
A Proof of Theorem 1

Proof. Note that the second phase is to find the best function within the class Fta ◦ ĥ. We first apply
the standard bounded difference inequality (Bartlett and Mendelson, 2002) as shown in Theorem 6.

Theorem 6 (Bartlett and Mendelson (2002)). With a probability at least 1− δ,

sup
f∈Fta

|Rta(f ◦ ĥ)− R̂ta(f ◦ ĥ)| ≤
√

2πĜnta
(Fta ◦ ĥ)

√
nta

+

√
9 ln(2/δ)

2nta
=: ε(ĥ, nta, δ),

furthermore, the total generalization error can be upper bounded by

Eta(f̂ta ◦ ĥ) ≤ inf
f∈Fta

Eta(f, ĥ)︸ ︷︷ ︸
approximation error

+ ε(ĥ, nta, δ)︸ ︷︷ ︸
generalization error over Fta◦ĥ

. (2)

Theorem 6 is stated in terms of Gaussian complexity. It is more common to use Radamecher
complexity, which can be upper bounded by

√
2π of the corresponding Gaussian complexity. For

the generalization bound in terms of Rademacher complexity, Theorem 26.5 of Shalev-Shwartz and
Ben-David (2014) has a full proof. Then recall that Yt and Yta ⊂ [0, 1], we get rid of the loss function
by the contraction lemma, which leads to Theorem 6. The result follows by the definition,

inf
f∈Fta

Eta(f, ĥ) ≤ inffta∈Fta
Eta(fta, ĥ)

inffso∈F⊗S
so
Eso(fso, ĥ) + µ/ν

(Eso(f̂so, ĥ) + µ/ν) ≤ νEso(f̂so, ĥ) + µ.

B Proof of Theorem 2

Proof. To show f∗so is (L, 0)-transferable to f∗ta, we bound the approximation error of the target task
given any fixed h ∈ H.

Eta(f∗ta, h)

= EX,Y [lta(f∗ta ◦ h(X), Y )− lta(f∗ta ◦ h∗(X), Y )]

= EX‖f∗ta ◦ h(X)− f∗ta ◦ h∗(X)‖22
≤ LEX‖h(X)− h∗(X)‖22. (3)

Now using Assumption 1, we have

Eso(h) = EX,Y [lso(h(X), Y )− lso(h∗(X), Y )]

= EX‖h∗(X)− h(X)‖22

Combined with Equation (3), we have suph∈H[Eta(f∗ta, h)/Eso(h)] ≤ L.

Firstly, using Theorem 6 on source tasks solely, we have Eso(ĥ) = Õ(Ĝnso
(G)/
√
nso). Definition 1

gives us

inf
f∈Fta

Eta(f, ĥ) ≤ LEso(ĥ) = Õ(LĜnso(G)/
√
nso).

Combined with (2), we have

Eta
(
f̂ta, ĥ

)
= Õ

L Ĝnso
(G)

√
nso

+
Ĝnta

(
Fta ◦ ĥ

)
√
nta

 .
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C Proof of Theorem 3

Proof. Let f∗ta(x) = f ′∗ta(f∗1 ◦ h∗(x), . . . f∗m ◦ h∗(x)). Define new tasks t1, . . . tm. Each ti has the
prediction function f∗i .

By Definition 1, the source tasks are (ν, µ)-transferable to each ti. By Theorem 1, we have

inf
fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.

Since we use L2 loss,

inf
fi∈Fso

EX‖fi ◦ ĥ(X)− f∗i ◦ h∗(X)‖22 = inf
fi∈Fso

Eti(fi, ĥ) ≤ νEso(f̂so, ĥ) + µ.

As this holds for all i ∈ [m], we have

inf
f1,...,fm∈Fso

EX‖(f1◦ĥ(X), . . . , fm◦ĥ(X))−(f∗1 ◦h∗(X), . . . , f∗m◦ĥ∗(X))‖22 ≤ m(νEso(f̂so, ĥ)+µ).

Using Assumption 2, we have

inf
f∈Fta

Eta(f, ĥ) ≤ L′m(νEso(f̂so, ĥ) + µ).

Theorem 3 follows by plugging this into (2).

D Proof of Corollary 1

This section we prove Corollary 1 using Theorem 3, the standard bound for Gaussian complexity of
DNN model and the Gaussian complexity decomposition from Tripuraneni et al. (2020).

