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Abstract

Machine Learning (ML) can help solve combinatorial optimization (CO) prob-
lems better. A popular approach is to use a neural net to compute on the parame-
ters of a given CO problem and extract useful information that guides the search
for good solutions. Many CO problems of practical importance can be specified in
a matrix form of parameters quantifying the relationship between two groups of
items. There is currently no neural net model, however, that takes in such matrix-
style relationship data as an input. Consequently, these types of CO problems have
been out of reach for ML engineers. In this paper, we introduce Matrix Encoding
Network (MatNet) and show how conveniently it takes in and processes parame-
ters of such complex CO problems. Using an end-to-end model based on MatNet,
we solve asymmetric traveling salesman (ATSP) and flexible flow shop (FFSP)
problems as the earliest neural approach. In particular, for a class of FFSP we
have tested MatNet on, we demonstrate a far superior empirical performance to
any methods (neural or not) known to date.

1 Introduction

Many combinatorial optimization (CO) problems of industrial importance are NP-hard, leaving them
intractable to solve optimally at a large scale. Fortunately, researchers in operations research (OR)
have developed ways to tackle these NP-hard problems in practice, mixed integer programming
(MIP) and meta-heuristics being two of the most general and popular approaches. With the rapid
progress in deep learning techniques over the last several years, a new approach based on machine
learning (ML) has emerged. ML has been applied in both ways successfully [1], as a helper for
the traditional OR methods aforementioned or as an independent CO problem solver trained in an
end-to-end fashion.

One way to leverage ML for solving CO problems is to employ a “front-end” neural net, which
directly takes in the data specifying each problem. The neural net plays a critical role of analyzing all
input data as a whole, from which it extracts useful global information. In an end-to-end ML-based
approach, such global information may be encoded onto the representations of the entities making
up the problem. Greedy selection strategies based on these representations are then no longer too
near-sighted, allowing globally (near-) optimal solutions to be found quickly. Existing OR methods
can also benefit from incorporating the global information. Many hybrid approaches already exist
that leverage information extracted by a neural net, both in ML-MIP forms [2, 3] and ML-heuritic
forms [4, 5, 6].

The literature on neural combinatorial optimization contains many different types of the front-end
models, conforming to the variety of data types upon which CO problems are defined. Yet, there has
been no research for a model that encodes matrix-type data. This puts a serious limitation on the
range of CO problems that an ML engineer can engage. Take, for example, the traveling salesman
problem (TSP), the most intensely studied topic by the research community of neural combinatorial
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optimization. Once we lift the Euclidean distance restriction (the very first step towards making the
problem more realistic), the problem instantly becomes a formidable challenge that has never been
tackled before because it requires a neural net that can process the distance matrix.1

The list of other classical CO problems based on data matrices includes job-shop/flow-shop schedul-
ing problems and linear/quadratic assignment problems, just to name a few. All of these examples are
fundamental CO problems with critical industrial applications. To put it in general terms, imagine a
CO problem made up of two different classes of items, Ã = {ã1, . . . , ãM} and B̃ = {b̃1, . . . , b̃N},
where M and N are the sizes of Ã and B̃ respectively. We are interested in the type where features
of each item are defined by its relationships with those in the other class. The data matrix we want to
encode, D ∈ RM×N , would be given by the problem,2 where its (i, j)th element represents a quanti-
tative relationship of some sort between a pair of items (ãi, b̃j). The sets Ã and B̃ are unordered lists,
meaning that the orderings of the rows and the columns of D are arbitrary. Such permutation invari-
ance built into our data matrices is what sets them apart from other types of matrices representing
stacked vector-lists or a 2D image.

In this paper, we propose Matrix Encoding Network (MatNet) that computes good representations
for all items in Ã and B̃ within which the matrix D containing the relationship information is en-
coded. To demonstrate its performance, we have implemented MatNet as the front-end models for
two end-to-end reinforcement learning (RL) algorithms that solve the asymmetric traveling sales-
man (ATSP) and the flexible flow shop (FFSP) problems. These classical CO problems have not
been solved using deep neural networks. From our experiments, we have confirmed that MatNet
achieves near-optimal solutions. Especially, for the specific FFSP instances we have investigated,
our MatNet-based approach performs substantially better than the conventional methods used in
operations research including mixed integer programming and meta-heuristics.

