
A Proofs for Section 2

In this section we give proofs for all the results in Sec. 2, which explores the phenomenon of feature
suppression in contrastive learning using the InfoNCE loss. We invite the reader to consult Sec. 2.1
for details on any notation, terminology, or formulation details we use.

Recall, for a measure ⌫ on a space U and a measurable map h : U ! V let h#⌫ denote the
pushforward h#⌫(V ) = ⌫(h�1(V )) of a measure ⌫ on a space U for a measurable map h : U ! V
and measurable V ✓ V , where h�1(V ) denotes the preimage. We now recall the definition of feature
suppression and distinction.
Definition 1. Consider an encoder f : X ! Sd�1

and features j ✓ [n]. For each zj 2 ZS
, let

µ(·|zS) = (f � g)#�(·|zj) be the pushforward measure on Sd�1
by f � g of the conditional �(·|zS).

1. f suppresses S if for any pair zS , z̄S 2 ZS
, we have µ(·|zS) = µ(·|z̄S).

2. f distinguishes S if for any pair of distinct zS , z̄S 2 ZS
, measures µ(·|zS), µ(·|z̄S) have

disjoint support.

Suppression of features S is thereby captured by the characteristic of distributing points in the
same way on the sphere independently of what value zS takes. Feature distinction, meanwhile, is
characterized by being able to partition the sphere into different pieces, each corresponding to a
different value of zS . Other (perhaps weaker) notions of feature distinction may be useful in other
contexts. However here our goal is to establish that it is possible for InfoNCE optimal encoders both
to suppress features in the sense of Def. 1, but also to separate concepts out in a desirable manner.
For this purpose we found this strong notion of distinguishing to suffice.

Before stating and proving the result, recall the limiting InfoNCE loss that we analyze,

L = lim
m!1

�
Lm(f)� logm� 2

⌧

 
= 1

2⌧ Ex,x+kf(x)� f(x+)k2 + Ex+ log
⇥
Ex�ef(x

+)>f(x�)/⌧
⇤
.

We subtract logm to ensure the limit is finite, and use x� to denote a random sample with the same
distribution as x�

i . Following [49] we denote the first term by Lalign and the second term by the
“uniformity loss” Lunif, so L = Lalign + Lunif.
Proposition 1. Suppose that pj is uniform on Zj = Sd�1

. For any feature j 2 [n] there exists

an encoder fsupp that suppresses feature j and encoder fdisc that discriminates j but both attain

minf : measurable L(f).

Proof. The existence of the encoders fsupp and fdisc is demonstrated by constructing explicit examples.
Before defining fsupp and fdisc themselves, we begin by constructing a family {fk}k2[n] of optimal
encoders.

Since g is injective, we know there exists a left inverse h : X ! Z such that h � g(z) = z for all
z 2 Z . For any k 2 [n] let ⇧k : Z ! Sd�1 denote the projection ⇧k(z) = zk. Since pk is uniform
on the sphere Sd�1, we know that ⇧k � h � g(z) = zj is uniformly distributed on Sd�1. Next we
partition the space X . Since we assume that for all a 6= a0 and z 6= z0 that a(z) 6= a0(z0), the family
{Xz}z2Z where Xz = {a � g(z) : z 2 Z} is guaranteed to be a partition (and in particular, disjoint).
We may therefore define an encoder fk : X ! Sd�1 to be equal to fk(x) = ⇧k � h � g(z) = zk for
all x 2 Xz .

First we check that this fk is optimal. Since for any z, and any a ⇠ A, by definition we have
a � g(z) 2 Xz , we have that fk(x) = fk(a(x)) almost surely, so Lalign(fk) = 0 is minimized. To
show fk minimizes Lunif note that the uniformity loss can be re-written as

Lunif(fk) =

Z

a

Z

z
log

Z

a�

Z

z�
efk�a(g(z))

>fk�a�(g(z�))/⌧�(dz)�(dz�)A(da)A(da�)

=

Z

z
log

Z

z�
efk�g(z)

>fk�g(z�)/⌧�(dz)�(dz�)

=

Z

Sd�1

log

Z

Sd�1

eu
>v/⌧µ(du)µ(dv)

where µ = fk � g#� is the pushforward measure on Sd�1, and the second equality follows from the
fact that Lalign(fk) = 0. Theorem 1 of Wang and Isola [49] establishes that the operator,
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anchor positive negatives

Figure 9: Visual illustration of Prop. 2.3 using Trifeature samples [16]. In this example the shape
feature is kept fixed across all positives and negatives ( S = {shape}), with color and texture to
varying. As a consequence, the positive pair cannot be discriminated from negatives using the shape
feature. The encoder must learn color features in order to identify this positive pair. In other words,
if a given set of features (e.g. S = {shape}) are constant across positive and negative pairs, then
instance discrimination task demands the use of features in the compliment (e.g. {color,texture}).

