
A Proof of Theorem 2.2

A.1 Derivation of the self-consistent equation

We start from (16) and rely on the following power counting principles: Each derivative provides a
smallness-factor of 1/

√
m because G is a function of Y/

√
m and Y ∗/

√
m, while each independent

summation costs a factor of n1 ∼ m. However, we cannot have too many independent summa-
tions for if any index appears only once in the cumulant, then the latter vanishes identically by
the independence property of cumulants. For example, if i2, . . . , i2k ̸= i1, then the random vari-
ables Yi3i4 , . . . , Yi2k−1i2k are independent of Yi1i2 in the probability space of the random variables{
wi1a

}n0

a=1
conditioned on the remaining random variables. By the law of total expectation and the

independence property it follows that

κ(Yi1i2 , . . . , Yi2k−1i2k) = 0

in this case. Thus we only need to sum over those cumulants in which each W - and X-index appears
at least twice (we call i the W -index of Yij , Y ∗

ji and j the X-index). In the extreme case where each
W - and X-index appears exactly twice, we either have a single cycle, or a union of cycles on disjoint
index sets. In the latter case the cumulant vanishes identically by the independence property. In
the former case, for a cycle of length 2k there are k indices each, we obtain a factor of n−1

1 from
the normalised sum, a factor of m−2k/2 = m−k from the derivatives, a factor of nk1m

k from the
summations, and finally a factor of n1−k0 from the cumulant in Proposition 3.2, i.e.

1

n1

1

mk
nk1m

kn1−k0 ∼ 1

and the power counting is neutral. On the contrary, when some index appears three times, the overall
power counting described above is smaller by a factor of 1/

√
m, and thus negligible to leading order.

In particular this argument shows that cycles of odd length only negligible as they cannot arise on
indices in which each W - and X-index appears exactly twice.

Thus, together with Proposition 3.2 we have (recalling that the shorthand notation ≈ indicates
equalities up to an error of n−1/2

0 )

1 + zEg =
1

n1m

∑
k≥1

∑
i1,...,i2k

κ(Yi1i2 , Yi3i4 , Yi5i6 , . . . , Yi2k−1i2k)

(k − 1)!
E∂Yi3i4

· · · ∂Yi2k−1i2k
(Y ∗G)i2i1

≈ 1

n1m

∑
k≥1

∗∑
i1,...,i2k

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , . . . , Y

∗
i2ki1

)E∂Yi3i4
· · · ∂Yi2k−1i2k

(Y ∗G)i2i1

=
1

n1m

∗∑
i1,i2

κ(Yi1i2 , Y
∗
i2i1)E∂Y ∗

i2i1
(Y ∗G)i2i1

+
1

n1m

∑
k≥2

∗∑
i1,...,i2k

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , . . . , Y

∗
i2ki1

)E∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1

≈ θ1
n1m

∗∑
i1,i2

E∂Y ∗
i2i1

(Y ∗G)i2i1 +
1

n1m

∑
k≥2

θk2
nk−1
0

∗∑
i1,...,i2k

E∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1 ,

(21)

where the summations
∑∗ are understood over pairwise distinct indices. Here in the second

line the factorial (k − 1)! disappears since there are exactly (k − 1)! ways to map the variables
Yi3i4 , Yi5i6 . . . , Yi2k−1i2k into Y ∗

i2i3
, Yi3i4 , . . . , Y

∗
i2ki1

with distinct i1, . . . , i2k. From this point on-
wards, we will omit reference to E to simplify notation slightly.

We now need to compute the partial derivatives in (21). The proof of the following lemma is included
in Appendix C.
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Lemma A.1. Let G(z) = (M − z)−1, z ∈ H, be the resolvent of the random matrix M = 1
mY Y

∗ ∈
Rn1×n1 . Then, it holds that

∂Y ∗
i2i1

(Y ∗G)i2i1 = Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)
, (22a)

∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1 ≈ −∂Yi3i4
· · · ∂Yi2k−1i2k

(
GY

m

)
i3i2k

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)
.