2 Related work

A neural net can accommodate variable-length inputs as is needed for encoding the parameters of
a CO problem. Vinyals et al. [9], one of the earliest neural CO approaches, have introduced Ptr-
Nets that use a recurrent neural network (RNN) [10] as the front-end model. Points on the plane
are arranged into a sequence, and RNN processes the Cartesian coordinates of each point one by
one. Bello et al. [11] continue the RNN approach, enhancing the Ptr-Net method through combina-
tion with RL. Nazari et al. [12] further improve this approach by discarding the RNN encoder, but
keeping the RNN decoder to handle the variable input size.

The graph neural network (GNN) [13, 14] is another important class of encoding networks used
for neural CO, particularly on (but not limited to) graph problems. GNN learns the message pass-
ing policy between nodes that can be applied to an arbitrary graph with any number of nodes.
Khalil et al. [7] are among the firsts to show that a GNN-based framework can solve many different
types of CO problems on graph in a uniform fashion. Li et al. [15] extend the work by switching
to a more advanced structure of graph convolutional networks (GCNs) [16]. Manchanda et al. [17]
demonstrate efficient use of GCN that can solve CO problems on graphs with billions of edges. Kar-
alias and Loukas [18] use unsupervised learning on GNN to improve the quality of the CO solutions.

Encoding networks most relevant to our work are those based on the encoder of the Transformer [19].
Note that this encoder structure can be viewed as a graph attention network (GAT) [20] operating
on fully connected graphs. Using this type of encoder, Kool et al. [21] encode Cartesian coordinates
of all nodes given by the problem simultaneously and solve the TSP and many other related routing
problems. Kwon et al. [8] use the same encoder as Kool et al. but produce solutions of significantly
improved quality with the use of the RL training and the inference algorithms that are more suitable
for combinatorial optimizations.

1One could, in principle, consider a general GNN approach such as Khalil et al. [7] that can encode any
arbitrary graphs. However, as can be seen from the comparison of the TSP results of Khalil et al.(>8% error on
random 100-city instances) with some of the state-of-the-art ML results (e.g., Kwon et al. [8], <0.2% error), a
general GNN is most suitable for problems that deal with diverse graph structures, not those with fixed, dense
graph structures (such as matrices).

2The relationship can have multiple (f ) features, in which case we are given f number of different data
matrices D1, D2, . . . , Df . For simplicity we only use f=1 in this paper, but our model covers f>1 cases as
well. (See Appendix A.1).
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MatNet architecture is designed to encode a bipartite graph, as will be explained in detail in the
following section. Although none support embedding of a single matrix like MatNet, many inter-
esting deep learning works exist that rely on bipartite graph embeddings or matrix embeddings.
Gasse et al. [22] learn effective branch-and-bound variable selection policies for solving MIP in-
stances, where constraints and variables of an MIP instance form a bipartite graph weighted by
constraint coefficients. Gibbons et al. [23] solve weapon-target assignment problem, a classic CO
problem that is presented with a bipartite graph. Duetting et al. [24] find good auction policies given
a matrix that describes the value that each bidder assigns to each auctioning item.

3 Model architecture
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Figure 1: A complete bi-
partite graph with weighted
edges.

MatNet can be considered a particular type of GNN that operates on
a complete bipartite graph with weighted edges. The graph has two
sets of nodes, A = {a1, . . . , aM} and B = {b1, . . . , bN}, and the
edge between ai and bj has the weight e(ai, bj) ≡ Dij , the (i, j)-th
element of D, as illustrated in Figure 1.

MatNet is inspired by the encoder architecture of the Attention Model
(AM) by Kool et al. [21], but because the AM deals with a quite dif-
ferent type of a graph (fully connected nodes and no edge weights),
we have made significant modifications to it. The encoder of the AM
follows the node-embedding framework of graph attention networks
(GATs) [20], where a model is constructed by stacking multiple (L)
graph attentional layers. Within each layer, a node v’s vector repre-
sentation ĥv is updated to ĥ′v using aggregated representations of its
neighbors as in

ĥ′v = F
(
ĥv, {ĥw | w ∈ Nv}

)
. (3.1)

Here, Nv is the set of all neighboring nodes of v. The (learnable) update function F is composed of
multiple attention heads, and their aggregation process utilizes the attention score for each pair of
nodes (v, w), which is a function of ĥv and ĥw.

