar.

C Proofs of auxiliary results

Proof of Lemma 3.1. By applying the Fourier inversion theorem, we have

$$
\mathbf{E} X_{1} f(\boldsymbol{X})=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} x_{1} f(\boldsymbol{x}) e^{-i \boldsymbol{t} \cdot \boldsymbol{x}} \varphi_{\boldsymbol{X}}(\boldsymbol{t}) \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{t}
$$

where $\varphi_{\boldsymbol{X}}(\boldsymbol{t})$ is the characteristic function of the n-dimensional random vector \boldsymbol{X}. It holds that $\int_{\mathbb{R}^{n}}\left(-i x_{1}\right) f(\boldsymbol{x}) e^{-i \boldsymbol{t} \cdot \boldsymbol{x}} \mathrm{~d} \boldsymbol{x}=\partial_{t_{1}} \hat{f}(\boldsymbol{t})$. Then, it follows that

$$
\begin{aligned}
\mathbf{E} X_{1} f(\boldsymbol{X}) & =\frac{i}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left(\partial_{t_{1}} \hat{f}(\boldsymbol{t})\right) \varphi_{\boldsymbol{X}}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t} \\
& =-\frac{i}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\boldsymbol{t})\left(\partial_{t_{1}} \varphi_{\boldsymbol{X}}(\boldsymbol{t})\right) \mathrm{d} \boldsymbol{t} \\
& =-\frac{i}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\boldsymbol{t})\left(\partial_{t_{1}} e^{\log \varphi_{\boldsymbol{X}}(\boldsymbol{t})}\right) \mathrm{d} \boldsymbol{t} \\
& =-\frac{i}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\boldsymbol{t})\left(\partial_{t_{1}} \log \varphi_{\boldsymbol{X}}(\boldsymbol{t})\right) \varphi_{\boldsymbol{X}}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
\end{aligned}
$$

Cumulants can also be defined in an analytical way as the coefficients of the log-characteristic function

$$
\begin{equation*}
\log \mathbf{E} e^{i \boldsymbol{t} \cdot \boldsymbol{X}}=\sum_{l} \kappa_{l} \frac{(i t)^{l}}{l!} \tag{30}
\end{equation*}
$$

where \sum_{l} is the sum over all multi-indices $\boldsymbol{l}=\left(l_{1}, \ldots, l_{n}\right) \in \mathbb{N}^{n}$. We note that $\kappa_{l}\left(X_{1}, \ldots, X_{n}\right)=$ $\kappa\left(\left\{X_{1}\right\}^{l_{1}}, \ldots,\left\{X_{n}\right\}^{l_{n}}\right)$ means that X_{i} appears l_{i} times. One can prove that this definition of cumulants is equivalent to the combinatorial one given by (see [24] for a proof). Using definition (30) results in

$$
\partial_{t_{1}} \log \varphi_{\boldsymbol{X}}(\boldsymbol{t})=i \sum_{\boldsymbol{l}} \kappa_{\boldsymbol{l}+\boldsymbol{e}_{\mathbf{1}}} \frac{(i \boldsymbol{t})^{\boldsymbol{l}}}{\boldsymbol{l}!}
$$

where $\boldsymbol{l}+\boldsymbol{e}_{\mathbf{1}}=\left(l_{1}+1, l_{2}, \ldots, l_{n}\right)$. Since $(i \boldsymbol{t})^{\boldsymbol{l}} \hat{f}(\boldsymbol{t})=\widehat{f^{(\boldsymbol{l})}}(\boldsymbol{t})$, we finally obtain

$$
\mathbf{E} X_{1} f(\boldsymbol{X})=\sum_{l} \frac{\kappa_{l+e_{1}}}{l!} \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \widehat{f^{(l)}}(\boldsymbol{t}) \varphi_{\boldsymbol{X}}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}=\sum_{l} \frac{\kappa_{l+e_{1}}}{l!} \mathbf{E} f^{(\boldsymbol{l})}(\boldsymbol{X})
$$

where we again applied the Fourier inversion formula.

