Overcoming the Convex Barrier for Simplex Inputs

Harkirat Singh M. Pawan Kumar
University of Oxford DeepMind
harkirat@robots.ox.ac.uk mpawan@deepmind.com
Philip H.S. Torr Krishnamurthy (Dj) Dvijotham
University of Oxford DeepMind
phst@robots.ox.ac.uk dvij@google.com
Abstract

Recent progress in neural network verification has challenged the notion of a convex
barrier, that is, an inherent weakness in the convex relaxation of the output of
a neural network. Specifically, there now exists a tight relaxation for verifying
the robustness of a neural network to /., input perturbations, as well as efficient
primal and dual solvers for the relaxation. Buoyed by this success, we consider
the problem of developing similar techniques for verifying robustness to input
perturbations within the probability simplex. We prove a somewhat surprising
result that, in this case, not only can one design a tight relaxation that overcomes
the convex barrier, but the size of the relaxation remains linear in the number of
neurons, thereby leading to simpler and more efficient algorithms. We establish
the scalability of our overall approach via the specification of ¢; robustness for
CIFAR-10 and MNIST classification, where our approach improves the state of the
art verified accuracy by up to 14.4%. Furthermore, we establish its accuracy on
a novel and highly challenging task of verifying the robustness of a multi-modal
(text and image) classifier to arbitrary changes in its textual input.

1 Introduction

Verification refers to the challenging computational problem of determining whether a neural network
satisfies a given specification. Perhaps the most popular specification is to prove or disprove that a
neural network classifier is robust to perturbations of the input that lie within an ¢,, ball [de Palma
et al., [2021a, Wong and Kolter, [2018| Zhang et al.| 2018, Weng et al., 2018, Mirman et al., 2018],
Dvijotham et al.|[2018]], with impressive state of the art results recently achieved in Wang et al.|[2021].
The ability to verify neural networks would open the door to better understanding their nature, and
allow us to apply deep learning in safety critical domains where errors can have a large cost. Given
the importance of the problem, it is unsurprising that it has attracted considerable atttention from the
machine learning and automated verification communities [Katz et al.||2017, [Ehlers| 2017].

Early work in verification lead to the notion of a convex barrier, that is, a limitation in the tightness
of the bounds obtainable by the convex relaxation of the output of a neural network [[Salman et al.,
2019]]. This weakness was seen as a primary reason for the slow convergence of branch-and-bound
algorithms for verification, which rely on convex relaxations to compute the bounds, on a large
number of specifications on standard datasets. However, recent work has been able to successfully
overcome this barrier. Specifically, Anderson et al.| [2019] proposed a tight relaxation that precisely
defines the convex hull of a composition of a linear function of a vector within an /., ball with the
ReLU non-linearity. While their relaxation has a large number of constraints (exponential in the
size of the vector), they provide an efficient algorithm for identifying the most violated constraint
at any infeasible point. This enables the use of efficient cutting plane algorithms to solve the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

primal [Anderson et al.l [2019]], active sets to solve the dual [de Palma et al., 2021alb], and even
approximate linear bound propagation algorithms [Tjandraatmadja et al., 2020].

Buoyed by the possibility of realizing practical verification using tight relaxations, we consider an
important specification, namely, robustness to perturbations that lie in a probability simplex. Examples
of such a specification include robustness to ¢; perturbations or to word substitutions [Huang et al.,
2019]. Previous approaches for addressing this specification relied on fairly loose relaxations based
on interval bound propagation [Huang et al.,[2019} |Gowal et al.l 2018]]. To alleviate this deficiency,
we derive the convex hull of the composition of a linear transformation of the probability simplex with
a convex non-linearity such as ReLU or SoftPlus. Somewhat surprisingly, we show that, unlike the
previously considered case of ¢, balls, the probability simplex helps greatly simplify the description
of the convex hull. In fact, the number of constraints required is linear in the dimensionality of
the simplex. By using a novel technique to propagate the simplex constraints through the hidden
layers of the network, we derive a tight relaxation for the output of a network whose size scales
linearly with the size of the network. Furthermore, we suitably extend a linear bound propopagation
algorithm [Zhang et al.l 2018]] to solve the tight relaxation efficiently, thereby realizing practical
verification over simplex inputs.

We demonstrate the scalability of our approach using the specification of robustness to ¢; perturbations
for MNIST and CIFAR-10 classification. Our method achieves 13.6% higher verified accuracy on
MNIST and up to 14.4% higher verified accuracy on CIFAR-10 compared to the state of the art
baselines on the same networks given the same computational budget.

To further demonstrate the benefits of our tight relaxation, we consider a novel and highly challenging
specification of global robustness in multi-modal classification. Specifically, we consider the Food
101 dataset [[Wang et al., 2015]], where each sample consists of an image of a food item together
with its recipe. Our specification requires a neural network trained to classify the food item to be
robust to arbitrary changes in the text of a sample. This specification captures the scenario where the
image is carefully curated while the text is crowd-sourced and can therefore be easily manipulated
by adversarial actors. While similar specifications have been considered in previous works [Jia
et al.,|2019, Huang et al.| 2019]], they focus on substituting a very small subset of words with their
synonyms, which leads to simpler verification problems. We show that, on our significantly more
difficult global verification task, our method achieves up to 25% higher verified accuracy in the same
amount of time as the state of the art baseline.