MatNet also generally follows the GATs framework, but it differs in two major points: (1) It has two
independent update functions that separately apply to nodes in A and B. (2) The attention score for
a pair of nodes (ai, bj) is not just a function of ĥai and ĥbj , but the edge weight e(ai, bj) as well.
The update function in each layer of MatNet can be described as

ĥ′ai
= FA

(
ĥai , {(ĥbj , e(ai, bj)) | bj ∈ B}

)
for all ai ∈ A,

ĥ′bj = FB
(
ĥbj , {(ĥai

, e(ai, bj)) | ai ∈ A}
)

for all bj ∈ B.
(3.2)

3.1 Dual graph attentional layer

The use of two update functions FA and FB in Eq. (3.2) is somewhat unorthodox. The GATs frame-
work requires that the update rule F be applied uniformly to all nodes because it loses its universality
otherwise. In our case, however, we focus on a particular type of a problem, where the items in Ã
and B̃ belong to two qualitatively different classes. Having two separate functions allows MatNet to
develop a customized representation strategy for items in each class.

The two update functions are visualized as a dual structure of a graph attentional layer depicted
in Figure 2(a). The MatNet architecture is a stack of L graph attentional layers, and each layer is
made of two sub-blocks that implement FA and FB . The two sub-blocks are structurally identical,
where each one is similar to the encoder layer of the AM, which in turn is based on that of the
Transformer model [19]. Note, however, that while both the AM and the Transformer model use the
simple self-attention for encoding, MatNet requires a clear separation of queries (nodes in one set)
and the key-value pairs (nodes in the other set) at the input stage to perform cross-attentions. For de-
tailed descriptions of computing blocks used in Figure 2(a), we refer the readers to the Transformer
architecture [19].
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Figure 2: (a) An overview of the MatNet architecture. (b) Mixed-score attention. “Multi-Head
Mixed-Score Attention” block in (a) consists of many independent copies of the mixed-score at-
tentions arranged in parallel and fully connected (FC) layers at the input and output interfaces (not
drawn).

3.2 Mixed-score attention

We now focus on how MatNet makes use of the edge weight e(ai, bj) ≡ Dij in its attention mech-
anism. “Multi-Head Mixed-Score Attention” block in Figure 2(a) is the same as “Multi-Head At-
tention” block of the Transformer except that the scaled dot-product attention in each attention head
is replaced by the mixed-score attention shown in Figure 2(b). Originally, the scaled dot-product
attention outputs the weighted sum of the values, where the weights are calculated from the atten-
tion scores (the scaled dot-products) of query-key pairs. For MatNet, in addition to these internally
generated scores, it must use the externally given relationship scores, Dij , which is also defined for
all query-key pairs. The mixed-score attention mechanism mixes the (internal) attention score and
the (external) relationship score before passing it to the next “SoftMax” stage. We note that mixing
of the two scores appear in the works of Sykora et al. [25] and Dwivedi et al. [26] in similar ways.

Rather than using a handcrafted prioritizing rule to combine the two types of the scores, we let the
neural net figure out the best mixing formula. “Trainable element-wise function” block in Figure 2(b)
is implemented by a multilayer perceptron (MLP) with two input nodes and a single output node.
Each head in the multi-head attention architecture is given its own MLP parameters, so that some of
the heads can learn to focus on a specific type of the scores while others learn to balance, depending
on the type of graph features that each of them handles. Note that it is an element-wise function, so
that the output of the mixed-score attention is indifferent to the ordering of ai and bj , ensuring the
permutation-invariance of the operation.

