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Abstract

Machine learning has successfully framed many sequential decision making prob-
lems as either supervised prediction, or optimal decision-making policy iden-
tification via reinforcement learning. In data-constrained offline settings, both
approaches may fail as they assume fully optimal behavior or rely on exploring
alternatives that may not exist. We introduce an inherently different approach that
identifies possible “dead-ends” of a state space. We focus on the condition of pa-
tients in the intensive care unit, where a “medical dead-end” indicates that a patient
will expire, regardless of all potential future treatment sequences. We postulate
“treatment security” as avoiding treatments with probability proportional to their
chance of leading to dead-ends, present a formal proof, and frame discovery as an
RL problem. We then train three independent deep neural models for automated
state construction, dead-end discovery and confirmation. Our empirical results
discover that dead-ends exist in real clinical data among septic patients, and further
reveal gaps between secure treatments and those that were administered.

1 Introduction

Off-policy Reinforcement Learning (RL) was designed as the way to isolate behavioural policies,
which generate experience, from the target policy, which aims for optimality. It also enables learning
multiple target policies with different goals from the same data-stream or from previously recorded
experience [1]. This algorithmic approach is of particular importance in safety-critical domains such
as robotics [2], education [3] or healthcare [4] where data collection should be regulated as it is
expensive or carries significant risk. Despite significant advances made possible by off-policy RL
combined with deep neural networks [5–7], the performance of these algorithms degrade drastically
in fully offline settings [8], without additional interactions with the environment [9, 10]. These
challenges are deeply amplified when the dataset is limited and exploratory new data cannot be
collected for ethical or safety purposes. This is because robust identification of an optimal policy
requires exhaustive trial and error of various courses of actions [11, 12]. In such fully offline cases,
naively learned policies may significantly overfit to data-collection artifacts [13–15]. Estimation
errors due to limited data may further lead to mistimed or inappropriate decisions with adverse safety
consequences [16].

Even if optimality is not attainable in such constrained cases, negative outcomes in data can be used
to identify behaviors to avoid, thereby guarding against overoptimistic decisions in safety-critical
domains that may be significantly biased due to reduced data availability. In one such domain,
healthcare, RL has been used to identify optimal treatment policies based on observed outcomes of
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past treatments [17]. These policies correspond to advising what treatments to administer, given a
patient’s condition. Unfortunately, exploration of potential courses of treatment is not possible in
most clinical settings due to legal and ethical implications; hence, RL estimates of optimal policies
are largely unreliable in healthcare [18].

In this paper, we develop a novel RL-based method, Dead-end Discovery (DeD), to identify treatments

to avoid as opposed to what treatment to select. Our paradigm shift avoids pitfalls that may arise
from constraining policies to remain close to possibly suboptimal recorded behavior as is typical in
current state of the art offline RL approaches [10, 19–21]. When the data lacks sufficient amounts
of exploratory behavior, these methods fail to attain a reliable policy. We instead use this data to
constrain the scope of the policy, based on retrospective analysis of observed outcomes, a more
tractable approach when data is limited. Our goal is to avoid future dead-ends or regions in the state
space from which negative outcomes are inevitable (formally defined in Section 3.2). DeD identifies
dead-ends via two complementary Markov Decision Processes (MDPs) with a specific reward design
so that the underlying value functions will carry special meaning (Section 3.4). These value functions
are independently estimated using Deep Q-Networks (DQN) [5] to infer the likelihood of a negative
outcome occurring (D-Network) and the reachability of a positive outcome (R-Network). Altogether
DeD formally connects the notion of value functions to the dead-end problem, learned directly from
offline data.

We validate DeD in a carefully constructed toy domain, and then evaluate real health records of septic
patients in an intensive care unit (ICU) setting [22]. Sepsis treatment and onset is a common task in
medical RL [23–26] because the condition is highly prevalent [27, 28], physiologically severe [29],
costly [30] and poorly understood [31]. Notably, the treatment of sepsis itself may also contribute to a
patient’s deterioration [32, 33], thus making treatment avoidance a particularly well-suited objective.
We find that DeD confirms the existence of dead-ends and demonstrate that 12% of treatments
administered to terminally ill patients reduce their chances of survival, some occurring as early as 24
hours prior to death. The estimated value functions underlying DeD are able to capture significant
deterioration in patient health 4 to 8 hours ahead of observed clinical interventions, and that higher-
risk treatments possibly account for this delay. Early identification of suboptimal treatment options is
of great importance since sepsis treatment has shown multiple interventions within tight time frames
(10 to 180 minutes) after suspected onset decreases sepsis mortality [34].