2 Preliminaries

We provide a formal mathematical description of our verification problem, and briefly discuss the
existing relaxations in order to contextualise our contributions.

2.1 Problem description

We denote the m-dimensional probability simplex as A, that s,
Ap={xeR™|x>0, 1Te < 1}. As mentioned in the previous section, we are inter-
ested in verifying specifications of a given neural network when its input is constrained to lie in a
simplex. We focus on networks with a layered architecture to keep notation simple, but our ideas
easily extend to any feed-forward network, including residual networks. We consider a neural
network with n layers. Each layer is assumed to be composed of two operations: (i) an affine
operation (fully connected layer or convolution layer), which we denote by L(+); and (ii) a non-linear
activation function, which we denote by o (+). In other words, given its input €1 € R™*~1, the k-th
layer performs the operation & = L (xx—1) € R™, followed by x), = o(&x) € R™. While we
place no restriction on the linear operation, we make the following assumption on the activation
function.

Assumption 1. We assume that the activation function ¢ is an element-wise convex function (for
example, ReLU or SoftPlus).

Verification problem: Using the above notation, the verification problem we solve can be formu-
lated as

min U (z,) (la)

x

s.t. @ =Ly ((L’kfl) , L = U(@k) ke [n]7 (1b)
Ty € Ay, (1)

where [n] denotes the set {1, -+ ,n}. The objective function W is a scalar-valued linear function of
the output of the final layer of the the network. For example, say we wish to verify that a classification
network is not vulnerable to any adversarial attacks. In this case, we define U as the difference
between the true logit and a target logit outputted by the network. The sign of the optimum value of
problem (I)) can be used to either prove or disprove the aforementioned specification.

We illustrate the practical importance of considering simplex inputs using two examples. These
examples will also form the basis of our experimental setup.

{1 perturbations: Consider a network with a continuous valued input € R™. We are interested
in verifying the behavior of the network under input perturbations that lie within an ¢; ball: {x |
||sc -V || , < €}. This input domain can be reformulated as a simplex as

1 -1 0 0 ... 0 O
o o0 1 -1 ... 0 O
e=a"+eMz, z€ Ny, M =]|. .)
(mx2m) :
o 0o 0 o ... 1 -1

Bag of words models: Consider a text classification network that takes text as input and makes
predictions based on an embedding of the text. A commonly used embedding is the so-called “bag of
words”. Here, we first take an embedding for every word in the text (for example, using a precomputed
set like GloVe [Pennington et al., 2014] or Word2Vec [Mikolov et al.l | 2013]]). Next, we take the mean
of all the word embeddings to obtain the final representation. We denote the word embeddings as a
matrix E € R¥*?, where each d-dimensional column represents an embedding of a putative word in a
vocabulary of size v. Using the above matrix, the text embedding is given by Ex where x represents
the normalized counts of words from the vocabulary in the text. In other words, € A, assuming
that arbitrarily long text with arbitrary numbers of repetitions of each word in the vocabulary are
allowed.

2.2 Planet and disjunctive relaxations

Ehlers|[2017]] proposed a convex relaxation for the ReLU activation function, which is commonly
referred to as Planet in the literature. The Planet relaxation has been widely used in many verification
algorithms [Bunel et al.,[2020b}, Dvijotham et al.| 2018| Bunel et al., 2020a, |Lu and Kumar, 2020].
Briefly, it relaxes the sequence of two operations: & = w!x + b where x € R™, followed by
y = ReLU(Z). To this end, it utilizes lower and upper bounds on Z. In our case, since x € A,,,
we can compute the bounds as ¢ = wp,;, + b < wlx 4+ b < Wy + b = 4. Here, Wiy and wiax
denote the minimum and maximum entries of w respectively. Using the bounds on #, the Planet
relaxation for the set S = {y,z | y = ReLU(w = + b),x € A,,} is defined as

Pary>wlae+by>0y<

ﬂ_2<wTw+b—l7),weA,,L. 3)

In|Anderson et al.|[2019, [2020]], the authors propose a tighter relaxation and characterize the exact
convex hull of the set
{(z,relu (w'z + b)) : £ <z < u}.

However, this characterization involves exponentially many inequalities. And efficient algorithms
based on it need to resort to cutting plane methods, adding violated inequalities sequentially. Doing
so is computationally challenging and requires significant effort to implement in a scalable manner.
Further, this does not handle the simplex constraint on the input. Thus using this relaxation would
require replacing the simplex constraint with the unit hypercube, a much weaker constraint on the
inputs.

Anderson et al.| [2020] also propose an ideal formulation for the product of k simplices. Their
formulation needs additional variables and still requires cutting planes. However, eliminating the
auxiliary variable, as in our case, leads to a concise formulation. Further, our relaxation is derived
for convex activation functions, whereas the formulation of |[Anderson et al.|[2020] is limited to the
maximum of two affine functions.

3 A Concise Convex Relaxation

In this section, we derive our novel tight convex relaxation for problem (I)). In order to make the
exposition clearer, we assume that we have access to simplex constraints for all &y, k € [n — 1]. As
will be seen in the next section, such constraints can be derived by propagating the simplex constraint
on the input x through the network.