µ 7!
Z

Sd�1

log

Z

Sd�1

eu
>v/⌧µ(du)µ(dv)

is minimized over the space of Borel measures on Sd�1 if and only if µ = �d, the uniform distribution
on Sd�1, as long as such an f exists. However, since by construction fk(x) = ⇧k � h � g(z) = zk is
uniformly distributed on Sd�1, we know that (fk � g)#� = �d, and hence that fk minimizes Lalign
and Lunif and hence also the sum L = Lalign + Lunif.

Recall that we seek encoder fsupp that suppress feature j, and fdisc that distinguishes feature j. We
have a family {fk}k2[n] that are optimal, and select the two encoders we seen from this collection.
First, for fsupp define fsupp = fk for any k 6= j. Then by construction fsupp(x) = zk (where x 2 Xz)
depends only on zk, which is independent of zj . Due to independence, we therefore know that for
any pair zj , z̄j 2 Zj , we have µ(·|zj) = µ(·|z̄j), i.e., that fsupp is optimal but suppresses feature j.
Similarly, simply define fdisc = f j . So fdisc(x) = zj where x 2 Xz , and for any zj , z̄j 2 Zj with
zj 6= z̄j the pushforwards µ(·|zj), µ(·|z̄j) are the Dirac measures �zj , �z̄j , which are disjoint.

Next we present a result showing that, under suitable conditions that guarantee that minimizers exists,
any f optimizing the InfoNCE loss is guaranteed to suppress features S if all batches x+

1 , x
+
2 , {x

�
i }Ni=1

are have the same features S (but that the value zS taken is allowed to vary). This result captures the
natural intuition that if a feature cannot be used to discriminate instances, then it will not be learned
by the InfoNCE loss. Before reading the proposition, we encourage the reader to see Fig. 9 for an
intuitive visual illustration of the idea underlying Prop. 2.3 using Trifeature samples [16].

However, this result also points to a way to manage which features are learned by an encoder, since if
f is guaranteed not to learn features S, then necessarily f must use other features to solve the instance
discrimination task. This insight lays the foundation for the implicit feature modification technique,
which perturbs the embedding v = f(x) to remove information that f uses to discriminate instances –
and then asks for instance discrimination using both to original embedding, and the modified one –
with the idea that this encourages f to learn new features that it previously suppressed.
Proposition 2. For a set S ✓ [n] of features let

LS(f) = Lalign(f) + Ex+

⇥
� logEx� [ef(x

+)>f(x�)|zS = zS�]
⇤

denote the (limiting) InfoNCE conditioned on x+, x�
having the same features S. Suppose that

pj is uniform on Zj = Sd�1
for all j 2 [n]. Then the infimum inf LS is attained, and every

f 2 minf 0 LS(f 0) suppresses features S almost surely.

Proof. By Prop 2.3, we know that for each zS there is a measurable f such that Lalign(f) = 0 and f
achieves perfect uniformity (f � g)#�(·|zS) = �d conditioned on zS . So consider such an f . Since
Lalign(f) = 0 we may write,
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LS(f) = Ex+

⇥
� logEx� [ef(x

+)>f(x�)|zS = zS�]
⇤

= EzSEzS�
⇥
� logEz� [ef�g(z)

>f�g(z�)|zS = zS�]
⇤

= EzSL(f ; zS).

Where we have introduced the conditional loss function

L(f ; zS) = EzS�
⇥
� logEz� [ef�g(z)

>f�g(z�)|zS = zS�]
⇤

We shall show that any minimizer f of LS is such that f minimizes L(f ; zS) for all values of zS . To
show this notice that minf LS(f) = minf EzSL(f ; zS) � EzS minf L(f ; zS) and if there is an f
such that f minimizes L(f ; zS) for each zS then the inequality is tight. So we make it our goal to
show that there is an f such that f minimizes L(f ; zS) for each zS .