While motivated by healthcare, we propose the use of DeD in safety-critical applications of RL in
most data-constrained settings. We introduce a formal methodology that outlines how DeD can
be implemented within an RL framework for use with real-world offline data. We construct and
train DeD in a generic manner which can readily be used for other data-constrained sequential
decision-making problems. In particular, we emphasize that DeD is well suited to analyze high-risk
decisions in real-world domains.

2 Related Work

RL in Health: RL has been the subject of much focus in health [17], with particular emphasis on
sepsis seeking to develop optimal treatment recommendation policies [23–26, 35–38]. However, with
fixed retrospective medical data, an optimal policy that maximizes a patient’s chance of recovery
is both computationally and experimentally infeasible. To our knowledge, we are the first to target
improved treatment recommendations by avoiding high-risk treatments in a fully offline manner.

Safety in RL: RL has a rich history in safety [39], with recent work attempting to limit high
risk actions by constraining parametric uncertainty [40], through alignment between agent and
human objectives [41, 42], by directly constraining the agent optimization process to avoid unsafe
actions [43], or by improving over a baseline policy [44]. In these settings model performance is
evaluated in online settings where more data can be acquired or models can be tested against new
cases as well as known baselines. We focus on the more challenging offline setting with limited and
non-exploratory data, reflecting the reality of healthcare settings.

Dead-ends: The concept of dead-ends and the corresponding security condition that we build from
was proposed by Fatemi et al. [45] in the context of exploration. In their work an online RL agent
needs to experience various courses of actions from each state, through which it learns optimal
behavior. We adapt this approach and expand the theoretical results to an offline RL setting as is
found within healthcare–where exploration is untenable–to determine which treatments increase the
likelihood of entering a dead-end, based on the patient’s current health state.
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Related concepts to dead-ends were introduced by Irpan et al. [46], focused primarily on policy
evaluation. The authors introduce a notion of feasible states as those that are not catastrophic and from
which an agent will not immediately fail. Whether or not a state is feasible is determined via positive-
unlabeled classification. This inherently differs from our approach where we formally characterize
dead-ends and a corresponding security condition through which we can identify treatments to avoid
that likely lead to dead-ends1. Our formalization is discussed in the next section.

3 Methods

3.1 Preliminaries

Our pipeline isolates state construction from value estimation with RL. Therefore we consider
episodic Markov Decision Processes (MDP) M = (S,A, T, r, �), where S and A are the discrete
sets of states and treatments2; T : S ⇥A⇥ S ! [0, 1] is a function that defines the probability of
transitioning from state st to st+1 if treatment at is administered; R : S ⇥A⇥ S ! [rmin, rmax] is
a finite reward function and � 2 [0, 1] denotes a scalar discount factor.

A policy ⇡(s, a) = P[At = a|St = s] defines how treatments are selected, given a state. A trajectory

is comprised of sequences of tuples (St, At, Rt, St+1) with S0 being the initial state of the trajectory.
Sequential application of the policy is used to construct trajectories. The reward collected over the
course of a trajectory induces the return Gt =

P1
j=0 �

j
Rt+j+1. We assume that all the returns are

finite and bounded. A trajectory is considered optimal if its return is maximized. A state-treatment
value function Q

⇡(s, a) = E⇡[G0|S0 = s,A0 = a] is defined in conjunction with a policy ⇡

to evaluate the expected return of administering treatment a at state s and following ⇡ thereafter.
The optimal state-treatment value function is defined as Q⇤(s, a) = max⇡ Q⇡(s, a), which is the
maximum expected return of all trajectories starting from (s, a). We define state value and optimal
state value as V ⇡(s) = Ea⇠⇡Q

⇡(s, a) and V
⇤(s) = maxa Q⇤(s, a).

3.2 Special States

We define a terminal state as the final observation of any recorded trajectory. We focus on two types
of terminal state that correspond to positive or negative outcomes. Our goal is to identify all dead-

end states, from which negative outcomes are unavoidable (happening w.p.1), regardless of future
treatments. In safety-critical domains, it is crucial to avoid such states and identify the probability
with which any available treatment will lead to a dead-end. We also introduce the complementary
concept of rescue states, from which a positive outcome is reachable with probability one. If an
agent is in a rescue state, there exists at least one treatment at each time step afterwards which leads
to either another rescue state or the eventual positive outcome. The fundamental contrast between
dead-end and rescue states is that if the agent enters a rescue state, it does not mean the treatment
process is done; it rather means that at each time step afterwards there exists at least one treatment to
be found and administered until the positive outcome occurs. There might be trajectories starting
from a rescue state which include non-rescue states. This is not the case for a dead-end state.