(22b)

Thus, using Lemma A.1 in (21) we have

1 + zg ≈ θ1
n1m

∗∑
i1,i2

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)

− 1

n1m

∑
k≥2

θk2
nk−1
0

∗∑
i1,...,i2k

∂Yi3i4
· · · ∂Yi2k−1i2k

(
GY

m

)
i3i2k

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)

= θ1g − θ1
n1
m
g

〈
Y ∗GY

m

〉
−
(
g − n1

m
g

〈
Y ∗GY

m

〉)
1

m

∑
k≥2

θk2
nk−1
0

∗∑
i3,...,i2k

∂Yi3i4
· · · ∂Yi2k−1i2k

(GY )i3i2k ,

(23)

where
〈
Y ∗GY
m

〉
:= 1

n1
Tr Y

∗GY
m = 1 + zg from (15). Again, we stress that the equalities are meant

in expectation. Moreover, shifting the index in the above summation, we get

1

m

∑
k≥2

θk2
nk−1
0

∗∑
i3,...,i2k

∂Yi3i4
· · · ∂Yi2k−1i2k

(GY )i3i2k

= θ2
n1
n0

1

m

∑
k≥1

θk2
n1n

k−1
0

∗∑
i3,...,i2k+2

∂Yi3i4
· · · ∂Yi2k+1i2k+2

(GY )i3i2k+2

= θ22
n1
n0

1

n1m

∗∑
i3,i4

∂Yi3i4
(GY )i3i4

+ θ2
n1
n0

1

n1m

∑
k≥2

θk2
nk−1
0

∗∑
i3,...,i2k+2

∂Yi3i4
· · · ∂Yi2k+1i2k+2

(GY )i3i2k+2

≈ θ22
n1
n0

(
g − n1

m
g

〈
Y ∗GY

m

〉)
+ θ2

n1
n0

(
1 + zg − θ1g + θ1

n1
m
g

〈
Y ∗GY

m

〉)
= θ2

n1
n0

(1 + zg)− θ2(θ1 − θ2)
n1
n0
g
(
1− n1

m
(1 + zg)

)
,

where in the third step we used (21). Finally, together with (23), we have

1 + zg ≈ θ1g
(
1− n1

m
(1 + zg)

)
− θ2

n1
n0
g(1 + zg)

(
1− n1

m
(1 + zg)

)
+ θ2(θ1 − θ2)

n1
n0
g2
(
1− n1

m
(1 + zg)

)2
,

(24)

which corresponds to the desired equation (6) as n0, n1,m → ∞. Thus, (24) combined with the
concentration inequality given in Lemma 3.4 completes the proof of Theorem 2.2.

Proof of Theorem 2.2. We need to show the concentration w.r.t. EW,X ≡ E. By the triangle and
Jensen inequality we have
E|g(z)−Eg(z)|4 ≲ E|g(z)−EW g(z)|4 +EX |EW g(z)−Eg(z)|4

≤ EX

(
EW |g(z)−EW g(z)|4

)
+EW

(
EX |g(z)−EXg(z)|4

)
≲

2

n21(ℑz)4
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and thus the almost sure convergence follows from the Borel-Cantelli Lemma, completing the proof
of Theorem 2.2 together with (24).

A.2 Proof of Proposition 3.2

In light of the central limit theorem, we have that in the asymptotic limit the random variables(
WX
√
n0

)
ij

=
1

√
n0

n0∑
k=1

WikXkj ,

are approximately N (0, σ2
wσ

2
x)-normally distributed. Our next goal is to compute their cumulants.

The first cumulant or expectation vanishes identically. For the second cumulant we obtain:

Lemma A.2. The cumulant of (WX)i1i2√
n0

and (WX)i3i4√
n0

is nonzero only if i1 = i3 and i2 = i4, and in
this case it holds that

κ

(
(WX)i1i2√

n0
,
(WX)∗i2i1√

n0

)
= σ2

wσ
2
x.

Proof. We have

κ

(
(WX)i1i2√

n0
,
(WX)i3i4√

n0

)
=

1

n0
E(WX)i1i2(WX)i3i4

=
1

n0

n0∑
k1,k2=1

EWi1k1Xk1i2Wi3k2Xk2i4

=
1

n0

n0∑
k1=1

δi1i3δi2i4 EW
2
i1k1X

2
k1i2 = δi1i3δi2i4σ

2
wσ

2
x.

Thus, the second cumulant is nonzero if i1 = i3 and i2 = i4, and in this case it is exactly the variance
of the random variable (WX)ij√

n0
.

We now consider four random entries, and we compute

1

n20
κ
(
(WX)i1i2 , (WX)i3i4 , (WX)i5i6 , (WX)i7i8

)
.