Proof of Lemma A. 1 Let $\Delta^{i, j}$ denote a $m \times n_{1}$ matrix such that $\Delta_{k l}^{i, j}=\mathbf{1}_{\{(i, j)=(k, l)\}}$. Then, applying the resolvent identity, we get

$$
\frac{\partial G}{\partial Y_{i j}^{*}}=\lim _{\epsilon \rightarrow 0} \frac{\left(\frac{Y\left(Y^{*}+\epsilon \Delta^{i, j}\right)}{m}-z\right)^{-1}-\left(\frac{Y Y^{*}}{m}-z\right)^{-1}}{\epsilon}=-\frac{G Y \Delta^{i, j} G}{m}
$$

It follows that $\partial_{Y_{i j}^{*}} G_{a b}=-\left(\frac{G Y}{m}\right)_{a i} G_{j b}$ for $1 \leq a, b \leq n_{1}, 1 \leq i \leq m$, and $1 \leq j \leq n_{1}$. Therefore, we have

$$
\partial_{Y_{i_{2} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}}=\sum_{j=1}^{n_{1}} \partial_{Y_{i_{2} i_{1}}^{*}}\left(Y_{i_{2} j}^{*} G_{j i_{1}}\right)=G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right)
$$

which proves (3.6a). We now compute

$$
\begin{aligned}
\sum_{j=1}^{n_{1}} \partial_{Y_{i_{2} i_{3}}^{*}} \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y_{i_{2} j}^{*} G_{j i_{1}}\right) & \approx-\sum_{j=1}^{n_{1}} \partial_{Y_{i_{2} i_{3}}^{*}}\left(Y_{i_{2} j}^{*}\left(\frac{G Y}{m}\right)_{j i_{2 k}} G_{i_{1} i_{1}}\right) \\
& \approx-\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}+\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}
\end{aligned}
$$

where the approximation in the first line comes from the fact that the contribution of $\partial_{Y_{i_{2 k} i_{1}}^{*}} Y_{i_{2} j}^{*}$ is very small and can therefore be neglected. Since the off-diagonals of the resolvent of random matrices are small if $\Im z \gg n_{1}^{-1}$, the partial derivative $\partial_{Y_{i_{2} i_{3}}^{*}} G_{i_{1} i_{1}}$ can be omitted. This justifies the second approximation. So, we obtain

$$
\partial_{Y_{i_{2} i_{3}}^{*}} \cdots \partial_{Y_{i_{2 k} i_{1}}^{*}}\left(Y^{*} G\right)_{i_{2} i_{1}} \approx-\partial_{Y_{i_{3} i_{4}}} \cdots \partial_{Y_{i_{2 k-1} i_{2 k}}}\left(\frac{G Y}{m}\right)_{i_{3} i_{2 k}} G_{i_{1} i_{1}}\left(1-\left(\frac{Y^{*} G Y}{m}\right)_{i_{2} i_{2}}\right)
$$

which completes the proof of Lemma A. 1 .

D Concentration inequality

Proof of Lemma 3.4. Without loss of generality, it suffices to prove the statement w.r.t. \mathbf{E}_{X} since by cyclicity the statement for \mathbf{E}_{W} is analogous. We write $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right)$ with $\boldsymbol{x}_{k}=$ $\left(x_{1 k}, \ldots, x_{n_{0} k}\right)^{\prime}$, and similarly, $Y=\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right)$. We denote by $\mathcal{F}_{k}, 1 \leq k \leq m$, the filtration generated by $\left\{\boldsymbol{x}_{l}, 1 \leq l \leq k\right\}$ and by $\mathbf{E}_{k}[\cdot]:=\mathbf{E}_{X}\left[\cdot \mid \mathcal{F}_{k}\right]$ the conditional expectation w.r.t. \mathcal{F}_{k}. Now, we decompose $g(z)-\mathbf{E}_{X} g(z)$ as a sum of martingale differences

$$
D_{k}:=\mathbf{E}_{k} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}-\mathbf{E}_{k-1} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}, \quad \text { for } k=1, \ldots, m
$$

By construction, we have $\mathbf{E}_{m} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}=\operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}$ and $\mathbf{E}_{0} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}=$ $\mathbf{E}_{X} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}$. It then follows that

$$
g(z)-\mathbf{E}_{X} g(z)=\frac{1}{n_{1}} \sum_{k=1}^{m} \mathbf{E}_{k} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}-\mathbf{E}_{k-1} \operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}=\frac{1}{n_{1}} \sum_{k=1}^{m} D_{k}
$$

Next, we define $M_{k}:=M-\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{*}$. We note that

$$
\mathbf{E}_{k} \operatorname{Tr}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}=\mathbf{E}_{k-1} \operatorname{Tr}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}
$$

since M_{k} is independent of \boldsymbol{y}_{k} and therefore is also independent of \boldsymbol{x}_{k}. So, we have

$$
D_{k}=\left(\mathbf{E}_{k}-\mathbf{E}_{k-1}\right)\left[\operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}-\operatorname{Tr}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}\right] .
$$