For fixed zS , by assumption there is an fzS such that (fzS � g)#�(·|zS) = �d. That is, fzS

achieves perfect uniformity given zS . Theorem 1 of Wang and Isola [49] implies that fzS must
minimize L(f ; zS). Given {fzS}zS we construct an f : X ! Sd�1

⌧ that minimizes L(f ; zS)
for all zS . By injectivity of g we may partition X into pieces

S
zS2ZS XzS where XzS = {x :

x = g((zS , zS
c

)) for some zS
c 2 ZSc}. So we may simply define f on domain X as follows:

f(x) = fzS (x) if x 2 XzS .

This construction allows us to conclude that the minimum of LS is attained, and any minimizer f of
LS also minimizes L(f ; zS) for each zS . By Theorem 1 of Wang and Isola [49] any such f is such
that (fzS � g)#�(·|zS) = �d for all zS , which immediately implies that f suppresses features S.

B Computation of implicit feature modification updates
This section gives detailed derivations of two simple but key facts used in the development of IFM.
The first result derives an analytic expression for the gradient of the InfoNCE loss with respect
to positive sample in latent space, and the second result computes the gradient with respect to an
arbitrary negative sample. The analysis is very simple, only requiring the use of elementary tools
from calculus. Despite its simplicity, this result is very important, and forms the core of our approach.
It is thanks to the analytic expressions for the gradients of the InfoNCE loss that we are able to
implement our adversarial method without introducing any memory or run-time overheads. This
is a key distinction from previous adversarial methods for contrastive learning, which introduce
significant overheads (see Fig. 5).

Recall the statement of the lemma.

For any v, v+, {v�i }mi=1 2 Rd we have,

rv�
j
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ev
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· v
⌧
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◆
· v
⌧
.

In particular, rv�
j
` / v and rv+` / �v.

Proof. Both results follow from direct computation. First we compute rv�
j
`(v, v+, {v�i }mi=1).

Indeed, for any j 2 {1, 2, . . . ,m} we have,
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the quantity e
v>v�

j /⌧
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i=1 ev
>v�

i /⌧
> 0 is a strictly positive scalar, allowing us to conclude the

derivative rv�
j
` is proportional to v. We also compute rv+`(v, v+, {v�i }mi=1) in a similar fashion,
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Since 0 < ev
>v+/⌧

ev>v+/⌧+
Pm

i=1 ev
>v�

i /⌧
< 1 we conclude in this case that the derivative rv+` points in

the direction �v.

B.1 Alternative formulations of implicit feature modification

This section contemplates two simple modifications to the IFM method with the aim of confirming
that these modifications do not yield superior performance to the default proposed method. The two
alternate methods focus around the following observation: IFM perturbs embeddings of unit length,
and returns a modified version that will no longer be of unit length in general. We consider two
alternative variations of IFM that yield normalized embeddings. The first is the most simple solution
possible: simply re-normalize perturbed embeddings to have unit length. The second is slightly more
involved, and involves instead applying perturbations before normalizing the embeddings. Perturbing
unnormalized embeddings, then normalizing, guarantees the final embeddings have unit length.
The key property we observed in the original formulation was the existence of an analytic, easily
computable closed form expressions for the derivatives. This property enables efficient computation
of newly synthesized “adversarial” samples in latent space. Here we derive corresponding formulae
for the pre-normalization attack.

For clarity, we introduce the slightly modified setting in full detail. We are given positive pair x, x+

and a batch of negative samples {x�
i }mi=1 and denote their encodings via f as v = f(x), v+ = f(x+),

and v�i = f(x�
i ) for i = 1, . . .m where we do not assume that f returns normalized vectors. That is,

f is allowed to map to anywhere in the ambient latent space Rd. The re-parameterized point-wise
contrastive loss for this batch of samples is

`(v, v+, {v�i }
m
i=1) = � log

esim(v,v+)/⌧

esim(v,v+)/⌧ +
Pm

i=1 e
sim(v,v�

i )/⌧
,

where sim(u, v) = u · v/kukkvk denotes the cosine similarity measure. As before we wish to
perturb v+ and negative encodings v�j to increase the loss, thereby making the negatives harder.
Specifically we wish to solve max�+2B"+ ,{��i 2B"i}

m
i=1

`(v, v+ + �+, {v�i + ��i }mi=1). The following
lemma provides the corresponding gradient directions.