We observe that the cumulant vanishes identically if any index appears exactly once by the indepen-
dence property, and thus each W - and X-index must appear exactly twice. This is only possible if
we have two cycles on two indices each, or a single four-cycle. The cumulant of the former vanishes
identically by independence ant thus the only non-vanishing 4-cumulant is

κ

(
(WX)i1i2√

n0
,
(WX)∗i2i3√

n0
,
(WX)i3i4√

n0
,
(WX)∗i4i1√

n0

)
=

1

n20
E(WX)i1i2(WX)∗i2i3(WX)i3i4(WX)∗i4i1

=
1

n20

n0∑
k1,k2,k3,k4=1

EWi1k1Xk1i2Wi3k2Xk2i2Wi3k3Xk3i4Wi1k4Xk4i4

=
1

n20

n0∑
k1=1

EW 2
i1k1X

2
k1i2W

2
i3k1X

2
k1i4 =

(
σ2
wσ

2
x

)2
n0

Here for the first equality we used (14) where all but the trivial partition vanish identically since in
some expectation a single index appears. This result can be generalised:
Lemma A.3. For k ≥ 2 and pairwise distinct indices we have

κ

(
(WX)i1i2√

n0
,
(WX)∗i2i3√

n0
,
(WX)i3i4√

n0
, . . . ,

(WX)∗i2ki1√
n0

)
=

(
σ2
wσ

2
x

)k
nk−1
0

+O(n−k0 ).
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Proof. As illustrated for the case with four random variables, to have a nonzero cumulant, we can
encode the 2k random variables as a cycle graph of length 2k. Then, the only contribution comes
from

κ

(
(WX)i1i2√

n0
, . . . ,

(WX)∗i2ki1√
n0

)
=

1

nk0
E(WX)i1i2 · · · (WX)∗i2ki1 =

(
σ2
wσ

2
x

)k
nk−1
0

+O(n−k0 ),

which completes the proof.

Finally, we compute the cumulants of the entries of the random matrix Y . Since the activation
function f is applied component-wise, it follows from the previous results that the only contribution
comes from κ(Yi1i2 , Y

∗
i2i3

, Yi3i4 , . . . , Y
∗
i2ki1

) for k ≥ 1 and i1, . . . , i2k distinct, thus proving that Y
has cycle correlations.

Proof of Proposition 3.2. From the Berry-Esséen Theorem it follows that

κ(Yij) = EYij =

∫
R
f(x)

e−x
2/2σ2

wσ
2
x

σwσx
√
2π

dx+O(n
−1/2
0 )

=

∫
R
f(σwσxx)

e−x
2/2

√
2π

dx+O(n
−1/2
0 ) = O(n

−1/2
0 ),

and

κ(Yij , Y
∗
ji) = (1 +O(n

−1/2
0 ))

∫
R
f2(σwσxx)

e−x
2/2

√
2π

dx = θ1(f)(1 +O(n
−1/2
0 )),

since the random variables (WX)ij/
√
n0 are approximately centred Gaussian with variance σ2

wσ
2
x.

Let k > 1. Then, since f is a smooth function with compact support, we have that f is in Cl for
some integer l > 1 + 2k2

k−1 . Using the Fourier inversion theorem, it follows that

f(x1) =
1

2π

∫
R
f̂(t1) e

it1x1dt1

=
1

2π

∫
|t1|≤n

k−1
2k

0

f̂(t1) e
it1x1dt1 +

1

2π

∫
|t1|>n

k−1
2k

0

f̂(t1) e
it1x1dt1

=
1

2π

∫
|t1|≤n

k−1
2k

0

f̂(t1) e
it1x1dt1 +O

(
(n

k−1
2k

0 )1−l
)
,

where we used |f̂(t1)| ≤ c
(1+|t1|)l , for some positive constant c. For notational simplicity we work in

the case k = 2, but the argument when k > 2 is the same. We compute

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , Y

∗
i4i1)

=
1

(2π)4

∫
∀i, |ti|≤n

1
4
0

f̂(t1)f̂(t2)f̂(t3)f̂(t4)κ(e
it1Zi1i2 , eit2Z

∗
i2i3 , eit3Zi3i4 , eit4Z

∗
i4i1 ) dt+O(n−2

0 ),

=
1

(2π)4

∑
l1,...,l4≥1

∫
∀i, |ti|≤n

1
4
0

4∏
i=1

(
f̂(ti)

(iti)
li

li!

)
κ((Zi1i2)

l1 , (Z∗
i2i3)

l2 , (Zi3i4)
l3 , (Z∗

i4i1)
l4) dt+O(n−2

0 )

where we introduced Z :=WX/
√
n0 and in the second equality used that any cumulant involving

the deterministic 1 vanishes identically. We now expand the cumulant involving powers of Z via the
well known formula [21, Theorem 11.30] in terms of partitions of the set {1, . . . , l1 + l2 + l3 + l4}
whose joint with the partition {{1, . . . , l1}, . . . , {l1+ l2+ l3+1, . . . ,+l1+ l2+ l3+ l4}} is the trivial
partition. By the independence property it is clear that the leading contribution comes from those
partitions with one block connecting one copy of each of Zi1i2 , Z

∗
i2i3

, Zi3i4 , Z
∗
i4i1

and the remaining
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blocks being internal pairings. Since for odd li there are l1!! · · · l4!! such partitions it follows that

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , Y

∗
i4i1)

=
1

(2π)4

∑
l1,...,l4≥1
li odd

∫
∀i, |ti|≤n

1
4
0

4∏
i=1

(
f̂(ti)

(iti)
li

(li − 1)!!