Formally, we augment M with a non-empty termination set ST ⇢ S , which is the set of all terminal
states. Mathematically, a terminal state is absorbing (self-transition w.p.1) with zero reward afterwards.
All terminal states are by definition zero-valued, but the transitions to them may be associated with a
non-zero reward. We require that, from all states, there exists at least one trajectory with non-zero
probability arriving at a terminal state. In an offline setting with limited and non-exploratory data,
inducing an optimal policy is not feasible [12]; hence, we do not specify the reward function of M
for which standard RL would optimize cumulative rewards, but in later sections present a specific
design of reward (and discount factor) to assist in identifying dead-end/rescue states. Finally, the
sets of dead-end and rescue states are denoted respectively by SD and SR. We formally distinguish
dead-end/rescue states from the outcome, asserting that SD,SR 6⇢ ST .

1A more in depth discussion on the differences between Irpan et al. [46] and this work can be found in
Appendix Section A2

2Our results can easily be extended to continuous state-spaces by properly replacing summations with
integrals. For brevity, we only present formal proofs for the discrete case. Additionally, as our primary
motivating domain lies within healthcare, we use the term “treatment” in place of “action”.
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3.3 Treatment Security

When dealing with data-constrained offline scenarios, a core distinction is necessary: Realization
of an optimal treatment at a given state requires knowledge of all future outcomes for all possible
treatments, which is not feasible. However, the data may contain enough information to estimate the
possible outcome of a certain treatment at a similar state. If such an outcome is negative with high
probability, then we should advise against the treatment, even if an optimal treatment still remains
unknown. This distinction leads to a paradigm shift from finding the best possible treatment to
mindful avoidance of dangerous ones. This shift further motivates a different design space to make
use of the limited, yet available data.

We adapt the security condition from Fatemi et al. [45] and formalize the treatment avoidance problem
with a more generalized treatment security condition. We note that the chance of a negative outcome
is best described by the probability of falling into a dead-end or immediate negative termination. The
security condition therefore constrains the scope of a given behavioral policy ⇡ if any knowledge
exists about dead-ends or negative termination. Formally, if at state s, treatment a leads to a dead-end
with probability PD(s, a) or immediate negative termination with probability FD(s, a) with a level
of certainty � 2 [0, 1], then ⇡ must avoid selecting a at s with the same certainty:

PD(s, a) + FD(s, a) � � =) ⇡(s, a)  1� �. (1)

E.g., if a treatment leads to a dead-end or termination with probability more than 80%, then that
treatment should be selected for administration no more than 20% of the time. While we would like
(1) to hold for the maximum �, inferring such maximal values is intractable for all state-treatment
pairs. Moreover, directly computing PD and FD would require explicit knowledge of all dead-end
and negative terminal states as well as all transition probabilities for future states. These make the
application of (1) nearly impossible. We next develop a learning paradigm to enable (1) from data.

3.4 Dead-end Discovery (DeD)

In order to identify and confirm the existence of dead-end states, we construct two Markov Decision
Processes (MDPs) MD and MR to be identical to M, with � = 1 for both. We also define the
following reward functions: MD returns �1 with any transition to a negative terminal state (and
zero with all other transitions) whereas MR returns +1 with any transition to a positive terminal
state (zero otherwise). Let Q⇤

D, Q⇤
R, V ⇤

D and V
⇤
R denote the optimal state-treatment and state value

functions of MD and MR, respectively. Note that due to the reward functions of these MDPs, for all
states and treatments, Q⇤

D(s, a) 2 [�1, 0] and Q
⇤
R(s, a) 2 [0, 1].

Having selected treatment a at state s, using the Bellman equation, we prove3 that

�Q
⇤
D(s, a) = PD(s, a) + FD(s, a) +MD(s, a) (2)

In addition to the quantities defined previously, MD(s, a) denotes the probability of circumstances in
stochastic environments where a negative terminal state ultimately occurs despite receiving optimal
treatments at all steps in the future. Equation (2) therefore reveals that �Q

⇤
D carries special physical

meaning: it corresponds to the minimum probability of a negative outcome, because future treatments
may not necessarily be optimal. Equivalently, 1 +Q

⇤
D(s, a) can be seen as the maximum hope of a

positive outcome if treatment a is administered at state s.