3.1 An exact convex relaxation for a single neuron

We begin by considering the simple case of a single neuron, which will form the building block
of our final relaxation. Similar to the previous relaxations, we consider the set S = {y,x | y =
o(wTz +b),z € A,,}, where o is a convex activation function, for example ReL.U. We aim to
characterize the convex hull CH A of the set S.

Theorem 3.1. The convex hull CH of S is defined by the following convex constraints
y>o(wlz+d), zeA,, (4a)
y < Zmz (o (whe +b) —a (b)) +0o(b), (4b)

where e’ € R™, el = 1,¢} = 0Vj # i, denotes the i-th coordinate vector in R™.

By the definition of a convex hull, the proposed relaxation
is the tightest possible relaxation for a single neuron with
x € A,,. Note that, when ¢ is the ReLU activation func-
tion, the only difference between the proposed relaxation
and the Planet relaxation Py is the upper bound on y. Fig-
ure[I]compares the upper bound of the Planet relaxation
Pa with the proposed relaxation CH for the case where
m = 2. As can be seen, our relaxation is significantly
tighter than Planet, which paves the way for tractable ver-
ification over simplex inputs. The following proposition -
formally characterizes the difference between the tightness RN e

of CH and Pa. T

Proposition 3.2. For any input dimension m, CHa is Figure 1: The input domain € A,
provably tighter than P . Specifically, we can characterize 5 shown in light blue, while the out-
the gap between CH A and Pa by the gap in the optimal put function y = ReLU(w”x + b) is
value of the problem shown in blue. It can be seen that the
upper bound corresponding to the Planet
relaxation (shown in green), is signifi-
The gap in the optimal value is proportional to the variance ~cantly looser in comparison to the upper

in the weight vector w (see supplementary material for bounq correspond.ing to the proposed re-
details). laxation (shown in orange). Even the

Anderson relaxation (shown in yellow)
The proofs of the above theorem and proposition are pro- is much looser than our relaxation.
vided in the supplementary material. The proof of Theo-
rem@] utilizes a fundamental result from convex analysis,
that any linear function obtains the same maximum value over S as over its convex hull CHa.

maxy — y' subject to (y,) € Pa, (v, x) € CHa.
x

Note that our relaxation overcomes the convex barrier by providing bounds that are significantly
tighter than the Planet relaxation. Convex barrier is a term introduced in|Salman et al.|[2019]], which
is defined as the gap between the optimal value of the original verification problem and the optimal
convex relaxation of the non-linearity.

Comparison to [Tjandraatmadja et al.|[2020] Our relaxation requires only a linear number of
inequalities to describe the convex hull for the composition of a linear function with a convex
activation function for simplex inputs. In contrast, the Anderson relaxation [Tjandraatmadja et al.,
2020, |Anderson et al.l 2020|] requires an exponential number of constraints. The submodularity
based proof for deriving the relaxation from [Tjandraatmadja et al.| [2020] can help us understand
the discrepancy. The method makes use of the Kuhn triangulation of [0, 1] [Todd, |1976], which

describes the collection of simplices whose union is [0, 1], and requires an exponential number of
simplices. Since a unique affine interpolation of the function needs to be constructed on each of these
simplices, it requires an overall exponential number of inequalities. In contrast, our relaxation only
requires a linear number of inequalities. Note that the input simplex A,, is not one of the simplices
from the Kuhn triangulation whose union is the unit hypercube. We provide a visualization for this
intuition in the supplementary material.

3.2 Final relaxation

Using the convex hull for a single neuron, we can now describe our overall relaxation. Recall that
we have assumed x;, € A,,, for each k € [n — 1]. This is ensured through a simplex propagation
algorithm described in the next section. In addition, we also compute interval bounds on the pre-

activations &y, € [{x, uy]. Using the interval bounds, we define 6;, = u:fek"yk = —lp,u; (x) =

0 © (Li (®) —) and u), (x) = 3, x; (0 (Lg (€7)) — o (Lk (0))) + o (L (0)). Furthermore,
since &, is itself a linear function of x,,_1, with a slight overload of notation, we denote the objective
function of our relaxation as ¥ (x,,_1). Using the above notation, the overall proposed convex
relaxation of problem (T)) for the ReLU activation function can be written as

min VU (x,-1) (5a)
x

st xp > Ly (xp—1), 26 >0 k € [n — 1], (Planet lower bound) (5b)

xp < ug(xp_1), k € [n — 1], (Planet upper bound) (5¢)

xp < up(Tr-1), ke [n—1], (from equationb) (5d)

T €A ke {0tuln—1]. (5e)

Similar relaxations can be derived for other convex activation functions by linearizing the convex
function around a given point. However, we focus on the ReLLU case for brevity of exposition,
particularly since ReLU is the most commonly used convex activation function.

4 Algorithm

Our verification algorithm is composed of two phases: (i) propagating simplex constraints on the
activations at every layer; and (ii) computing a lower bound on problem (T). We describe these in the
following subsections.