For any v, v+, {v�i }mi=1 2 Rd we have

rv�
j
` / v

kvk � sim(v�j , v)
v�j
kv�j k

and rv+` / v

kvk � sim(v+, v)
v+

kv+k .

To prove this lemma we rely on the following well-known closed form expression for the derivative
of the cosine similarity, whose proof we omit.

rvsim(v, u) = u
kvkkuk � sim(v, u) v

kvk2 .
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Proof of Lemma B.1. We compute,
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Using the formula for the derivative of the cosine similarity, we arrive at a closed form formula,
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Similar computations yield
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Lemma B.1 provides precisely the efficiently computable formulae for the derivatives we seek. One
important difference between this pre-normalization case and the original setting is that the direction
vector depends on v�j and v+ respectively. In the original (unnormalized) setting the derivatives
depend only on v, which allowed the immediate and exact discovery of the worst case perturbations
in an "-ball. Due to these additional dependencies in the pre-normalized case the optimization is more
complex, and must be approximated iteratively. Although only approximate, it is still computationally
cheap since we have simple analytic expressions for gradients.

It is possible give an interpretation to the pre-normalization derivativesrv�
j
` by considering the `2

norm,

krv�
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=
q
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2

So, samples v�i with higher cosine similarity with anchor v receive smaller updates. Similar cal-
culations for v+ show that higher cosine similarity with anchor v leads to larger updates. In other
words, the pre-normalization version of the method automatically adopts an adaptive step size based
on sample importance.
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Dataset MoCo-v2 IFM-MoCo-v2
– – default + norm + pre-norm

STL10 92.4% 92.9% 92.9% 93.0%
CIFAR10 91.8% 92.4% 92.2% 92.0%
CIFAR100 69.0% 70.3% 70.1% 70.2%

Table 3: Linear readout performance of alternative latent space adversarial methods. We report the
best performance over runs for " 2 {0.05, 0.1, 0.2, 0.5}. We find that the two modifications to IFM
we considered do not improve performance compared to the default version of IFM.
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Figure 10: Sample images from the Trifeature dataset [16]. There are three features: shape, color, and
texture. Each feature has 10 different possible values. We show exactly one example of each feature.

B.1.1 Experimental results using alternative formulations

In this section we test the two alternative implementations to confirm that these simple alternatives do
not obtain superior performance to IFM. We consider only object-based images, so it remains possible
that other modalities may benefit from alternate formulations. First note that f encodes all points
to the boundary of the same hypersphere, while perturbing v�i  v�i + "iv and v+  v+ � "+v
moves adversarial samples off this hypersphere. We therefore consider normalizing all points again
after perturbing (+ norm). The second method considers applying attacks before normalization (+
pre-norm), whose gradients were computed in the Lem. B.1. It is still possible to compute analytic
gradient expressions in this setting; we refer the reader to Appendix B.1 for full details and derivations.
Results reported in Tab. 3, suggest that all versions improve over MoCov2, and both alternatives
perform comparably to the default implementation based on Eqn. 2.

C Supplementary experimental results and details

C.1 Hardware and setup

Experiments were run on two internal servers. The first consists of 8 NVIDIA GeForce RTX 2080 Ti
GPUs (11GB). The second consists of 8 NVIDIA Tesla V100 GPUs (32GB). All experiments use the
PyTorch deep learning framework [34]. Specific references to pre-existing code bases used are given
in the relevant sections below.

C.2 Feature suppression experiments

This section gives experimental details for all experiments in Sec. 2 in the main manuscript, the
section studying the relation between feature suppression and instance discrimination.
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Figure 11: Sample images from the STL-digits dataset. There are two features: object class, and
MNIST digit. Both features have 10 different possible values.

C.2.1 Datasets

Trifeature [16] Introduced by Hermann and Lampinen, each image is 128 ⇥ 128 and has three
features: color, shape, and texture each taking 10 values. For each (color, shape, texture) triplet (1000
in total) Trifeature contains 100 examples, forming a dataset of 100K examples in total. Train/val
sets are obtained by a random 90/10 split. See Fig. 10, Appdx. C for sample images.

STL10-digits dataset We artificially combine MNIST digits and STL10 object to produce data
with two controllable semantic features. We split the STL10 image into a 3⇥ 3 grid, placing a copy
of the MNIST digit in the center of each sector. This is done by masking all MNIST pixels with
intensity lower than 100, and updating non-masked pixels in the STL10 image with the corresponding
MNIST pixel value.