The following theorem bounds the Rademacher complexity of a deep neural network model given an
input dataset XN = (x1, . . . ,xN )T ∈ RN×d.
Theorem 7 (Golowich et al. (2018)). Let σ be a 1-Lipschitz activation function with σ(0) = 0. Recall
thatMK is the depth K neural network with d-dimensional output with bounded input ‖xji‖ ≤ DZ

and ‖Wk‖∞ ≤M(k) for all k ∈ [K]. Recall that L =
{
x 7→ αTx+ β : ∀α ∈ Rp, ‖α‖2 ≤M(α)

}
is the linear class following the depth-K neural network. Then,

Rn(L ◦MK ;XN ) ≤ 2DZ

√
K + 2 + log d ·M(α)ΠK

k=1M(k)√
n

.

Since for any function class F , Ĝn(F) ≤ 2
√

log n · R̂n(F), we also have the bound for the Gaussian
complexity under the same conditions.

Applying Theorem 7, we have an upper bound for the second term in Theorem 3:

Ĝnta

(
Fta ◦ ĥ

)
√
nta

≤
2DZ

√
log(nta)

√
Kta + 2 + log(d)MαΠKta

k=1M(k)
√
nta

= Õ

(
DZsqrtKtaM(α)ΠKta

k=1M(k)
√
nta

)
.

It only remains to bound ĜTnso

(
F⊗Tso ◦ H

)
/
√
Tnso in Theorem 3. To proceed, we introduce the

decomposition theorem for Gaussian complexity (Tripuraneni et al., 2020).
Theorem 8 (Theorem 7 in Tripuraneni et al. (2020)). Let the function classF consist of functions that
are L(F)-Lipschitz and have boundedness parameter DX = supf,f ′,x,x′ ‖f(x)− f ′(x′)‖2. Further,
define Q = {h(X̄) : h ∈ H, X̄ ∈ ∪Tj=1{Xj}}. Then the Gaussian complexity of the function class
F⊗T (H) satisfies,

ĜX

(
F⊗T (H)

)
≤ 4DX

(nT )3/2
+ 128C

(
F⊗T (H)

)
· log(nT ),

where C (F⊗t(H)) = L(F)ĜX(H) + maxq∈Q Ĝq(F).
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With Theorem 8 applied, we have

ĜTnso

(
F⊗Tso ◦ H

)
√
Tnso

≤ 8DX

(Tnso)2
+

128
(
L(Fso)ĜTnso(H) + maxq∈Q Ĝq(Fso)

)
· log(Tnso)

√
Tnso

.

(4)

The second term relies on the Lipschitz constant of DNN, which we bound with the following lemma.
Similar results are given by Scaman and Virmaux (2018); Fazlyab et al. (2019).

Lemma 1. If the activation function is 1-Lipschitz, any function in L ◦MK is M(α)ΠK
k=1M(k)-

Lipschitz with respect to L2 distance.

Proof. The linear mapping x 7→Wkx is ‖Wk‖2-Lipschitz. Combined with the Lipschitz of activation
function we have σ(Wkx) is also ‖Wk‖2-Lipschitz. Then the composition of different layers has
Lipschitz constant ΠkMk. The Lemma follows by adding the Lipschitz of the last linear mapping.

Thus, we have
L(Fso) ≤M(α)ΠKso

k=1M(k).

By Theorem 7,

max
q∈Q

Ĝq(Fso) = Õ(
DZ

√
KsoM(α)ΠKso

k=1M(k)
√
nso

).

Plug the above two equations into (4), we have

ĜTnso

(
F⊗Tso ◦ H

)
√
Tnso

= Õ

(
DX

(Tnso)2
+M(α)ΠKso

k=1M(k)(
ĜTnso(H)√

Tnso
+
DZ

√
Kso√
nso

)

)
,

where DX = sup(h,f,x),(h′,f ′,x′)∈H×Fso×X ‖h ◦ f(x)− h′ ◦ f ′(x′)‖.

Lemma 2. The boundedness parameter DX satisfies DX ≤ DZM(α)ΠKso

k=1M(k).

Proof. The proof is given by induction. Let rk denote the vector-valued output of the k-th layer of
the prediction function. First note that

DX ≤ 2 sup
f∈Fso,z∈Z

‖f(z)‖2 ≤ 2M(α)‖rKso
‖2.

For each output of the k-th layer, we have

‖rk‖2 = ‖σ(Wkrk−1)‖2 ≤ ‖Wkrk−1‖22 ≤ ‖Wk‖22‖rk−1‖22,

where the first inequality is by the 1-Lipschitz of the activation function. By induction, we have

DX ≤ 2DZM(α)ΠKso

k=1M(k).