4.1 Simplex propagation

We assume that the output of each layer is non-negative. If this is not the case, we can simply add
a constant to the activation of each layer so that the output becomes non-negative. Let us denote
hi(z) = o (Ly (z)). Since hy(.) is an element-wise convex function of its inputs, 17 hy(.) is also a
convex function. Using the fact that the maximum of a convex function over the simplex is attained
at one of the vertices, it can be shown that the following inequality holds true

Zxki < max 17 hy, (ej) = Q. (6)

J€{0,...,np_1}

Here, x; denotes the i-th coordinate of the vector of activations xj, at the output of layer hg.

Note that the above inequality can be rewritten in the form Zl T < 1, where Tj; = ’fl kk"', so that
we can propagate simplex-like constraint simply by rescaling activations at the layer appropriately.
Details for conditioning the intermediate layers into simplex using inequalities of the above form are

provided in the supplementary material.

4.2 Efficient solver

The optimization problem (5} is a Linear Program and as such can be solved easily by off-the-shelf
solvers [Gurobil]. However, given the size of modern deep networks, such an approach would struggle
to scale. Hence, researchers have recently started developing scalable custom solvers for relaxations
of neural network outputs.

Zhang et al.|[2018]],/Singh et al.|[2019] developed efficient solvers for relaxations that rely on bounds
on the output of a neuron that are expressed as linear functions of the input. Such solvers have been
scaled to be extremely efficient and amenable to use within branch and bound frameworks [Wang
et al., [2021]]. Inspired by their success, we extend their capabilities to solve our novel tight relaxations
derived in the previous section. To this end, we first relax problem @) to a form that can be solved
efficiently using a single backward pass. Concretely, we combine the lower bounds (5b) and the
non-negativity constraint from (5e)) into a single lower bound using weighting coefficients a;. We
also combine the upper bounds (5c|and[5d) into a single upper bound with weighting coefficients ay,.
The values of the weighting coefficients a;, and @}, are constrained to lie between 0 and 1. This leads
to the following optimization problem

L(a,@) =min ¥ (x,_1) (7a)
sit. g €A, (7b)

x> ay, O Ly (Tr—1) keln-—1], (7¢)

T < ar O ug (:1‘:;671)4-(1—E]C)G)ll;C (Tr—1) k€ [n—1]. (7d)

It turns out that the above formulation can be solved efficiently by a single backward pass over the
network. In order to derive the solution, it is useful to introduce the notion of decomposition of an
affine function into monotone, anti-monotone and constant parts.

Definition 4.1. For any scalar-valued affine function f (x), define

7@ = (max (20)) o @ = (win (L0)) w00, @
sothat f (z) = fT () + [~ (x) + f<.

Since f only involves the positive coefficients in the gradient of f, it is monotonically increasing,
and similarly, f~ is monotonically decreasing. Exploiting this and the fact that W is a scalar valued
linear function, we obtain

U (zp_1) =¥ (2p_1)+ ¥ (zn_1) + ¥o
Z \Ili (Enfl ®© Up—1 (‘En72) + (]- - anfl) ®© u/n_l (wnfl)) + \IJJF (Qn_1 © I—nfl ($n72))
+ e, 9

The lower bound above is an affine function of x,,_2 and hence leads to a recursive algorithm where
we compute lower bounds on the specification expressed as a function of x;_; given a lower bound
on the specification expressed as a linear function of xy,.

Therefore, this leads to a recursive algorithm for computing a lower bound on the optimal value of
(7). that is presented in the Subroutine SIMPLEX_BACKWARD function on line[TT]in Algorithm T}
It can in fact be proven that this is the exact optimal value, using an argument similar to|Salman et al.
[2019]], Section 3.

The computation required to express a lower bound on the specification given as a linear function of
x .41 to alower bound expressed as a linear function of ay, is shown on line (T4} of Algorithm[T} Note
that this computation can be conveniently done in frameworks that support automatic differentiation,
by computing the gradient of the expression on the right hand side of line[14]at 0 and its value at 0,
which gives the vector of coeffients and the bias term of the affine function of . Thus, the cost of
implementing line |14|of the algorithm is equal to the cost of performing backpropagation through a
single layer of the network.

Denote the projection onto the unit hypercube as 7 () = min (max («,0), 1). Our overall algorithm
is presented in Algorithm [T} It consists of two main functions SIMPLEX_BACKWARD and SIM-
PLEX_VERIFY. The SIMPLEX_BACKWARD algorithm computes L (a, @) for a fixed value of a, @.
However, this lower bound is valid for any choice of these parameters. Hence SIMPLEX_VERIFY
performs projected gradient ascent on L with respect to a, @ to obtain the tightest possible lower
bound on the (equation[I)). The idea of optimizing the weighting coefficients a, @ to obtain tighter
bounds is inspired from the algorithm of |Xu et al.| [2021]], with suitable adaptations to the setting
involving our novel relaxation.

Proposition 4.2. Algorithm[I]computes a lower bound on the optimal value of (T).
Proof. Follows by recursively applying the lower bound at each layer while defining f5. O

Computational Complexity: The complexity of SIMPLEX_ BACKWARD function |1 I| for com-
puting bounds for a given value of a’, @', is the same as the cost of two backward passes through the
network. This is twice the cost of CROWN [Zhang et al., [2018]], or one iteration of auto-lirpa [Xu
et al.| 2021]], which uses a single backward pass.