The attention mechanism of the Transformer is known for its efficiency as it can be computed by
highly optimized matrix multiplication codes. The newly inserted MLP can also be implemented
using matrix multiplications without the codes that explicitly loop over each row and column of
the matrix D or each attentional head. Actual implementation of MatNet keeps the efficient matrix
forms of an attention mechanism. Also, note that the duality of the graph attentional layers of MatNet
explained in Section 3.1 is conveniently supported by DT, a transpose of the matrix D.

3.3 The initial node representations

The final pieces of MatNet that we have not yet explained are the initial node representations that are
fed to the model to set it in motion. One might be tempted to use the edge weights directly for these
preliminary representations of nodes, but the vector representations are ordered lists while edges of
a graph offer no particular order, making this choice inappropriate.
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MatNet uses zero-vectors to embed nodes in A, and one-hot vectors for nodes in B (or vice versa)
initially. The use of the same zero-embeddings for all nodes of A is allowed, as long as all nodes in B
are embedded differently, because they acquire unique representations after the first graph attentional
layer. The zero-vector embedding enables MatNet to support variable-sized inputs. Regardless of
how the number of the nodes in A changes from a problem instance to another, MatNet can process
them all in a uniform manner. In Appendix H, for example, we demonstrate solving FFSP instances
containing 1,000 different jobs using MatNet that is trained on smaller instances.

The one-hot vector embedding scheme for nodes in B, on the other hand, provides a somewhat
limited flexibility towards varying N , the number of columns in the input matrix. Before a MatNet
model is trained, its user should prepare a pool of Nmax different one-hot vectors. When a matrix
D◦ with N◦ (≤ Nmax) columns is given, N◦ different one-hot vectors are randomly drawn from the
pool in sequence and used as the initial node representations for B-nodes.

When a good value for Nmax is difficult to establish before the deployment, or when the application
requires better generalizability without the strict limit on N , one can employ an alternative initial
node representation scheme. One-hot vectors can be substituted by vectors filled with the random
numbers that are drawn independently for each problem instance. This completely lift the restriction
of Nmax, at a price which slightly worsens the model’s performance. (See Appendix A.3.)

Instance augmentation via different sets of embeddings. The initial one-hot (or random) vec-
tor embedding scheme naturally accommodates the “instance augmentation” strategy proposed by
Kwon et al. [8]. For each random sequence of one-hot vectors chosen to embed B-nodes, a MatNet
model encodes the matrix D in a different way. (That is, the number of node representation sets
for a given problem instance can be augmented from one to many.) One can take advantage of this
property and easily create many dissimilar solutions simply by running the model repeatedly, each
time with a new one-hot vector sequence. Among those multiple solutions, the best one is chosen.
This way, a higher quality solution can be acquired at the cost of increased runtime. The diversity of
solutions created by the instance augmentation technique are far more effective than those produced
by the conventional multi-sampling technique. (See Appendix C.)

4 Asymmetric traveling salesman problem
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Figure 3: The decoder. Scalars
mbj and pbj are the mask and
the selection probability for bj
(j = 1, 2, · · · , N ).

Problem definition. In the traveling salesman problem (TSP),
the goal is to find the permutation of the given N cities so that the
total distance traveled for a round trip is minimized. For each pair
of “from” city ai and “to” city bj , a distance d(ai, bj) is given,
which constitutes an N -by-N distance matrix. To verify that Mat-
Net can handle general cases, we focus on the asymmetric trav-
eling salesman problem (ATSP). This problem does not have the
restriction d(ai, bj) = d(aj , bi) so that its distance matrix is asym-
metric. We use “tmat”-class ATSP instances that have the triangle
inequality and are commonly studied by the OR community [27].
(See Appendix B for detailed explanation of the tmat class.) We
solve the ATSP of three different sizes, having N = 20, 50, and
100 number of cities.