Building from Fatemi et al. [45], we show that V ⇤
D of all dead-end states will be precisely �1. By

extension, Q⇤
D(s, a) = �1 for all treatments a at state s if and only if s is a dead-end. In fact,

1 +Q
⇤
D(s, a) provides an appropriate threshold to secure any given policy ⇡(s, a). More formally,

the following statement guarantees treatment security as presented in (1) for all values of �:

⇡(s, a)  1 +Q
⇤
D(s, a) (3)

In short, for treatment security it is sufficient to abide by the maximum hope of a positive outcome.
This construction directly connects the RL concept of value functions to dead-end discovery. While
V

⇤
D(s) enables detecting dead-end states, (3) leverages Q⇤

D for treatment avoidance. We establish
parallel results for rescue states similarly. The following theorem summarizes the theory and shapes
the basis of DeD. See Appendix A1 for the proof and further details.

3All proofs to the theoretical claims presented in this paper can be found in Appendix A1
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Theorem 1. Let treatment a be administered at state s, and PD(s, a) and PR(s, a) denote the
probability of transitioning to a dead-end or rescue state. Similarly, let FD(s, a) and FR(s, a) denote
the probability of transitioning to either a negative or positive terminal state. The following hold:

T1 PD(s, a) + FD(s, a) = 1 if and only if Q⇤
D(s, a) = �1.

T2 PR(s, a) + FR(s, a) = 1 if and only if Q⇤
R(s, a) = 1.

T3 There exists a threshold �D 2 (�1, 0) independent of states and treatments, such that Q⇤
D(s, a) �

�D for all s and a, unless PD(s, a) + FD(s, a) = 1.
T4 There exists a threshold �R 2 (0, 1) independent of states and treatments, such that Q⇤

R(s, a) 
�R for all s and a, unless PR(s, a) + FR(s, a) = 1.

T5 For any policy ⇡, state s, and treatment a, if ⇡(s, a)  1 +Q
⇤
D(s, a) and � 2 [0, 1] exists such

that PD(s, a) + FD(s, a) � �, then ⇡(s, a)  1� �.
T6 For any policy ⇡, state s, and treatment a, if ⇡(s, a) � Q

⇤
R(s, a) and � 2 [0, 1] exists such that

PR(s, a) + FR(s, a) � �, then ⇡(s, a) � �.

It is immediate from (T1) and (T2) that Q⇤
D and Q

⇤
R incorporate complete information when tran-

sitioning to a dead-end state or to a rescue state as a result of administrating treatment a at s. (T3)
assures that a threshold �D exists to separate treatments that lead immediately to dead-ends from
alternatives. (T4) allows us to confirm a dead-end by examining if Q⇤

R is also smaller than some
threshold �R. No dead-end can violate �R due to (T4) and such a threshold exists. If Q⇤

D is available
and �D is known, then this step is redundant. However, without access to Q

⇤
D and an accurate

�D, (T4) helps to confirm any presumed dead-end. Finally, (T5) provides the means by which the
treatment policy is guided to avoid dangerous treatments. (T6) is used to also confirm whether the
treatment should be avoided. We explain how to practically select the thresholds �D and �R in Sec. 5.

Of note, by definition, value functions encompass long-term consequences and are not myopic to
possible immediate events, as opposed to supervised learning from immediate observation of an
outcome. This inherent characteristic of value functions indeed yields the theoretical result presented
by Lemma 2 (Appendix Sec. A1), one result of which is that �QD corresponds to the minimum
probability of a negative future outcome. Supervised learning from immediate outcomes, on the other
hand, lacks this formal property [47]; hence, it is not expected to provide parallel results with DeD.

3.5 Neural Network Based State Construction and Identification

State construction (SC-Network). In domains where solitary observations do not carry salient
information for learning the decision-making process, states may need to be constructed from data
using a neural network. In these circumstances a separate SC-Network can be used to transform a
single or possible sequence of observations into a fixed embedding, considered the state s at time t.

Identification (D-Network and R-Network). In order to approximate Q
⇤
D and Q

⇤
R, two separate

neural networks can be used to compute QD and QR for all treatments given a state constructed by
the SC-Network. With trained QD and QR networks, we can then apply thresholds �D and �R as
specified in Theorem 1. As data is limited and non-exploratory, approximation error is inevitable. To
mitigate this limitation, the method’s sensitivity can be adjusted by adapting the thresholds �D and
�R (additionally, see Proposition 1 and Remarks 1-4 in Appendix A1). Smaller thresholds result in
more false negative and less false positive cases. Of note, value-overestimation, a known limitation
of deep RL models, will often cause QD and QR to be larger than Q

⇤
D and Q

⇤
R respectively. This

naturally reduces false positives while increasing false negatives.