Algorithm 1 Simplex Verify

1: function SIMPLEX_VERIFY (V)
2: Initialise a and a with values between 0 and 1
for ¢t € [0, tyax — 1] do
L(a',a") = SIMPLEX_BACKWARD(V, a’, @")

3
4
. : dL dL ;
5: Compute gradients 2%, 2= via backpropagation
6
7
8

a't!, a'*! < update gradient ascent (or Adam)
atl @t (gt m(@tty) (projection)
end for
return L(a't! a'*?)
10: end function
11: function SIMPLEX_BACKWARD(V, a, @)

0 %

12: fn <V

13: fork € [n—1,0] do

14 Set fi (@) fiuy (@ O w (@) + (1 — @) © ul (@) + £, (@, © Li (@) + fipr-
15: end for

16: L(a,a) = ming,ea fo(xo)
17: return L(a,a)
18: end function

S Experiments

In this section, we demonstrate the effectiveness of the proposed method on two specifications: (i)
robustness to ¢; perturbations for image classifiers (Sec [5.1)), and (ii) robustness of multi-modal
classifiers to text perturbations (Sec[5.2).

5.1 /; robustness verification

Experimental Setup We verify the ¢; robustness of networks from [de Palma et al.,[2021a, Bunel
et al., |2020b[] and [VNN-COMP, [2020]. We compute the lower bound on the robustness margin
(difference between the ground truth logit and the other logits) using the verification methods. An
image is said to be verified if the lower bound across all possible labels is positive. We evaluate the
effectiveness of various methods for incomplete verification on the MNIST [Lecun] and CIFAR-10
[Krizhevsky and Hintonl 2009]] datasets. For MNIST, we evaluate on the entire test set, and for
CIFAR-10 we evaluate on 1000 random images from the test set [Krizhevsky and Hinton, 2009]. The
MNIST and CIFAR-10 datasets are widely used in the machine learning community, and are available
under the creator’s consent and MIT license respectively. For both MNIST and CIFAR-10, we use
the model architectures from [de Palma et al.,2021a]]. The models are trained using the SLIDE attack
(sparse /1-descent attack) from Tramer and Boneh|[2019] with e = 0.3 for all networks except the
VNN-comp big network, which is trained with e = 0.05. We used the publicly available training
implementation of [Ding et al., 2019]] (see supplementary material for details). The code is made
available under the LGPL License online[] We also test on the SGD trained CIFAR Wide model
from [de Palma et al.l 2021a]]. We verify robustness against input perturbations lying in ¢; norm ball
with € = 0.35 for the MNIST network, € = 0.2 for the VNN-comp big network and € = 0.5 for all
the other CIFAR-10 networks.

"mttps://github.com/BorealisAI/advertorch,

https://github.com/BorealisAI/advertorch

Dataset | MNIST | CIFAR-10
Model OVAL | OVAL | OVAL | OVAL | OVAL VNN VNN
ode Wide Base Wide Deep Wide Med Big
Training SLIDE | SLIDE | SLIDE | SLIDE SGD SLIDE | SLIDE
Accurac Nominal 988% | 751% | 793% | 72.1% | 744% | 81.4% | 83.6%
uracy Pgd 982% | 73.5% | T77.0% | 69.8% | 733% | 80.5% | 82.3%
Gurobi Planet 31.7% | 34.1% 18.4% 11.1% 13.5% - -
Verified Gurobi Simplex 452% | 48.6% | 29.4% 134% | 23.7%

Accuracy Opt-Lirpa Planet | 31.0% 33.6% 17.9% 10.8% 13.5% 48.8% | 60.0%
Simplex Verify 44.6% | 48.0% 28.8% 13.4% 22.4% 59.4% | 66.4%

Gurobi Planet 74.61s | 22.80s | 114.92s | 86.84s | 114.70s - -
Verified Gurobi Simplex 72.47s | 2295s | 72.17s | 59.22s | 70.42s - -
Time/Sample Opt-Lirpa Planet 0.04s 0.04s 0.04s 0.06s 0.04s 0.05s 0.06s
Simplex Verify 0.04s 0.04s 0.04s 0.05s 0.04s 0.05s 0.06s

Table 1: Verified accuracy and verification time of different solvers on MNIST and CIFAR-10 models. We
test on the entire test set for MNIST, and random 1000 test images for CIFAR-10. Simplex Verify denotes our
proposed solver. Our proposed method achieves much higher verified accuracy in comparison to the state of the
art baseline, in the same amount of time. ‘-* denotes instances not solved within a 5 minute timeout.

Methods We compare against other propagation based solvers and Gurobi. Gurobi baselines
employ the commercial black-box solver Gurobi [Gurobi Optimization, |2020]]. Gurobi solves the
problems to optimality, giving the tightest possible bounds for the corresponding relaxations. Gurobi
Planet corresponds to solving the Planet relaxation [[Ehlers| [2017]] of the network. Gurobi Simplex
corresponds to solving our relaxation using Gurobi. Both the methods are run on 4 CPU threads on
an Intel(R) Core(TM) 17-4960X CPU @ 3.60GHz processor. We also compare against an optimized
LiRPA solver for the Planet relaxation [Ehlers, [2017]], and refer to it as Opt-Lirpa Planet. The solver
remains the same as our solver, with the only difference being that the upper bound corresponding
to our relaxation is not present (see supplementary material for details). Note that the intermediate
layer bounds in Opt-Lirpa Planet are not jointly optimized. Simplex Verify corresponds to our solver
described in Sec[d.2] Both the LiRPA based solvers use Adam [Kingma and Bal 2015]] for updating
the weighting vectors a, and are run on a single Nvidia Titan Xp GPU. All the methods use the
same intermediate bounds, which are computed using Opt-Lirpa Planet run for 20 iterations. We
compare the effectiveness of the different methods for computing the final layer bounds. Further
details about the baselines and experimental settings, including the hyper-parameters, are provided in
the supplementary material.