MatNet configuration. MatNet is used to encode the distance
matrix. Regardless of the size of the ATSP, we have used the same
MatNet structure. The MatNet model is constructed by stacking
L = 5 encoding layers. The embedding dimension, dmodel, for
input/output of each layer is set to 256. Both sub-modules (FA
and FB) use h = 16 attention heads, where each head processes
query, key, and value as 16-dimensional vectors (i.e., dq = dk =
dv = 16). The score-mixing MLP in each head has one hidden
layer with 16 nodes. For implementation of the “Scale” block
in Figure 2(b), we apply scaling of 1/

√
dk and then soft-clipping

to [−10, 10] using a tanh function, following the convention of
Bello et al. [11]. “Feed-forward” blocks in Figure 2(a) is imple-
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Table 4.1: Experiment results on 10,000 instances of ATSP

Method ATSP20 ATSP50 ATSP100
Len. Gap Time Len. Gap Time Len. Gap Time

CPLEX 1.54 - (12m) 1.56 - (1h) 1.57 - (5h)

Nearest Neighbor 2.01 30.39% (-) 2.10 34.61% (-) 2.14 36.10% (-)
Nearest Insertion 1.80 16.56% (-) 1.95 25.16% (-) 2.05 30.79% (-)
Furthest Insertion 1.71 11.23% (-) 1.84 18.22% (-) 1.94 23.37% (-)
LKH3 1.54 0.00% (1s) 1.56 0.00% (11s) 1.57 0.00% (1m)

MatNet 1.55 0.53% (2s) 1.58 1.34% (8s) 1.62 3.24% (34s)
MatNet (×128) 1.54 0.01% (4m) 1.56 0.11% (17m) 1.59 0.93% (1h)

mented with one hidden layer of dimension dff = 516. We use instance normalization for “Add &
Norm.” For the initial node representations, we use zero vectors for “from” cities and one-hot vec-
tors to embed “to” cities. The size of the pool from which we draw the one-hot embedding vectors
is adjusted to the minimum, the number of the cities of the problem (i.e., Nmax = N ).

Decoder. Once MatNet processes the distance matrix D and produces vector representations of
“from” and “to” cities, a solution of ATSP (a permutation sequence of all cities) can be constructed
autoregressively, one city at a time. The decoder model of Kool et al. [21] (shown in Figure 3)
is used repeatedly at each step. Two “from” city representations, one for the current city and the
other for the first city of the tour, are concatenated to make the QUERY token.3 Vector representations
of all “to” cities go into the decoder, and for each city the decoder calculates the probability to
select it as the next destination. A mask (0 for the unvisited and −∞ for the visited cities) is used
inside the multi-head attention block to guide the decision process, as well as right before the final
softmax operation to enforce one-visit-per-city rule of the problem. See Appendix J for a diagram
that explains the ATSP decoding process.

Training. We use the POMO training algorithm [8] to perform reinforcement learning on the
MatNet model and the decoder. That is, for an ATSP with size N , N different solutions (tours) are
generated, each of them starting from a different city. The averaged tour length of these N solutions
is used as a baseline for REINFORCE algorithm [28]. We use Adam optimizer [29] with a learning
rate of 4 × 10−4 without a decay and a batch size of 200. With an epoch being defined as training
10,000 randomly generated problem instances, we train 2,000, 8,000, and 12,000 epochs for N =
20, 50, and 100, respectively. For N = 20 and 50, they take roughly 6 and 55 hours, respectively, on
a single GPU (Nvidia V100). For N = 100, we accumulate gradients from 4 GPUs (each handling
a batch of size 50) and the training takes about 110 hours. Multi-GPU processes are used for speed,
as well as to overcome our GPU memory constraint (32GB each).4

Inference. We use the POMO inference algorithm [8]. That is, we allow the decoder to produce N
solutions in parallel, each starting from a different city, and choose the best solution. We use sampled
trajectories for a POMO inference rather than greedy ones (argmax on action probabilities) [21]
because they perform slightly better in our models.

4.1 Comparison with other baselines

In Table 4.1, we compare the performance of our trained models with those of other representative
baseline algorithms on 10,000 test instances of the tmat-class ATSP. The table shows the average
length of the tours generated by each method (displayed in units of 106). The gap percentage is
with respect to the CPLEX results. Times are accumulated for the computational processes only,
excluding the program and the data (matrices) loading times. This makes the comparisons between

3Information of the first city is required in the QUERY token, because the decoder needs to know where the
final destination of the tour is. The average of all node embeddings (a.k.a. “the graph embedding”) is dropped
from the QUERY token. See Appendix E for a discussion on this omission.)