)
κ(Zi1i2 , Z

∗
i2i3 , Zi3i4 , Z

∗
i4i1)

×Var(Zi1i2)
(l1−1)/2 · · ·Var(Z∗

i4i1)
(l4−1)/2 dt+O(n

−3/2
0 )

=
σ4
wσ

4
x

n0

1

(2π)4

∑
k1,...,k4≥0

∫
∀i, |ti|≤n

1
4
0

t1t2t3t4

4∏
i=1

(
f̂(ti)

(−σ2
wσ

2
xt

2
i /2)

ki

ki!

)
dt+O(n

−3/2
0 )

=
1

n0

(
σwσx

1

2π

∫
f̂ ′(t)e−σ

2
wσ

2
x t

2/2 dt
)4

+O(n
−3/2
0 ),

where in the penultimate step we used Lemmata A.2–A.3 and in the ultimate step we used the Fourier
property f̂ ′(t) = itf̂(t). Together with

σwσx
2π

∫
f̂ ′(t)e−σ

2
wσ

2
x t

2/2 dt =
1√
2π

∫
f ′(x)e−x

2/2σ2
wσ

2
x dx

= σwσx

∫
f ′(σwσxx)

e−x
2/2

√
2π

dx = θ2(f)
1/2.

we conclude

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , Y

∗
i4i1) = θ2(f)

2n−1
0

(
1 +O(n

−1/2
0 )

)
,

just as claimed.

B Proof of Theorem 2.5

B.1 Derivation of the self-consistent equation

We proceed as in Subsection A.1. We know from (15) that

1

m

m∑
i=1

(
Y ∗GY

m

)
ii

=
n1
m

〈
Y Y ∗G

m

〉
=
n1
m

(1 + zg). (25)

We further claim the following.
Lemma B.1. It holds that

1

m

m∑
i=1

n1∑
j=1

(
Y ∗GY

m

)
ij

= 1 +O
(
(θ1,b(f)n1)

−1
)
. (26)

Together with (25), Lemma B.1 implies

1

m

∑
i ̸=j

(
Y ∗GY

m

)
ij

≈ 1− n1
m

(1 + zg). (27)

Proof. Using the Woodbury matrix identity3, we have

1

m

(
Y ∗GY

m

)
=

1

m2
Y ∗
(
Y Y ∗

m
− z

)−1

Y =
1

m
+

z

m

(
Y ∗Y

m
− z

)−1

,

3For A ∈ Rn×n, C ∈ Rr×r , U ∈ Rn×r and V ∈ Rr×n the Woodbury matrix identity is given by

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.
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which implies

∑
i,j

1

m

(
Y ∗GY

m

)
ij

=
∑
i,j

1

m
δij +

∑
i,j

z

m

(
Y ∗Y

m
− z

)−1

ij

= 1 +
∑
i,j

z

m

(
Y ∗Y

m
− z

)−1

ij

.

So, we need to show that
∑
i,j

z
m

(
Y ∗Y
m − z

)−1

ij
is approximately zero. Let e := 1√

m
[1 · · · 1]T be a

normalized vector in Rm. We then write

∑
i,j

z

m

(
Y ∗Y

m
− z

)−1

ij

= z ⟨e,
(
Y ∗Y

m
− z

)−1

e⟩.

It turns out that e is approximately an eigenvector of 1
mY

∗Y . Indeed, it holds that

E

(
Y ∗Y

m
e

)
i

=
1

m
√
m

m∑
j=1

n1∑
k=1

EY ∗
ikYkj ≈ m−1/2n1 θ1,b(f) = (n1 θ1,b(f))ei.

Moreover, the variance is approximately O(n1/m), which means that the standard deviation is of
order 1, while the expectation of order n1. Thus, e is approximately an eigenvector of 1

mY
∗Y with

eigenvalue n1θ1,b(f). Since θ1,b(f) is nonzero by assumption, we have that e is approximately an

eigenvector of the matrix
(
Y ∗Y
m − z1m

)−1

with eigenvalue (n1θ1,b(f) − z)−1, from which the
result follows: ∣∣∣∣∣⟨e,

(
Y ∗Y

m
− z

)−1

e⟩

∣∣∣∣∣ ≈ ∣∣(n1 θ1,b(f)− z)−1
∣∣≪ 1.

Given Lemma B.1 and Proposition 3.3, we can now prove the global law for the random matrix M
with the cycle correlations.