Results Table[l|shows the verified accuracy and average verification time per sample of different
methods. Gurobi Simplex achieves much higher verified accuracy (up to 16.5% higher) in comparison
to Gurobi Planet. This is in line with Theorem [3.1] and Proposition [3.2] because our proposed
relaxation is much tighter than Planet. This also shows the benefit of using tighter relaxations. For a
fair comparison, the number of iterations of both LiRPA based methods were tuned such that each of
them take the same amount of time. We tuned the number of iterations on a subset of images. It is
worth noting that the proposed solver, Simplex Verify, achieves much higher verified accuracy than
Opt-Lirpa Planet, in the same amount of time. Simplex Verify also achieves comparable accuracy to
Gurobi Simplex, while being nearly 3 orders of magnitudes faster, which shows the effectiveness of
the proposed solver in solving Problem 3]

We also compare the tightness of the bounds achieved by different methods. We obtained the lower
bounds provided by different solvers. We can get the upper bounds using the sparse PGD attack,
SLIDE [Tramer and Boneh, 2019]. A smaller gap between the PGD upper bound and verified lower
bound, indicates tighter verification. Figure [2a|shows the pointwise comparison of the gap to PGD
for Gurobi Planet and Gurobi Simplex, on the same data. PGD gap is much smaller for Gurobi
Simplex in comparison to Gurobi Planet, thereby showing that our relaxation achieves much tighter
verification. Figure [2b] shows the pointwise comparison of the gap for Opt-Lirpa Planet and our
Simplex Verify. Simplex Verify achieves much tighter verification.

Timing (in s) Gap to Pgd] Timing (in s) Gap to Pgd

w
8
S

°

N

S

N
o
3
w
s
)
o
w
s

N
o
o

N
S
8

&
3

Q

Gurobi Simplex
|

Gurobi Simplex
™
8
Simplex Verify
; °
S
Simplex Verify
AR

°
°
&

e
S
38

50 100 150 200 250 300 10 20
Gurobi Planet Gurobi Planet

(a) Comparison of runtime (left) and gap of lower (b) Comparison of runtime (left) and gap of lower
bounds to PGD upper bounds (right), for Gurobi bounds to PGD upper bounds (right), for Simplex
Simplex and Gurobi Planet. Verify and Opt-Lirpa Planet.

40 0.00 010 015 0.20 1

0.05 0 20 30 40
Opt-Lirpa Planet Opt-Lirpa Planet

Figure 2: Pointwise comparison of the lower bounds on CIFAR-10 test set on the adversarially trained Wide
model, for a subset of the methods. Darker colour shades mean higher point density (on a logarithmic scale).
The oblique dotted line corresponds to the equality.

5.2 Multi-modal classifier robustness verification

Experimental Setup In this section, we are interested in verifying the robustness of multi-modal
classifiers to text-based attacks. The motivation are scenarios where image based models are aug-
mented with text to improve the accuracy of the classifier. However, this makes the model vulnerable
to text based attacks. The aim of this experiment is to show the adversarial vulnerability of such
models and verify their robustness. For this experiment we verify the robustness of models on the
UPMC FOOD-101 dataset [Wang et al., [2015]], which is a commonly used dataset for multi-modal
classification (see [Kiela et al.,[2019]]). This dataset consists of images and recipes of different food
items. It is made available by the creators’ consent online ﬂ The specification that we are interested
in verifying is as follows: for a given image and text pair, only the text is perturbed and any possible
text from the given vocabulary is allowed in the attack. The aim of this specification is to characterise
the worst-case sensitivity of the model. We are not aiming for perfect robustness to the noise in text,
but aim to check its sensitivity. We use a ConcatBOW model for this task as proposed in Kiela et al.
[2019]. The model extracts an image embedding using a standard pretrained ResNet-152 model. It
also extract a Bag of words embedding for the text. The model concatenates the embeddings and
feeds them into a multilayer perceptron (MLP) classifier, which has 1,846,200 parameters. Arbitrary
changes in the text can be modelled as a simplex as described in Section[2.1] The model follows
the same architecture as the state-of-the-art model for this dataset [Ignazio Gallo and Grassal, [2020],
except that we replace Bert embeddings with BOW embeddings. We reduce the dataset from 101
classes to 10 classes. More details are provided in the supplementary.