4If needed, a smaller batch size can be used to reduce GPU memory usage. A batch size of 50 achieves the
similar results when trained with a learning rate of 1× 10−4, although this takes a bit longer to converge.
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different algorithms more transparent. Note that the heuristic baseline algorithms require only a sin-
gle thread to run. Because it is easy to make them run in parallel on modern multi-core processors,
we record their runtimes divided by 8. (They should be taken as references only and not too seri-
ously.) For consistency, inference times of all MatNet-based models are measured on a single GPU,
even though some models are trained by multiple GPUs.

Detailed explanations on all the baseline algorithms for the ATSP and the FFSP experiments, in-
cluding how we have implemented them, are given in Appendix B and G, respectively.

Mixed-integer programming (MIP). Many CO problems in the industry are solved by MIP be-
cause it can model a wide range of CO problems, and many powerful MIP solvers are readily avail-
able. If one can write down a mathematical model that accurately describes the CO problem at hand,
the software can find a good solution using highly engineered branch-and-bound type algorithms.
This is done in an automatic manner, freeing the user from the burden of programming. Another
merit of the MIP approach is that it provides an optimality guarantee. MIP solvers keep track of the
gap between the best solution found so far and the best lower (or upper) bound for the optimal.

To solve test instances using MIP, we use one of the well-known polynomial MIP formulations of the
ATSP [30] and let CPLEX [31] solve this model with the distance matrices that we provide. CPLEX
is one of the popular commercial optimization software used by the OR community. With 10-second
timeouts, CPLEX exactly solves all N = 20 instances. For N = 50 and 100 test instances, it solves
about 99% and 96% of them to the optimal values, respectively. Solutions that are not proven optimal
have the the average optimality gap of 1.2% for N = 50 and 0.5% for N = 100.

Heuristics. Nearest Neighbor (NN), Nearest Insertion (NI), and Furthest Insertion (FI) are simple
greedy-selection algorithms commonly cited as baselines for TSP algorithms. Our implementations
of NN, NI, and FI for ATSP in C++ solve 10,000 test instances very quickly, taking at most a few
seconds (when N = 100). We thus omit their runtimes in Table 4.1.

The other heuristic baseline, LKH3 [32], is a state-of-the-art algorithm carefully engineered for
various classical routing problems. It relies on a local search algorithm using k-opt operations to
iteratively improve its solution. Even though it offers no optimality guarantee, our experiment shows
that it finds the optimal solutions for most of our test instances in a very short time.

MatNet. In Table 4.1, the performance of the MatNet-based ATSP solver is evaluated by two
inference methods: 1) a single POMO rollout, and 2) choosing the best out of 128 solutions generated
by the instance augmentation technique (i.e., random one-hot vector assignments for initial node
embeddings) for each problem instance. The single-rollout inference method produces a solution in
N selection steps just like the other greedy-selection algorithms (NN, NI, and FI), but the quality
of the MatNet solution is far superior. With instance augmentation (×128), MatNet’s optimality gap
goes down to 0.01% for 20-city ATSP, or to less than 1% for 100-city ATSP.

5 Flexible flow shop problem

Problem definition. Flexible flow shop problem (FFSP), or sometimes called hybrid flow shop
problem (HFSP), is a classical optimization problem that captures the complexity of the production
scheduling processes in real manufacturing applications. It is defined with a set of N jobs that has
to be processed in S > 1 stages all in the same order. Each stage consists of M > 1 machines,5 and
a job can be handled by any of the machines in the same stage. A machine cannot process more than
one job at the same time. The goal is to schedule the jobs so that all jobs are finished in the shortest
time possible (i.e., minimum makespan).