C.2.2 Experimental protocols

Training We train ResNet-18 encoders using SimCLR with batch size 512. We use standard data
SimCLR augmentations [5], but remove grayscaling and color jittering when training on Trifeature in
order to avoid corrupting color features. We use Adam optimizer, learning rate 1⇥ 10�3 and weight
decay 1⇥ 10�6. Unless stated otherwise, the temperature ⌧ is set to 0.5.

Linear evaluation For fast linear evaluation we first extract features from the trained en-
coder (applying the same augmentations to inputs as used during pre-training) then use the
LogisticRegression function in scikit-learn [36] to train a linear classifier. We use the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm with a maximum iteration of 500 for training.

C.2.3 Details on results

Correlations Fig. 2 For the Trifeature heatmap 33 encoders are used to compute correlations.
The encoders are precisely encoders used to plot Fig. 3. Similarly, the 7 encoders used to generate
the STL-digits heatmap are precisely the encoders whose training is shown in Fig. 13. When
computing the InfoNCE loss for Fig. 2, for fair comparison all losses are computed using temperature
normalization value ⌧ = 0.5. This is independent of training, and is necessary only in evaluation to
ensure loss values are comparable across different temperatures.

Fig. 13 displays results for varying instance discrimination difficult on the STL-digits dataset. These
results are complementing the Trifeature results in Fig. 3 in Sec. 2 in the main manuscript. For
STL-digits we report only a single training run per hyperparameter setting since performance is
much more stable on STL-digits compared to Trifeature (see Fig. 12). See Sec. 2 for discussion
of STL-digits results, which are qualitatively the same as on Trifeature. Finally, Fig. 14 shows the
effect of IFM on encoders trained on STL-digits. As with Trifeature, we find that IFM improves the
performance on suppressed features (STL10), but only slightly. Unlike hard instance discrimination
methods, IFM does not harm MNIST performance in the process.

C.3 Comparing IFM and ACL(DS)

We give details for Fig 5. Similarly to concurrent work [19, 26], ACL [24] directly performs PGD
attacks in input space. We compare to the top performing version ACL(DS) – which uses a duel stream
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target: texturetarget: shapetarget: color

Figure 12: Single run experiments showing training dynamics of Trifeature contrastive training.
Linear readout performance on color prediction is particularly noisy.

Figure 13: STL-digits dataset. Left: performance on STL10 and MNIST linear readout for different
temperature ⌧ values. Right: performance on STL10 and MNIST linear readout for different
hardness concentration � values [40]. In both cases harder instance discrimination (smaller ⌧ , bigger
�) improves STL10 performance at the expense of MNIST. When instance discrimination is too easy
(big ⌧ , small �) STL10 features are suppressed: achieving worse linear readout after training than at
initialization.

structure and combines standard and adversarial loss terms. We use the official ACL implementation1

and for fair comparison run IFM by changing only the loss function. All hyperparameters are kept
the same for both runs, and follow the ACL recommendations.

Training We use the SimCLR framework with a ResNet-18 backbone and train for 1000 epochs.
We use a base learning rate of 5 with cosine annealing scheduling and batch size 512. LARS optimizer
is used. For ACL(DS), we run the PGD for 5 steps in the pre-training stage following the practice
of [24].

Linear evaluation We use two schemes to evaluate the quality of learnt representation: standard
accuracy and robust accuracy. Robust accuracy reports the accuracy in the setting where an adversary
is allowed to apply an `1 attack to each input. For standard accuracy, we only finetune the last
layer and test on clean images following the practice of MoCo-v2 [7]. The initial learning rate is
set as 0.1 and we tune for 100 epochs for CIFAR10, 25 epochs for CIFAR100 respectively. An
SGD optimizer is used to finetune the model. We use a step scheduler that decreases the learning
rate by a factor of 10 after epochs: 40, 60 for CIFAR10; 15, 20 for CIFAR100 respectively. For
robust accuracy, we finetune the model using the loss in TRADE [52], and evaluate classification
accuracy on adversarially perturbed testing images. We use the same hyperparameters as ACL [24]

1https://github.com/VITA-Group/Adversarial-Contrastive-Learning
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Figure 14: STL-digits dataset. Implicit feature modification reduces feature suppression, enhancing
the representation of both MNIST and STL10 features simultaneously. All IFM runs use a fixed
value " = 0.1, and loss L+ 0.5 · L" (i.e. weighting parameter ↵ = 0.5) to illustrate robustness to the
choice of parameters.

for adversarial finetuning. We perform experiments on CIFAR10 and CIFAR100 and the results are
shown in Fig. 5.