Related Work |Huang et al.|[2019] considered verification against synonym replacements or char-
acter flip perturbations on text classification models. The input specification was modeled as a
simplex and they proposed to use Interval bound propagation (IBP) for the same. Concurrent to
Huang et al.| [2019]], Jia et al.|[2019] considered a specification where every word in the text can
be replaced with a similar word and used IBP. Xu et al.|[2020] use more recent LiRPA variants for
verification of synonym-based word substitution with a maximum of 6 word substitutions. Concurrent
to our work, [Bonaert et al.[[2021] proposed a new method for certifying Transformers to synonym
based attacks. They provide a lifting from /., analysis techniques to other norms, and propose
a new convex relaxation for a number of settings, but none of these characterize the convex hull
exactly in any setting. In contrast to these works, we consider a much more challenging specification
where any possible text from the vocabulary is allowed. This specification includes arbitrary length
sentences. Further, even our baseline, Opt-Lirpa Planet, is much tighter than IBP. We also propose a
tighter relaxation which characterises the convex hull for our setting of a composition over a convex
activation function and an activation function where the input is constrained to be in the simplex,
and propose an efficient algorithm for the relaxation. It is also important to note that we perform
experiments on verification-agnostic networks unlike Huang et al.|[2019].

Results We compare the lower bounds on the robustness margin for Opt-Lirpa Planet and Simplex
Verify. We use PGD attack for computing the upper bound. The networks are trained to be robust to
simplex perturbations using PGD training. Figure 3] shows the pointwise comparison of the gap to

"http://visiir.1lip6.fr/

http://visiir.lip6.fr/

PGD upper bounds for Opt-Lirpa Planet and Simplex Verify. Note here that a smaller gap indicates
tighter verification. For a fair comparison, the iterations of the propagation algorithms were again
tuned such that each of them takes the same amount of time (0.08s). It can be seen that Simplex
Verify achieves much tighter bounds in the same amount of time.

In Table [2| we present the verified accuracy
achieved by the different methods with the nom-
inal and Pgd accuracy. We present results

Timing (in s) Gap to Pgd

ol
n

o
IS
-
=

for networks trained with different weighting £

for nominal and PGD loss during the adver- ;" g“

sarial training. Network trained only on im- £°% - £)
ages achieves 87.82% accuracy. Note that our 01 ## T

fad
o

method achieves remarkably higher verified ac-

curacy, up to 25% higher, as compared to Opt- oo

Lirpa Planet in the same amount of time. This

shows the benefit of our approach over the exist- Figure 3: Pointwise comparison of runtime (left) and

ing solvers. gap of lower bounds to PGD upper bounds (right) for
the global specification on Food-101 dataset.

5.0 7.5 100 125 150 175

0.2 0.4 .
Opt-Lirpa Planet Opt-Lirpa Planet

6 Discussion and Broader Impact

As machine learning continuously finds new ap- Nominal 86.3% | 87.3% | 92.3%
plication domains, the robustness of machine ~ Accuracy Pgd 84.7% | 84.5% | 19.2%
learning systems in the face of adversarsarial Verified | Opt-Lirpa Planet | 17.9% | 08.0% | 01.2%
behavior becomes increasingly relevant. Neu- Accuracy | Simplex Verify |42.2% |32.8% |01.3%
ral network verification, which seeks to obtain
provable guarantees on robustness of neural
networks, has mostly focused on ¢, perturba-
tions. However, real security threats often in-

Table 2: Verified accuracy achieved by different solvers
on the 2164 test images of the reduced Food-101 dataset.
Results are presented for networks trained with differ-
. ent weighting for nominal and PGD loss. Our method
VOI,Ve more drastl.c Ch?tnges 'that Could'lead to (Simplex Verify) achieves up to 24% higher verified ac-
arbitrary perturbations in the input. In this paper, curacy, in the same amount of time as the state of the art
we have we have proposed an efficient algorithm paseline Opt-Lipra Planet.

for verification of neural networks against sim-

plex constrained perturbations. We have shown

the practical importance of this specification through two applications. Firstly, we verify the ro-
bustness of image classifiers to ¢ perturbations, which could be an appropriate threat model when
perturbations of different features are correlated. Secondly, we consider a challenging specification,
whereby any arbitrary text perturbations are allowed on multi-modal (image and text input) classifiers.
This highlights the vulnerability of multi-modal classifiers to text attacks. The proposed algorithm
improves the state of the art verification accuracy by up to 25%.

Multi-modal data is used in various domains including social media, and the internet in general. We
believe that our work could find application in verifying classifiers which label advertisements and
social media posts as illegal or hateful. Although we tackle arbitrary perturbation in the text input, our
work does not verify against all possible perturbations on the multi-modal input. Another limitation
is that we have considered only a particular class of multi-modal architectures. It is also important
to verify other commonly used architectures. Further, verification exposes flaws in neural network
models, which on the one hand can help improve their robustness, but on the other hand, can be
exploited by an adversary.

Acknowledgements and Disclosure of Funding

Harkirat was supported using a Tencent studentship through the University of Oxford. Philip H.S.
Torr was supported by the EPSRC grant: Turing Al Fellowship: EP/W002981/1, EPSRC/MURI grant
EP/N019474/1 and the Royal Academy of Engineering. We also thank Rudy Bunel for feedback on
the draft.

References

R. Anderson, J. Huchette, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-integer programming
formulations for trained neural networks. Conference on Integer Programming and Combinatorial

10

Optimization, 2019.

R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma. Strong mixed-integer
programming formulations for trained neural networks. Mathematical Programming, 2020.