For our experiment, we fix on a configuration of stages and machines of a moderate complexity.
We assume that there are S = 3 stages, and each stage has M = 4 machines. At the kth stage,
the processing time of the job j on the machine i is given by D

(k)
ij . Therefore, an instance of the

problem is defined by three processing time matrices (D(1),D(2), and D(3)), all of which have the
size M -by-N . D(k)

ij is filled with a random integer between 2 and 9 for all i, j, and k. We solve three

5In general, the number of machines in each stage can vary from stage to stage. When all stages have just
one machine, the problem simplifies to flow shop problem.
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Figure 4: (LEFT) Processing time matrices for a 3-stage 4-4-4-machine 20-job flexible flow shop
problem. (RIGHT) A Gantt chart showing a valid schedule for the given problem. Numbers on
colored strips are assigned job indices. This schedule has been produced by our MatNet-based neural
net model, and it has a makespan of 25.

types of FFSP with different number of jobs, namely, N =20, 50, and 100. An example instance of
FFSP with job count N = 20 is shown in Figure 4 along with a Gantt chart showing an example of
a valid schedule.

Encoding & decoding. To encode three processing time matrices, D(k)(k = 1, 2, 3), we use 3
copies of a MatNet model, one for each matrix, and acquire vector representations ĥ(k)

ai |i=1,2,3,4 for
machines and ĥ

(k)
bj
|j=1,2,··· ,20 for jobs in stage k. This stage-wise encoding scheme is the key to

develop a proper scheduling strategy, which should follow different job-selection rules depending
on whether you are in an early stage or a late one. All three MatNets are configured identically,
using the same hyperparameters as the ATSP encoder explained in the previous section.6 Machines
are initially embedded with one-hot vectors (Mmax = 4), and jobs are embedded with zero vectors.
We also use three decoding neural nets, Gk(k = 1, 2, 3), all of them having the same architecture as
the ATSP decoder (Figure 3).

Generating an FFSP solution means completing a Gantt chart like the one in Figure 4. We start at the
upper left corner of the chart (time t = 0) and move from stage 1 to stage 3. At stage k, we loop over
its 4 machines i = 1, 2, 3, 4, each time using ĥ

(k)
ai as the QUERY token for Gk. The input embeddings

for Gk are ĥ(k)
bj

(j = 1, 2, · · · , 20), plus one extra (21st) job embedding made of learnable parameters
for “skip” option. Gk outputs selection probabilities for jobs j = 1, 2, · · · , 20, and 21. When the
“skip” option is selected, no job is assigned to machine i even if there are available jobs. This is
sometimes necessary to create better schedules. Obviously, unavailable jobs (already processed or
not ready for stage k) are masked in the decoder. When no job can be selected (no job at stage k,
or the machine i is busy), we simply do not assign any job to the machine and move on. When we
finish assigning jobs for all machines, we increment time t and repeat until all jobs are finished. See
Appendix J for the flow of the FFSP decoding process.

Training The decoding process is a series of job assignments to machines in each stage, but note
that the order of the machines we assign jobs to can be arbitrary. We use 4! = 24 number of per-
mutations of (#1, #2, #3, #4) for the order of machines in which we execute job assignments at
each stage. From the same set of vector representations of machines (ĥ(k)

ai ) and jobs (ĥ(k)
bj

), this per-
mutation trick can create 24 heterogeneous trajectories (different schedules), which we use for the
POMO reinforcement learning to train the networks. We use a batch size 50 and Adam optimizer
with a learning rate of 1 × 10−4. One epoch being processing 1,000 instances, we train for (100,
150, 200) epochs for FFSP with job size N = (20, 50, 100), which takes (4, 8, 14) hours. For FFSP
with N = 100, we accumulate gradients from 4 GPUs.

6except for the number of encoding layers L = 3, descreased from 5. This change is optional, but we have
found that L = 5 is unnecessarily too large for the task.
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Table 5.2: Experiment results on 1,000 instances of FFSP

Method FFSP20 FFSP50 FFSP100
MS Gap Time MS Gap Time MS Gap Time

CPLEX (60s) 46.4 21.0 (17h) × ×
CPLEX (600s) 36.6 11.2 (167h)

Random 47.8 22.4 (1m) 93.2 43.6 (2m) 167.2 77.5 (3m)
Shortest Job First 31.3 5.9 (40s) 57.0 7.4 (1m) 99.3 9.6 (2m)
Genetic Algorithm 30.6 5.2 (7h) 56.4 6.8 (16h) 98.7 9.0 (29h)
Particle Swarm Opt. 29.1 3.7 (13h) 55.1 5.5 (26h) 97.3 7.6 (48h)

MatNet 27.3 1.9 (8s) 51.5 1.9 (14s) 91.5 1.8 (27s)
MatNet (×128) 25.4 - (3m) 49.6 - (8m) 89.7 - (23m)

Inference. We use sampled solutions and the POMO inference algorithm with 24 machine-order
permutations similarly to the training. Interestingly, the sampled solutions are significantly better
than the greedily-chosen ones, which could be a consequence of the stochastic nature of the problem
in our approach. Each decoder Gk makes decisions without any knowledge of other (6= k) stages.