Proof of Theorem 2.5. Applying Proposition 3.3 to (16) and using the same power counting argument
as in (21) we obtain

1 + zg ≈ 1

n1m

∗∑
i1,i2

κ(Yi1i2 , Y
∗
i2i1) ∂Y ∗

i2i1
(Y ∗G)i2i1 +

1

n1m

∗∑
i1,i2,i3

κ(Yi1i2 , Y
∗
i3i1) ∂Y ∗

i3i1
(Y ∗G)i2i1

+
1

n1m

∑
k≥2

∗∑
i1,...,i2k

κ(Yi1i2 , . . . , Y
∗
i2ki1

) ∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1

≈ θ1(f)

n1m

∗∑
i1,i2

∂Y ∗
i2i1

(Y ∗G)i2i1 +
θ1,b(f)

n1m

∑
i1

∗∑
i2,i3

∂Y ∗
i3i1

(Y ∗G)i2i1

+
1

n1m

∑
k≥2

θk2 (f)

nk−1
0

∗∑
i1,...,i2k

∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1 ,

(28)

where we omitted reference to E to simplify notation. Given Lemma A.1, we only need to compute
∂Y ∗

i3i1
(Y ∗G)i2i1 :

∂Y ∗
i3i1

(Y ∗G)i2i1 =

n1∑
j=1

∂Y ∗
i3i1

(
Y ∗
i2jGji1

)
≈ −Gi1i1

(
Y ∗GY

m

)
i2i3

,
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where we omitted the contribution of ∂Y ∗
i3i1

Y ∗
i2j

since it is very small. Plugging the partial derivatives
into (28), we get

1 + zg ≈ θ1(f)

n1m

∗∑
i1,i2

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)
− θ1,b(f)

n1m

∑
i1

∗∑
i2,i3

Gi1i1

(
Y ∗GY

m

)
i2i3

− 1

n1m

∑
k≥2

θk2 (f)

nk−1
0

∗∑
i1,...,i2k

∂Yi3i4
· · · ∂Yi2k−1i2k

(
GY

m

)
i3i2k

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)

≈ θ1(f)g
(
1− n1

m
(1 + zg)

)
− θ1,b(f)g

(
1− n1

m
(1 + zg)

)
− g

(
1− n1

m
(1 + zg)

)∑
k≥2

θk2
nk−1
0

∗∑
i3,...,i2k

∂Yi3i4
· · · ∂Yi2k−1i2k

(
GY

m

)
i3i2k

,

where in the second step we used (25) and (27). Finally, by shifting the index in the summation and
doing some simple bookkeeping, we have

1 + zg ≈ (θ1 − θ1,b)g
(
1− n1

m
(1 + zg)

)
− θ2

n1
n0
g(1 + zg)

(
1− n1

m
(1 + zg)

)
+ θ2(θ1 − θ1,b − θ2)

n1
n0
g2
(
1− n1

m
(1 + zg)

)2
,

which corresponds to the self-consistent equation (6) as n0, n1,m → ∞, where θ1 is replaced by
θ1 − θ1,b. In the same way as in the bias-free case, the concentration inequality of Lemma 3.4
can also be applied here, thereby concluding that g is approximately equal to its mean with high
probability. The first claim of Theorem 2.5 then follows. The second claim follows easily from
Lemma B.1. Since n1θ1,b(f) is approximately an eigenvalue of the random matrix 1

mY
∗Y , and since

the nonzero eigenvalues of Y ∗Y are the same as the one of Y Y ∗, we have that λmax ≈ n1θ1,b(f) is
an eigenvalue of M located away from the rest of the spectrum (called outlier). This concludes the
proof of Theorem 2.5.

B.2 Proof of Proposition 3.3

In light of the central limit theorem, in the asymptotic limit the random variables (WX)ij√
n0

+Bi are
approximately normally distributed with zero mean and variance σ2

wσ
2
x + σ2

b . In contrast to the
bias-free case, here we have two different nonzero second cumulants of the entries of the random
matrix WX√

n0
+B, and therefore also of the Yij’s.

Proof of Proposition 3.3. The first identity follows in a straightforward manner by assumption (8):

κ(Yij) = EYij =

∫
R
f(x)

e−x
2/2(σ2

wσ
2
x+σ

2
b )√

2π(σ2
wσ

2
x + σ2

b )
dx+O(n

−1/2
0 ) = O(n

−1/2
0 ).

For the second cumulant, we first compute

κ

(
(WX)i1i2√

n0
+Bi1 ,

(WX)i3i4√
n0

+Bi3

)
= E

(
(WX)i1i2√

n0
+Bi1

)(
(WX)i3i4√

n0
+Bi3

)
=

1

n0
E(WX)i1i2(WX)i3i4 +EBi1Bi3

= δi1i3δi2i4 σ
2
wσ

2
x + δi1i3σ

2
b .