G. Bonaert, D. I. Dimitrov, M. Baader, and M. Vechev. Fast and precise certification of transformers.
In PLDI, 2021.

R. Bunel, A. De Palma, A. Desmaison, K. Dvijotham, P. Kohli, P. H. Torr, and M. P. Kumar.
Lagrangian decomposition for neural network verification. Conference on Uncertainty in Artificial
Intelligence, 2020a.

R. Bunel, J. Lu, I. Turkaslan, P. Kohli, P. Torr, and M. P. Kumar. Branch and bound for piecewise
linear neural network verification. Journal of Machine Learning Research, 21(2020), 2020b.

A. de Palma, H. Behl, R. R. Bunel, P. Torr, and M. P. Kumar. Scaling the convex barrier with active
sets. In International Conference on Learning Representations, 2021a.

A. de Palma, H. S. Behl, R. Bunel, P. H. S. Torr, and M. P. Kumar. Scaling the convex barrier with
sparse dual algorithms. CoRR, 2021b.

G. W. Ding, L. Wang, and X. Jin. AdverTorch v0.1: An adversarial robustness toolbox based on
pytorch. arXiv preprint arXiv:1902.07623, 2019.

K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A dual approach to scalable verification
of deep networks. Uncertainty in Artificial Intelligence, 2018.

R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. Automated
Technology for Verification and Analysis, 2017.

S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic, T. Mann, and
P. Kohli. On the effectiveness of interval bound propagation for training verifiably robust models.
arXiv preprint arXiv:1810.12715, 2018.

Gurobi. URL http://www.gurobi.com/.
L. Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.gurobi . com.

P.-S. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal, K. Dvijotham, and P. Kohli.
Achieving verified robustness to symbol substitutions via interval bound propagation. In EMNLP,
2019.

N. L. Ignazio Gallo, Gianmarco Ria and R. L. Grassa. Image and text fusion for upmc food-101
using bert and cnns. In International Conference on Image and Vision Computing New Zealand
(IVCNZ 2020), 2020.

R. Jia, A. Raghunathan, K. Goksel, and P. Liang. Certified robustness to adversarial word substitutions.
In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), 2019.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt solver for
verifying deep neural networks. International Conference on Computer-Aided Verification, 2017.

D. Kiela, S. Bhooshan, H. Firooz, and D. Testuggine. Supervised multimodal bitransformers for
classifying images and text. 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

Y. Lecun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/. URL
https://ci.nii.ac.jp/naid/10027939599/en/.

11

http://www.gurobi.com/
http://www.gurobi.com
https://ci.nii.ac.jp/naid/10027939599/en/

J. Lu and M. P. Kumar. Neural network branching for neural network verification. In International
Conference on Learning Representations, 2020.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for provably robust neural
networks. International Conference on Machine Learning, 2018.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532-1543, 2014.

H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang. A convex relaxation barrier to tight
robustness verification of neural networks. Neural Information Processing Systems, 2019.

G. Singh, T. Gehr, M. Piischel, and M. Vechev. An abstract domain for certifying neural networks.
Proceedings of the ACM on Programming Languages, 2019.

C. Tjandraatmadja, R. Anderson, J. Huchette, W. Ma, K. Patel, and J. P. Vielma. The convex
relaxation barrier, revisited: Tightened single-neuron relaxations for neural network verification.
arXiv preprint arXiv:2006.14076, 2020.

M. Todd. The Computation of Fixed Points and Applications. Lecture Notes in Mathematics; 513.
Springer-Verlag, 1976.

F. Tramer and D. Boneh. Adversarial training and robustness for multiple perturbations. In Advances
in Neural Information Processing Systems, volume 32, 2019.

VNN-COMP. International verification of neural networks competition (VNN-COMP). Verification
of Neural Networks workshop at the International Conference on Computer-Aided Verification,
2020. URL https://sites.google.com/view/vnn20/vnncomp,

S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter. Beta-crown: Efficient
bound propagation with per-neuron split constraints for complete and incomplete neural network
verification. arXiv preprint arXiv:2103.06624, 2021.

X. Wang, D. Kumar, N. Thome, M. Cord, and F. Precioso. Recipe recognition with large multimodal
food dataset. In 2015 IEEE International Conference on Multimedia Expo Workshops (ICMEW),
2015.

T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, 1. S. Dhillon, and L. Daniel.
Towards fast computation of certified robustness for relu networks. International Conference on
Machine Learning, 2018.

E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. International Conference on Machine Learning, 2018.

K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura, X. Lin, and C.-J. Hsieh.
Automatic perturbation analysis for scalable certified robustness and beyond. Advances in Neural
Information Processing Systems, 33, 2020.

K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh. Fast and complete: Enabling
complete neural network verification with rapid and massively parallel incomplete verifiers, 2021.

H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural network robustness
certification with general activation functions. In Advances in neural information processing
systems, pages 4939—-4948, 2018.

12

https://sites.google.com/view/vnn20/vnncomp

	Introduction
	Preliminaries
	Problem description
	Planet and disjunctive relaxations

	A Concise Convex Relaxation
	An exact convex relaxation for a single neuron
	Final relaxation

	Algorithm
	Simplex propagation
	Efficient solver

	Experiments
	TEXT robustness verification
	Multi-modal classifier robustness verification

	Discussion and Broader Impact