Then, by the Shermann-Morrison formula, we have

$$
\begin{aligned}
\left|\operatorname{Tr}\left(M-z \mathbf{1}_{n_{1}}\right)^{-1}-\operatorname{Tr}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}\right| & =\left|\frac{\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-2} \boldsymbol{y}_{k}}{1+\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1} \boldsymbol{y}_{\boldsymbol{k}}}\right| \\
& \leq \frac{\left|\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-2} \boldsymbol{y}_{\boldsymbol{k}}\right|}{\Im\left(\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1} \boldsymbol{y}_{\boldsymbol{k}}\right)} \\
& \leq \frac{1}{\Im z}
\end{aligned}
$$

where the last inequality follows from the resolvent identity:

$$
\begin{aligned}
\left|\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-2} \boldsymbol{y}_{\boldsymbol{k}}\right| & \leq \boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}\left(M_{k}-\bar{z} \mathbf{1}_{n_{1}}\right)^{-1} \boldsymbol{y}_{\boldsymbol{k}} \\
& =\frac{\boldsymbol{y}_{k}^{*}\left(\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1}-\left(M_{k}-\bar{z} \mathbf{1}_{n_{1}}\right)^{-1}\right) \boldsymbol{y}_{k}}{2 i \Im z} \\
& =\frac{\Im\left(\boldsymbol{y}_{k}^{*}\left(M_{k}-z \mathbf{1}_{n_{1}}\right)^{-1} \boldsymbol{y}_{\boldsymbol{k}}\right)}{\Im z}
\end{aligned}
$$

Thus, $\left|D_{k}\right| \leq 2(\Im z)^{-1}$, and so $g(z)-\mathbf{E}_{X} g(z)$ is a sum of bounded martingale differences. We can now apply the Burkholder's inequality which states that for $\left\{D_{k}, 1 \leq k \leq m\right\}$ being a complexvalued martingale difference sequence, for $p>1$,

$$
\mathbf{E}\left|\sum_{k=1}^{m} D_{k}\right|^{p} \leq C \mathbf{E}\left(\sum_{k=1}^{n}\left|D_{k}\right|^{2}\right)^{p / 2}
$$

where C is a positive constant depending on p. We refer to [5, Lemma 2.12] for a proof of this inequality. By choosing $p=4$, we get

$$
\begin{aligned}
\mathbf{E}_{X}\left|g(z)-\mathbf{E}_{X} g(z)\right|^{4} & =\frac{1}{n_{1}^{4}} \mathbf{E}_{X}\left|\sum_{k=1}^{m} D_{k}\right|^{4} \\
& \leq \frac{1}{n_{1}^{4}} C \mathbf{E}_{X}\left(\sum_{k=1}^{m}\left|D_{k}\right|^{2}\right)^{2} \\
& \leq \frac{16 C m^{2}}{n_{1}^{4}(\Im z)^{4}}=\mathcal{O}\left(n_{1}^{-2}(\Im z)^{-4}\right)
\end{aligned}
$$

just as claimed.

E Complex case

Remark E.1. We can also consider matrices $X \in \mathbb{C}^{n_{0} \times m}$ and $W \in \mathbb{C}^{n_{1} \times n_{0}}$ of complex random entries with zero mean and variance $\mathbf{E}\left|X_{i j}\right|^{2}=\sigma_{x}^{2}$ and $\mathbf{E}\left|W_{i j}\right|^{2}=\sigma_{w}^{2}$. Let $M=\frac{1}{m} Y Y^{*}$ with $Y=$ $f\left(\frac{W X}{\sqrt{n_{0}}}\right)$, and let $f: \mathbb{C} \rightarrow \mathbb{R}$ be a real-differentiable function satisfying $\int_{\mathbb{C}} f\left(\sigma_{w} \sigma_{x} z\right) \frac{e^{-|z|^{2}}}{\pi} \mathrm{~d}^{2} z=0$. Set $\theta_{1}(f)=\int_{\mathbb{C}}\left|f\left(\sigma_{w} \sigma_{x} z\right)\right|^{2} \frac{e^{-|z|^{2}}}{\pi} \mathrm{~d}^{2} z$. Then, it can be proved that the normalized trace of the resolvent of M satisfies equation (7).