For i1 = i3 and i2 = i4, the cumulant κ(Yi1i2 , Y
∗
i2i1

) follows easily:

κ(Yi1i2 , Y
∗
i2i1) = (1 +O(n

−1/2
0 ))

∫
R
f2(x)

e−x
2/2(σ2

wσ
2
x+σ

2
b )√

2π(σ2
wσ

2
x + σ2

b )
dx = θ1(f)(1 +O(n

−1/2
0 )).

On the other hand, for i1 = i3 and i2 ̸= i4, to compute the cumulant κ(Yi1i2 , Y
∗
i4i1

), we need the

characteristic function of (WX)i1i2√
n0

+Bi1 and
(WX)∗i4i1√

n0
+Bi1 which turns out to be asymptotically
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equal to

exp

(
−σ

2
wσ

2
x + σ2

b

2
(t21 + t22)− σ2

b t1t2

)
.

Now, we can compute the cumulant of Yi1i2 and Y ∗
i4i1

:

κ(Yi1i2 , Y
∗
i4i1) ≈

1

(2π)2

∫
R2

f(x1)f(x2)e
−it·x exp

(
−σ

2
wσ

2
x + σ2

b

2
(t21 + t22)− σ2

b t1t2

)
dt dx

=
1

(2π)2

∫
R2

f̂(t1)f̂(t2) exp

(
−σ

2
wσ

2
x + σ2

b

2
(t21 + t22)− σ2

b t1t2

)
dt1 dt2,

where in the second step we applied the Fourier inversion theorem. We denote the covariance matrix
Σ by

Σ :=

(
σ2
wσ

2
x + σ2

b σ2
b

σ2
b σ2

wσ
2
x + σ2

b

)
(29)

with determinant det(Σ) = σ2
wσ

2
x(σ

2
wσ

2
x + 2σ2

b ) and inverse matrix

Σ−1 =
1

det(Σ)

(
σ2
wσ

2
x + σ2

b −σ2
b

−σ2
b σ2

wσ
2
x + σ2

b

)
.

Again applying the Fourier inversion formula, we obtain

κ(Yi1i2 , Y
∗
i4i1) ≈

1

(2π)2

∫
R2

f̂(t1)f̂(t2)e
− 1

2 ⟨t,Σt⟩dt

=
1

(2π)2

∫
R2

f(x1)f(x2)
2π√
det(Σ)

e−
1
2 ⟨x,Σ

−1x⟩dx

=
1

2π
√
σ2
wσ

2
x(σ

2
wσ

2
x + 2σ2

b )

∫
R2

f(x1)f(x2)e
− 1

2 ⟨x,Σ
−1x⟩dx = θ1,b(f),

where

e−
1
2 ⟨x,Σ

−1x⟩ = exp

(
− (σ2

wσ
2
x + σ2

b )(x
2
1 + x22)− 2σ2

bx1x2
2σ2

wσ
2
x(σ

2
wσ

2
x + 2σ2

b )

)
.

To complete the proof, it remains to compute the joint cumulant of Yi1i2 , Y
∗
i2i3

, Yi3i4 , . . . , Y
∗
i2ki1

for
k > 1 and i1, . . . , i2k distinct. For notational simplicity, we prove the statement for k = 2. First, we
use the cumulant asymptotics in order to asymptotically compute the characteristic function. The
cumulants have match those of the bias-free case, except for

κ

(
(WX)i1i2√

n0
+Bi1 ,

(WX)i1i2√
n0

+Bi1

)
= σ2

wσ
2
x + σ2

b .

In addition to all these cumulants, we also have

κ

(
(WX)i1i2√

n0
+Bi1 ,

(WX)∗i4i1√
n0

+Bi1

)
= κ

(
(WX)∗i2i3√

n0
+Bi3 ,

(WX)i3i4√
n0

+Bi3

)
= σ2

b .

Therefore, the log-characteristic function is given by

− σ2
wσ

2
x + σ2

b

2

4∑
i=1

t2i − σ2
b (t1t4 + t2t3) +

∑
n≥1

(−1)n−1

n

(
(σ2
wσ

2
x)

2

n0

4∏
i=1

ti +O(n−2
0 )

)n

= −σ
2
wσ

2
x + σ2

b

2

4∑
i=1

t2i − σ2
b (t1t4 + t2t3) + log

(
1 +

(σ2
wσ

2
x)

2

n0

4∏
i=1

ti +O(n−2
0 )

)
,

for t1, t2, t3, t4 ∈ R such that |ti| < n
1/4
0 . We obtain the characteristic function by taking the

exponential of the above expression. By the same argument as in the proof of Proposition 3.2, we
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have