Results See Fig. 5 in the main manuscript for the results. There are significant qualitative differ-
ences between the behaviour of IFM and ACL(DS). IFM improves (standard) linear readout accuracy
with zero memory or compute time cost increase, whereas ACL(DS) has improved adversarial linear
readout performance, but at the cost of worse standard linear readout and 2⇥memory and 6⇥ time per
epoch. This shows that these two method are addressing two distinct problems. ACL(DS) is suitable
for improving the adversarial robustness of a model, whereas IFM improves the generalization of a
representation.

C.4 Object classification experiments

We first describe the protocol used for evaluating IFM on the following datasets: CIFAR10, CIFAR100,
STL10, tinyImageNet. For simplicity, the objective weighting parameter is fixed at ↵ = 1. For
MoCo-v2, we performed 5-fold cross validation for CIFAR10/CIFAR100 datasets, and 3 replicated
runs on official train/val data splits for tinyImageNet and STL10 datasets.

Training All encoders have ResNet-50 backbones and are trained for 400 epochs with temperature
⌧ = 0.5 for SimCLR and ⌧ = 0.1 for MoCo-v2. Encoded features have dimension 2048 and are
followed by a two layer MLP projection head with output dimension 128. Batch size is taken to be
256, yielding negative batches of size m = 510 for SimCLR. For MoCo-v2, we use a queue size of
k = 4096 (except for STL10 dataset we use k = 8192), and we use batch size of 256 for CIFAR10,
CIFAR100 and tinyImageNet, 128 for STL10. For both SimCLR and MoCo-v2 we use the Adam
optimizer.

SimCLR uses initial learning rate 1⇥ 10�3 and weight decay 1⇥ 10�6 for CIFAR10, CIFAR100 and
tinyImageNet, while STL10 uses 1⇥ 10�1 learning rate, and weight decay 5⇥ 10�4 (since we found
these settings boosted performance by around 5% in absolute terms). MoCo-v2 training uses weight
decay 5⇥ 10�4, and an initial learning rate 3⇥ 10�2 for CIFAR10 and CIFAR100; and learning rate
1⇥ 10�1 for STL10 and tinyImageNet. Cosine learning rate schedule is used for MoCo-v2.

Linear evaluation Evaluation uses test performance of a linear classifier trained ontop of the
learned embedding (with embedding model parameters kept fixed) trained for 100 epochs.

For SimCLR, the batch size is set as 512, and the linear classifier is trained using the Adam optimizer
with learning rate 1 ⇥ 10�3 and weight decay 1 ⇥ 10�6, and default PyTorch settings for other
hyperparameters. For CIFAR10 and CIFAR100 the same augmentations as SimCLR are used for
linear classifier training, while for STL10 and tinyImageNet no augmentations were used (since we
found this improves performance).

For MoCo-v2, the batch size is set as 256. Training uses SGD with initial learning rate set to
30, momentum is set as 0.9 and a scheduler that reduces the learning rate by a factor of 10% at
epoch 30 and 60. The weight decay is 0. For CIFAR10 and CIFAR100, we normalize images with
mean of [0.4914, 0.4822, 0.4465] and standard deviation of [0.2023, 0.1994, 0.2010]. For STL10 and
tinyImageNet, we normalize images with mean of [0.485, 0.456, 0.406] and standard deviation of
[0.229, 0.224, 0.225]. The same augmentations as the official MoCo-v2 implementation are used for
linear classifier training.
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C.4.1 ImageNet100

We adopt the official MoCo-v2 code2 (CC-BY-NC 4.0 license), modifying only the loss function. For
comparison with AdCo method, we adopt the official code3 (MIT license) and use the exact same
hyperparmeters as for MoCo-v2. For the AdCo specific parameters we perform a simple grid search
for the following two hyperparameters: negatives learning rate lrneg and negatives temperature ⌧neg.
We search over all combinations lrneg 2 {1, 2, 3, 4} and ⌧neg 2 {0.02, 0.1}, which includes the AdCo
default ImageNet1K recommendations lrneg = 3 and ⌧neg = 0.02 [20]. The result reported for AdCo
in Tab. 1 is the best performance over all 8 runs.
Training We use ResNet-50 backbones, and train for 200 epochs. We use a base learning rate of
0.8 with cosine annealing scheduling and batch size 512. The MoCo momentum is set to 0.99, and
temperature to ⌧ = 0.2. All other hyperparameters are kept the same as the official defaults.
Linear evaluation We train for 60 epochs with batch size 128. We use initial learning rate of 30.0
and a step scheduler that decreases the learning rate by a factor of 10 after epochs: 30, 40, 50. All
other hyperparameters are kept the same as the official MoCo-v2 defaults.