5.1 Comparison with other baselines

In Table 5.2, we record average makespan (MS) of the schedules produced by various optimization
methods for the same 1,000 test instances. The gaps are given in absolute terms with respect to
MatNet with ×128 augmentation result. We display the runtime of each method, following the
same rules that we use for Table 4.1 (e.g., computation time only, scaling by 1/8 for single-thread
processes, and single-GPU inference for the MatNet-based method).

Mixed-integer programming (MIP). Modeling flow shop problems using MIP is possible, but it
is much more complex than for TSPs. We use an FFSP model found in literature [33] with modifica-
tions that (empirically) improves the search speed of CPLEX. Even with the modifications, however,
CPLEX cannot produce optimal solutions for any of the test instances within a reasonable time. For
FFSPs with job size N = 20, we show two results, recorded with timeouts of 60 and 600 seconds
per instance. For N = 50 and 100, no valid solutions are found within 600 seconds.

(Meta-)Heuristics. Random and Shortest-Job-First (SJF) methods are greedy heuristics. They cre-
ate valid schedules in an one-shot manner using the Gantt-chart-completion strategy, similarly to our
MatNet based model. SJF assigns the shortest jobs (at most 4) in ascending order that are available
for each stage at each time step t. The runtimes for Random and SJF are slower than that of MatNet
in Table 5.2 because MatNet solves a batch of problems in parallel using GPUs.

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are two metaheuristics widely
used by the OR community to tackle the FFSP. Metaheuristics are systematic procedures to create
heuristics, most useful for optimization problems that are too complex to use MIP approaches or to
engineer problem-specific handcrafted algorithms. Our implementation of GA and PSO are based
on the works found in the OR literature [34, 35].

MatNet. Solutions produced by the learned heuristic of our MatNet based model significantly
outperform those of the conventional OR approaches, both in terms of the qualities and the runtimes.
Some commercial applications of the FFSP require solving just one instance as best as one can
within a relatively generous time budget. Hence, we have also tested the performance of baseline
algorithms under ample time to improve their solutions on single instances. The results are provided
in Appendix I. Even in this case, however, the conventional OR algorithms do not produce better
solutions than those of our MatNet method.
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6 Conclusion and Discussion

In this paper, we have introduced MatNet, a neural net capable of encoding matrix-style relationship
data found in many CO problems. Using MatNet as a front-end model, we have solved two classical
optimization problems of different nature, the ATSP and the FFSP, for the first time using a deep
learning approach.

A neural heuristic solver that clearly outperforms conventional OR methods has been rare, espe-
cially for classical optimization problems. Perhaps, this is because the range of CO problems ML
researchers attempt to solve has been too narrow, only around simple problems for which good
heuristics and powerful MIP models already exist (such as the TSP and other related routing prob-
lems). The FFSP is not one of them, and we have shown that our MatNet-based FFSP solver signif-
icantly outperforms other algorithms. Our results are promising, hinting the prospect of real-world
deployments of neural CO solvers in the near future. More research is needed, however, to fully
reflect combinations of many different types of constraints posed by real-world problems.

For our experiments, we have chosen to use an end-to-end RL approach for its simplicity. It is
purely data-driven and does not require any engineering efforts by a domain expert. We would like
to emphasize, however, that the use of MatNet is not restricted to end-to-end methods only. Hybrid
models (ML + OR algorithms) based on the MatNet encoder should be possible, and they will have
better performance and broader applicability.

We have implemented our MatNet model in PyTorch. The training and testing code for the experi-
ments described in the paper is publicly available.7

7https://github.com/yd-kwon/MatNet
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