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , Y

∗
i4i1)

=
1

n0

(
σ2
wσ

2
x

(2π)2

∫
f̂ ′(t1)f̂ ′(t2) exp

(
−σ

2
wσ

2
x + σ2

b

2
(t21 + t22)− σ2

b t1t2

)
dt1dt2

)2

+O(n
−3/2
0 )

=

(
1

2π
√
σ2
wσ

2
x(σ

2
wσ

2
x + 2σ2

b )

∫
f(x1)f(x2)e

− 1
2 ⟨x,Σ

−1x⟩dx

)2

+
1

n0

(
σ2
wσ

2
x

2π
√
σ2
wσ

2
x(σ

2
wσ

2
x + 2σ2

b )

∫
f ′(x1)f

′(x2)e
− 1

2 ⟨x,Σ
−1x⟩dx

)2

+O(n
−3/2
0 ),

where Σ is the matrix defined by (29). It then follows that

κ(Yi1i2 , Y
∗
i2i3 , Yi3i4 , Y

∗
i4i1) ≈ EYi1i2Y

∗
i2i3Yi3i4Y

∗
i4i1 −EYi1i2Y

∗
i4i1 EY

∗
i2i3Yi3i4

= θ2(f)
2n−1

0

(
1 +O(n

−1/2
0 )

)
,

as desired. The proof for k > 2 is similar.

C Proofs of auxiliary results

Proof of Lemma 3.1. By applying the Fourier inversion theorem, we have

EX1f(X) =
1

(2π)n

∫
Rn

∫
Rn

x1f(x)e
−it·xφX(t)dx dt,

where φX(t) is the characteristic function of the n-dimensional random vector X . It holds that∫
Rn(−ix1)f(x)e−it·xdx = ∂t1 f̂(t). Then, it follows that

EX1f(X) =
i

(2π)n

∫
Rn

(
∂t1 f̂(t)

)
φX(t)dt

= − i

(2π)n

∫
Rn

f̂(t)
(
∂t1φX(t)

)
dt

= − i

(2π)n

∫
Rn

f̂(t)
(
∂t1e

logφX(t)
)

dt

= − i

(2π)n

∫
Rn

f̂(t)
(
∂t1 logφX(t)

)
φX(t)dt.

Cumulants can also be defined in an analytical way as the coefficients of the log-characteristic
function

logEeit·X =
∑
l

κl
(it)l

l!
, (30)

where
∑

l is the sum over all multi-indices l = (l1, . . . , ln) ∈ Nn. We note that κl(X1, . . . , Xn) =
κ({X1}l1 , . . . , {Xn}ln) means that Xi appears li times. One can prove that this definition of cumu-
lants is equivalent to the combinatorial one given by 14 (see [24] for a proof). Using definition (30)
results in

∂t1 logφX(t) = i
∑
l

κl+e1

(it)l

l!
,

where l+ e1 = (l1 + 1, l2, . . . , ln). Since (it)lf̂(t) = f̂ (l)(t), we finally obtain

EX1f(X) =
∑
l

κl+e1

l!

1

(2π)n

∫
Rn

f̂ (l)(t)φX(t)dt =
∑
l

κl+e1

l!
E f (l)(X),

where we again applied the Fourier inversion formula.
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Proof of Lemma A.1. Let ∆i,j denote am×n1 matrix such that ∆i,j
kl = 1{(i,j)=(k,l)}. Then, applying

the resolvent identity, we get

∂G

∂Y ∗
ij

= lim
ϵ→0

(
Y (Y ∗+ϵ∆i,j)

m − z
)−1

−
(
Y Y ∗

m − z
)−1

ϵ
= −GY∆i,jG

m
.

It follows that ∂Y ∗
ij
Gab = −

(
GY
m

)
ai
Gjb for 1 ≤ a, b ≤ n1, 1 ≤ i ≤ m, and 1 ≤ j ≤ n1. Therefore,

we have

∂Y ∗
i2i1

(Y ∗G)i2i1 =

n1∑
j=1

∂Y ∗
i2i1

(
Y ∗
i2jGji1

)
= Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)
,

which proves (3.6a). We now compute
n1∑
j=1

∂Y ∗
i2i3

∂Y ∗
i2ki1

(
Y ∗
i2jGji1

)
≈ −

n1∑
j=1

∂Y ∗
i2i3

(
Y ∗
i2j

(
GY

m

)
ji2k

Gi1i1

)

≈ −
(
GY

m

)
i3i2k

Gi1i1 +

(
Y ∗GY

m

)
i2i2

(
GY

m

)
i3i2k

Gi1i1 ,

where the approximation in the first line comes from the fact that the contribution of ∂Y ∗
i2ki1

Y ∗
i2j

is very small and can therefore be neglected. Since the off-diagonals of the resolvent of random
matrices are small if ℑz ≫ n−1

1 , the partial derivative ∂Y ∗
i2i3

Gi1i1 can be omitted. This justifies the
second approximation. So, we obtain

∂Y ∗
i2i3

· · · ∂Y ∗
i2ki1

(Y ∗G)i2i1 ≈ −∂Yi3i4
· · · ∂Yi2k−1i2k

(
GY

m

)
i3i2k

Gi1i1

(
1−

(
Y ∗GY

m

)
i2i2

)
,

which completes the proof of Lemma A.1.