As noted in the manuscript, our combination of training and linear evaluation parameters leads to
80.5% top-1 linear readout for standard MoCo-v2, and 81.4% with IFM-MoCo-v2. The standard
MoCo-v2 performance of 80.5% is, to the best of our knowledge, state-of-the-art performance on
ImageNet100 using 200 epoch training with MoCo-v2. For comparison, we found that using the
default recommended MoCo-v2 ImageNet1k parameters (both training and linear evaluation) achieves
ImageNet100 performance of 71.8%. This choice of parameters maybe useful for other researchers
using MoCo-v2 as a baseline on ImageNet100.

C.5 COPDGene dataset

The dataset [38] in our experiments includes 9,180 subjects. Each subject has a high-resolution
inspiratory CT scan and five COPD related outcomes, including two continuous spirometry measures:
(1) FEV1pp: the forced expiratory volume in one second, (2) FEV1/FVC: the FEV1pp and forced
vital capacity (FVC) ratio, and three ordinal variables: (1) six-grade centrilobular emphysema (CLE)
visual score, (2) three-grade paraseptal emphysema (Para-septal) visual score, (3) five-grade dyspnea
symptom (mMRC) scale. The dataset is publicly available.

For fair comparison, we use the same encoder and data augmentation described in the baseline
approach [42]. We set the representation dimension to 128 in all experiments. For simplicity, instead
of using a GNN, we use average pooling to aggregate patch representations into image representation.
The learning rate is set as 0.01. We use Adam optimizer and set momentum as 0.9 and weight decay
as 1⇥ 10�4. The batch size is set as 128, and the model is trained for 10 epochs.

C.6 Further discussion of feature robustness experiments (Sec. 4.3)

Ilyas et al. [22] showed that deep networks richly represent so-called “non-robust” features, but
that adversarial training can be used to avoid extracting non-robust features at a modest cost to
downstream performance. Although in-distribution performance is harmed, Ilyas et al. argue that
the reduction in use of non-robust features – which are highly likely to be statistical coincidences
due to the high dimensionality of input data in computer vision – may be desirable from the point of
view of trustworthiness of a model under input distribution shifts. In this section we consider similar
questions on the effect implicit feature modification on learning of robust vs. non-robust features
during self-supervised pre-training.

Compared to supervised adversarial training [22, 30] our approach has the key conceptual difference
of being applied in feature space. As well as improved computation efficiency (no PGD attacks
required) Fig. 8 shows that this difference translates into different behavior when using implicit
feature modification. Instead of suppressing non-robust features as Ilyas et al. observe for supervised
representations, IFM enhances the representation of robust features. This suggests that the improved
generalization of encoders trained with IFM can be attributed to improved extraction of features
aligned with human semantics (robust features). However, we also note that IFM has no significant

2https://github.com/facebookresearch/moco
3https://github.com/maple-research-lab/AdCo
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effect on learning of non-robust features. In Appdx. D we discuss the idea of combining IFM with
adversarial training methods to get the best of both worlds.

D Discussion of limitations and possible extensions

While our work makes progress towards understanding, and controlling, feature learning in contrastive
self-supervised learning, there still remain many open problems and questions. First, since our
proposed implicit feature modification method acts on embedded points instead of raw input data it is
not well suited to improving `p robustness, and similarly is not suited to removing pixel-level shortcut
solutions. Instead our method focuses on high-level semantic features. It would be valuable to study
the properties of our high-level method used in conjunction with existing pixel-level methods.

Second, while we show that our proposed implicit feature modification method is successful in
improving the representation of multiple features simultaneously, our method does not admit an
immediate method for determining which features are removed during our modification step (i.e.
which features are currently being used to solve the instance discrimination task). One option is to
manually study examples using the visualization technique we propose in Sec. 3.1.
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