3.6 Toy Problem Validation: Life-Gate

We briefly provide a tabular toy-example (Life-Gate), which involves dead-ends, to empirically
illustrates the merit of Theorem 1 by learning Q

⇤
D and Q

⇤
R (Figure 1). This toy set-up comprises an

interesting case, where the agent faces an environment to examine with no knowledge of possible
dangers. Importantly, once a dead-end state (yellow) is reached, it may take some random number
of steps before reaching a “death gate” (red). All along such trajectories of dead-end states, the
agent still has to choose actions with the (false) hope of reaching a “life-gate” (blue). Discovering
any single dead-end state and signaling the agent when it is approached would be of significant
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LifeGate Env

a cb

Figure 1: The Life-Gate Example. The tabular navigation task of life-gate is illustrated in (a).
Corresponding dead-end and rescue state-value functions, VD and VR, are shown in (b) and (c). The
value functions are learned through Q-learning and with the definition of MD and MR.

importance. On the other hand, adjacent states to dead-ends are possibly the most critical to alert, as
it might be the last chance to still do something to avoid failure (see Appendix A3 for more details).

We next use the tools provided by Theorem 1. The value functions are more than 90% trained,
still allowing learning errors. In this example, even with the errors due to lack of full convergence,
�D = �0.7 and �R = 0.7 seem to clearly set the boundary for most states (with a few exceptions due
to the errors). If a state is observed whose VD and VR values violate these thresholds, the state can be
flagged as a dead-end with high probability. Setting a lower threshold can help to raise flags earlier
on, when the conditions are of high-risk, but it is still not too late. We can apply the same thresholds
to further flag high-risk actions (not shown). Lastly, we note (T1) from Theorem 1. It can be seen that
only for all the yellow area (aside from the few erroneous states), VD = �1. Clearly, no dead-end
state can be a rescue, as seen by VR = 0 for the yellow area too.

4 Empirical Setup for Dead-end Analysis

Data: We use DeD to identify medical dead-ends in a cohort of septic patients drawn from the
MIMIC (Medical Information Mart for Intensive Care) - III dataset (v1.4) [22, 48]. This cohort totals
19,611 patients (17,730 survivors and 1,881 nonsurvivors), with 44 observation variables, and 25
treatment choices (5 discrete levels for each of IV fluid and vasopressor). We follow prior work [25]
and aggregate each variable every four hours using the per-patient variable mean if data is present, or
impute using the value from the nearest neighbor.

Terminal States. In our ICU setting, possible terminal states are either patient recovery (discharge
from ICU) or death. We define “death” as the last recorded point in the EMR of nonsurviving patients
when expiration is imminent, but may not necessarily be the biological point of death. In practice this
definition of terminal state may occur hours or days before biological death and covers situations
where care support devices are disconnected, when a patient requests a cessation of treatment, etc.

Our goal is to identify all medical dead-end states, defined as patient states from which death is
unavoidable, regardless of future treatments. Relatedly, we also desire to discover all treatments that
may possibly lead to a medical dead-end state in order to learn which treatments to avoid.

SC-Network. As observations of patient health are inherently partial, we need an informative
latent representation of state [49], sufficient for evaluating treatment security. To form these state
representations we process a sequence of observations prior to and including any time t as well as the
last selected treatment to form the state st. We train a standalone State Construction (SC) network
using Approximate Information State (AIS) [50] in a self-supervised manner for this purpose. Details
of AIS and how it is used to train the SC-Network are included in Appendix A4.

D-Network and R-Network. Computed states are given as input to the D- and R-networks to
approximate Q

⇤
D and Q

⇤
R. We use the double-DQN algorithm [51] to train each network (details

included in Appendix A5). The outputs of trained D- and R- Networks produce value estimates of
both the embedded patient state and all possible treatments to evaluate the probability of transitioning
to a dead-end. This process of determining possibly high-risk treatments is central to DeD.