D Concentration inequality

Proof of Lemma 3.4. Without loss of generality, it suffices to prove the statement w.r.t. EX since
by cyclicity the statement for EW is analogous. We write X = (x1, . . . ,xm) with xk =
(x1k, . . . , xn0k)

′, and similarly, Y = (y1, . . . ,ym). We denote by Fk, 1 ≤ k ≤ m, the filtra-
tion generated by {xl, 1 ≤ l ≤ k} and by Ek[·] := EX [· | Fk] the conditional expectation w.r.t. Fk.
Now, we decompose g(z)−EXg(z) as a sum of martingale differences

Dk := Ek Tr(M − z1n1
)−1 −Ek−1 Tr(M − z1n1

)−1, for k = 1, . . . ,m.

By construction, we have Em Tr(M − z1n1
)−1 = Tr(M − z1n1

)−1 and E0 Tr(M − z1n1
)−1 =

EX Tr(M − z1n1
)−1. It then follows that

g(z)−EXg(z) =
1

n1

m∑
k=1

Ek Tr(M − z1n1
)−1 −Ek−1 Tr(M − z1n1

)−1 =
1

n1

m∑
k=1

Dk.

Next, we define Mk :=M − yky
∗
k. We note that

Ek Tr(Mk − z1n1
)−1 = Ek−1 Tr(Mk − z1n1

)−1,

since Mk is independent of yk and therefore is also independent of xk. So, we have

Dk = (Ek −Ek−1)[Tr(M − z1n1
)−1 − Tr(Mk − z1n1

)−1].

Then, by the Shermann-Morrison formula, we have∣∣Tr(M − z1n1
)−1 − Tr(Mk − z1n1

)−1
∣∣ = ∣∣∣∣ y∗

k(Mk − z1n1
)−2yk

1 + y∗
k(Mk − z1n1

)−1yk

∣∣∣∣
≤ |y∗

k(Mk − z1n1
)−2yk|

ℑ(y∗
k(Mk − z1n1

)−1yk)

≤ 1

ℑz
,
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where the last inequality follows from the resolvent identity:

|y∗
k(Mk − z1n1

)−2yk| ≤ y∗
k(Mk − z1n1

)−1(Mk − z̄1n1
)−1yk

=
y∗
k

(
(Mk − z1n1

)−1 − (Mk − z̄1n1
)−1
)
yk

2iℑz

=
ℑ(y∗

k(Mk − z1n1
)−1yk)

ℑz
.

Thus, |Dk| ≤ 2(ℑz)−1, and so g(z)−EXg(z) is a sum of bounded martingale differences. We can
now apply the Burkholder’s inequality which states that for {Dk, 1 ≤ k ≤ m} being a complex-
valued martingale difference sequence, for p > 1,

E

∣∣∣∣∣
m∑
k=1

Dk

∣∣∣∣∣
p

≤ C E

(
n∑
k=1

|Dk|2
)p/2

,

where C is a positive constant depending on p. We refer to [5, Lemma 2.12] for a proof of this
inequality. By choosing p = 4, we get

EX |g(z)−EXg(z)|4 =
1

n41
EX

∣∣∣∣∣
m∑
k=1

Dk

∣∣∣∣∣
4

≤ 1

n41
C EX

(
m∑
k=1

|Dk|2
)2

≤ 16Cm2

n41 (ℑz)4
= O(n−2

1 (ℑz)−4),

just as claimed.

E Complex case

Remark E.1. We can also consider matrices X ∈ Cn0×m and W ∈ Cn1×n0 of complex random
entries with zero mean and variance E|Xij |2 = σ2

x and E|Wij |2 = σ2
w. Let M = 1

mY Y
∗ with Y =

f
(
WX√
n0

)
, and let f : C → R be a real-differentiable function satisfying

∫
C f(σwσxz)

e−|z|2

π d2z = 0.

Set θ1(f) =
∫
C |f(σwσxz)|2 e

−|z|2

π d2z. Then, it can be proved that the normalized trace of the
resolvent of M satisfies equation (7).
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