Training: We train the SC-, D-, and R- networks in an offline manner, using retrospective data (Fig.
A2). All models are trained with 75% of the patient cohort (14,179 survivors, 1,509 nonsurvivors),
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Figure 2: Flag emergence for ICU patients.
Histograms of median Q according to the flag
status, for both surviving (green) and non-
surviving patients (blue) according to the R-
Network (left) and D-Network (right). The
bars are plotted according to the time prior to
the recorded terminal state (the maximum tra-
jectory length is 72 hours) and measure the
percentage of patients whose states raise either
a red, yellow or no flag. There is a clear wors-
ening trend of state values for nonsurviving
patients as they approach their terminal state,
beginning as early as 48 hours prior.

validated with 5% (890 survivors, 90 nonsurvivors), and we report all results on the remaining
held out 20% (2,660 survivors, 282 nonsurvivors). Further details of how the patient cohort is
processed are provided in Appendix A6. Finally, to mitigate the data imbalance between surviving
and non-surviving patients we use an additional data buffer that contains only the last transition of
nonsurvivors trajectories. Thus, a stratified minibatch of size 64 is constructed of 62 samples from
the main data, augmented with 2 samples from this additional buffer, all selected uniformly. This
same minibatch structure is used for training each of the three networks. For the training details see
Appendix A4 and A5.

5 Empirical Results

5.1 Septic Dead-End State Prediction

Experiment. In order to flag potentially non-secure treatments, we examine if QD and QR of each
treatment at a given state pass certain thresholds �D and �R, respectively. To flag potential dead-end
states, we need to probe the state values, for which we examine the median of Q (rather than max

of Q) against similar thresholds. Using the median helps to avoid extreme approximation error due
to generalization from potentially insufficient data. We found that �D = �0.25 and �R = 0.75
minimize both false positives and false negatives, and use these as the thresholds for raising “red”
flags. We also define a second, looser threshold of �D = �0.15 and �R = 0.85, as raising “yellow”
flags with higher sensitivity but increased false positives. This looser threshold targets an early
indication of a patient’s health condition deteriorating toward a dead-end state. In Appendix Fig. A5
we report histogram of values at different quantiles, from which we established these thresholds.

Results. Using the specified thresholds, DeD identifies increasing percentages of patients raising
fatal flags as nonsurvivors approach death (Figure 2 and Appendix Table A3). Note the distinctive
difference between the trend of values in survivors (green bars) and nonsurvivors (blue bars). Over
the course of 72 hours in the ICU, survivor trajectories raise nearly no red flag for both networks.
In contrast, nonsurvivor trajectories demonstrate a steep reduction in no-flag zone with increasing
numbers of patients flagged in the Red zone. The Yellow zone is dominated largely by the nonsurvivors,
yet there are also survivors who ultimately recover. Under the red-flag threshold, more than 12%
of treatments administered to non-surviving patients are identified to be detrimental 24 hours prior
to death with a 0.6% false positive rate (Appendix Table A3). We further identify that 2.7% of
non-surviving patient cases have entered unavoidable dead-end trajectories up to 48 hours before
recorded expiration, with only a 0.2% false positive rate, i.e., patients misidentified as near death.

We find that 5% of nonsurviving patients maintain the red flag for their last 24 hours recorded in
the ICU before reaching a death terminal state. This monotonically increases to 13.9% for patients
who maintain a red flag through their final 8 hours of care (Appendix Fig. A6b,c). These patients
likely reached a dead-end with no subsequent chance of recovery; this is as compared to 89.3% of
nonsurviving test patients with no flag raised in their first 8 hours (Appendix Fig. A6d).
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Figure 3: Trend of measures around the first raised flag. Various measures are shown 24 hours (6
steps) before the first (red or yellow) flag is raised and 16 hours (4 steps) afterward. All nonsurviving
(blue) and surviving (green) patient trajectories that fall within this window are averaged, shaded areas
represent a single standard deviation. (a) selected key vital measures and lab tests, (b) established
clinical measures, and (c) DeD value measures of state (V ) and administered treatment (Q) from the
D- and R-Networks and, (d) administered treatments. There is a clear turning point 4 to 8 hours prior
to the flag being raised, which precisely corresponds to a drastic increase of VP and IV treatments.
(e) the value of the maximum, the 5th maximum (20% best) and the actually administered treatment,
demonstrating that better treatments were available when the chosen treatments were administered.

There is a distinct difference between remaining on a flag for survivors and nonsurvivors (Appendix
Fig. A6a). Even with our red threshold, very few survivors (0.5%) raise and remain on red-flag for
more than eight hours, decreasing to nearly zero for longer periods. In contrast, 32.6% of nonsurvivors
remain on red flags for similar duration with a fat tail. These results suggest that red-flag membership
for long periods strongly correlates with mortality, inline with our theoretical analysis.

5.2 First Flag Analysis

Experiment. To further support our hypothesis that dead-end states exist among septic patients and
may be preventable, we align patients according to the point in their care when a flag is “first raised”.
We select all trajectories in the test data with at least 24 hours (6 steps) prior to the first flag and
at least 16 hours (4 steps) afterwards (77 surviving and 74 nonsurviving patients). This window
excludes patients with flags that occur either too early or too late. This allows for an investigation of
the average trend of patient observations, administered treatments as well as the measures used in
DeD over a sufficiently large window (Figure 3).

Results. The V and Q values estimated by DeD have similar behavior in survivors and nonsurvivors
prior to the first flag, but values diverge after the flag is raised. Notably, the time step pinpointed by
DeD to raise a flag corresponds to a similar diverging trend among various clinical measures, including
SOFA and patient vitals (Figure 3a,b). This distinct behavior is also seen if looser threshold values
are used for �D and �R (Appendix Fig. A8). After the flag is raised there is slight improvement in all
value estimates, perhaps in response to the change in treatment. However the values of nonsurviving
patient trajectories quickly collapse while survivors continue to improve.

The results of this analysis suggest two main points. First, DeD identifies a clear critical point in the
care timeline where nonsurviving patients experiencing an irreversible deterioration in health. Second,
there is a significant gap (Figure 3e) between the value of administered treatments and the 20% most
secure ones (5 out of 25). The critical point appears to arise when a patient’s condition shifts towards
improvement or otherwise enters a dead-end towards expiration. Perhaps most notable is that there is
a clear inflection in the estimated values 4 to 8 hours prior to a flag being raised. Signaling this shift
in the inferred patient response to treatment and the resulting flag may be used to provide an early
indicator for clinicians (more conservative thresholds may be used to signal earlier). The trend of
survivors shows that there is still hope to save the patient at this point. Note that all these patients
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Figure 4: Events at ICU. Certain vitals (a) and DeD value measures from both D- and R-Networks
(b) are shown for a non-surviving patient (ICU-Stay-ID 262011). The black asterisks demonstrate
the presumed onset of sepsis at step 7, and the color dots corresponds to the raised red or yellow
flags. Lastly, (c) illustrates steps along the patient’s trajectory with DeD estimated values and selected
treatments. Notably, from steps 5 to 6 the state has a sudden jump to a low-value region that it
fails to escape from, aligned with significant inflections in the recorded vitals, approximately 4 to 8
hours before presumed onset of sepsis. (See Appendix Fig. A9 – Fig. A11 for full feature set plus
accompanying excerpts from clinical notes of this and additional patients)

(survivors and nonsurvivors) are very similar in terms of both D/R values and their SOFA score
prior to this point. This rejects the argument that survivors and nonsurvivors are inherently different.
Additionally, while SOFA may appear correlated with DeD at the individual level, the trend of value
functions can be noticeably more aggressive than SOFA with significantly less variance (Fig. A8).
Further, most patients already have a high SOFA; hence, it is not sufficient for dead-end identification.
DeD is however a provable methodology to this end. Figures 3d and e advocate that the choice of
treatment may play a role in entering dead-ends, since the divergence/drop occurs before the flag.
The gap in value between the administered treatments and those with the highest estimated security
suggest that better treatments were available, even for patients who eventually recover (Figures 3e).

5.3 Individual Trajectories

Experiment. In our final analysis we extract relevant information surrounding a patient’s value
estimates from the electronic health record data, including the recorded clinical notes. We also use
t-SNE [52] to project the state representations of the patient’s trajectory, embedded using the SC-
Network, among all recorded states in the test data (complete figures are presented in the Appendix).

Results. The clinicians’ chart notes confirm existence of dead-ends with a noted need for intubation,
hypotension, and a discussion of moving the patient’s care to “comfort measures only” (Fig. A9c).
Moreover, certain areas in the t-SNE projection of observed patient states appear to correspond with
dead-end states (Fig. A9b). Notably, the dramatic shift of clinically established measures such as
SOFA and GCS closely follow the decrease in DeD estimated values (Figure 4a, b). This is similar to
the trends seen prior to raised flags (Figure 3). This qualitative analysis suggests that the estimates of
QD and QR are reliable and informative, supporting our prior conclusions. Additional non-surviving
patients are presented in Appendix Fig. A9 – Fig. A11.

6 Discussion

In this work, we have introduced an RL-based approach for learning what treatments to avoid based
on observed patterns in limited offline data. We target avoiding treatments proportional to their chance
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of leading to dead-ends, regions of the state space from which negative outcomes are inevitable. We
establish theoretical results that expand the concept of dead-ends in RL, facilitating the notification of
high-risk treatments or, as applied to healthcare, septic patient conditions with increased likelihood of
leading to a dead-end. Globally, sepsis is a leading cause of mortality [27, 53, 54], and an important
end-stage to many conditions. Consequently, even a slight decrease in mortality rate or improved
efficacy of treatment could have a significant impact both in terms of saving lives and reducing costs.

Our work lays the groundwork for dead-end analysis in medical settings and is, to the best of our
knowledge, the first use of RL to flag bad treatments rather than finding the best ones through
estimating an optimal policy ⇡

⇤. Our algorithm is generic, using RL methodology that is formally
guaranteed to hold the security condition re-established in this paper. The discovery of dead-end
states, and the treatments that likely lead to them, provides actionable insights in intensive care
intervention. Further improvement of DeD’s prediction quality could target additional features from
the EMR environment, such as pre-ICU admission co-morbidities. In future work, we also hope to
explore the specific drugs and dosages used in treatment.

Given its general construction, DeD is well matched for safety-critical applications of RL in data-
constrained settings where it may be too expensive or unethical to collect additional exploratory data.
With formal guarantees of satisfying the security condition, DeD is suitable for broader adoption
when developing critical insights from retrospective data. Our framework is particularly relevant to
data-constraint offline RL application domains such as robotics, industrial control, and automated
dialogue generation where negative outcomes can be clearly identified [55].

Limitations: While DeD is a promising framework for decision support in safety-critical domains
with limited offline data, there are certain core limitations. While we use median values of QD

or QR to avoid extreme extrapolation, training the D- and R- networks is still performed offline
and extrapolation is likely still occurring. For simplicity we did not estimate QD or QR with
contemporary offline RL methods; however, DeD is generic and replacing the DDQN learning
method with more recent approaches would be straightforward, which can significantly improve
the pipeline (we also note that finding QD or QR is an exponentially smaller problem compared to
finding ⇡

⇤ to recommend best treatments). Additionally, we did not investigate the sensitivity of DeD
to demographic information or with respect to specific features from the EMR. Thorough analysis
of this sensitivity may elucidate the fairness and reliability of DeD. Finally, we did not externally
validate DeD using data from a separate hospital or through investigation of suggested treatment
avoidance by human clinicians. These investigations and more, concerning the causal entanglement
of outcome and sequential treatments, are a focus of current and future work.

Ethical Considerations and Societal Impact: This work, or derivatives of it, should never be used
in isolation to exclude patients from being treated, e.g., not admitting patients or blindly ignore
treatments. The treatment-avoidance part of our proposed approach is meant to shrink the scope of
possible treatment options, and help the doctors make better decisions. Signalling high-risk states is
also meant to warn the clinicians for immediate attention before it possibly becomes too late. In both
cases, the flags that DeD supplies are statistically tied to the training data and unavoidable sources
of error and bias and should not be seen as a binary treat/don’t treat decision. In particular, even
in the case of red flags, the signals should not be interpreted as mathematical dead-ends with full
precision. The intention of our approach is to assist clinicians by highlighting possibly unanticipated
risks when making decisions and is not to be used as a stand-alone tool nor as a replacement of a
human expert. Misuse of this algorithmic solution could carry significant risk to the well-being and
survival of patients placed in a clinician’s care.

The primary goal of this work is to establish a proof of concept where especially high-risk treatments
can be avoided, where possible, in context of a patient’s health condition. In acute care scenarios
treatments come with inherent risk profiles and potential harms. In these settings tendencies to
overtreat patients have arisen in attempt of ensuring their survival, increasing the chance of clinical
errors to occur [56]. Recent clinical research has sought to simplify practice to only the most
necessary treatments 4. In this spirit, we seek to infer the long-term impact of each available treatment
in view of their risk of pushing the patient into a medical dead-end. The secondary goal of our work,
on the other hand, is signal when the patient’s condition deteriorates, but may not be noticed by
clinicians through monitoring clinical measures. This follows from the fact that DeD uses value
functions, which provably enable such predictions.

4see http://jamanetwork.com/collection.aspx?categoryid=6017
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