Recall that Fta = L ◦MKta−Kso−1 ◦ (F⊗pso ) and the Lipschitz constant L′ ≤M(α)ΠKta

Kso+2M(k).
Using Theorem 3 and apply Lemma 2, we have

Eta
(
f̂ta, ĥ

)
=

Õ

(
pνΠKta

k=Kso+2M(k)

(
M(α)ΠKso

k=1M(k)(
ĜTnso

(H)√
Tnso

+
DZ

√
Kso√
nso

)

)
+
DZ

√
Kta ·M(α)ΠKta

k=1M(k)
√
nta

)
.
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E Lower bound results for the diversity of depth-1 NN

We first give the proof using ReLu activation function (Theorem 4), as the result is more intuitive
before we extend the similar results to other activation functions.

Proof. As we consider arbitrary representation function and covariate distribution, for simplicity we
write X ′ = h∗(X) and Y ′ = h(X).

We consider a subset of depth-1 neural networks with ReLu activation function: F = {x 7→
[〈x,w〉 − (1− ε/4)]+ : ‖x‖2 ≤ 1, ‖w‖ ≤ 1}. Let fw be the function with parameter w. Consider
U ⊂ {x : ‖x‖2 = 1} such that 〈u, v〉 ≤ 1− ε for all u, v ∈ U, u 6= v.

Lemma 3. For any T ⊂ F , |T | ≤ b|U |/2c, there exists a V ⊂ U , |V | ≥ b|U |/2c such that any
f ∈ T , f(v) = 0 for all v ∈ V .

Proof. For any set T , let UT = {u : ∃t ∈ T , u ∈ arg maxu∈U 〈u, ft〉} be a subset of U . Thus,
|UT | ≤ T ≤ b|U |/2c. Let V = U \ UT .

For any f ∈ T , let uf be its closed point in U . Let vf be its closed point in V . Let θf be the angle
between uf and vf . By the definition of U , we have cos(θf ) = 〈uf , vf 〉 ≤ 1− ε. We will show that
〈f, vf 〉 ≤ 1− ε/4.

Note that since 〈f, vf 〉 ≤ 〈f, uf 〉, we have the angle between f and v is larger than θf/2. By the
simple fact that cos(θf/2) ≤ 1 − (1 − cos(θf ))/4, we have 〈f, vf 〉 ≤ 1 − ε/4. Thus, f(vf ) = 0
and f(v) = 0 for all v ∈ V .

For any set of prediction functions in source tasks, let V be the set defined in the above lemma.
Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have fu(u) = ε/4,
while all f ∈ T , f(u) = 0. Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥ |V
′| − 1

16|V ′|
ε2 ≥ 1

32
ε2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 = 0.

Thus, we let X ′ = u almost surely and Y ′ follows a uniform distribution over V ′. This is true when
the covariate distribution is the same as Y ′ and h = x 7→ x and h∗ = x 7→ u. Recalling the definition
of diversity, we have

inf
f∈F

EX′,Y ′(fu(X ′)− f(Y ′))2 = ε2/32 and
1

T

∑
ft∈T

inf
f ′t∈F

EX′,Y ′(fs(X
′)− f ′s(Y ′))2 = 0.

Note that the same result holds when the bias b ≤ −(1− ε/4). For general bounded ‖b‖2 ≤ 1, one
can add an extra coordinate in x as an offset.

In Theorem 4, we show that in depth-1 neural network with ReLu activation function, we will need
exponentially many source tasks to achieve diversity. Similar results can be shown for other non-linear
activation functions that satisfies the following condition:
Assumption 3. Let σ : R 7→ R be an activation function. We assume there exists x1, x2 ∈ R,
x1 > x2, such that |σ(x1)| ≥ supx≤x2

|σ(x)|M for some M > 0.

ReLu satisfies the assumption with any M > 0 for any x1 > 0 and x2 ≤ 0. Also note that any
continuous activation function that is lower bounded and increasing satisfies this assumption.
Theorem 9. Let σ satisfies the above assumption with M for some x1 and x2. Let F = {x 7→
σ(8(x1 − x2)〈x,w〉 − 7x1 + 8x2)) : ‖x‖2 ≤ 1, ‖w‖2 ≤ 1}. Let T = {f1, . . . , fT } be any
set of depth-1 neural networks with ReLu activation in F . If T ≤ 2d log(2)−1, there exists some
representation h∗, h′ ∈ H, some distribution PX and a target function f∗ta ∈ F , such that

inff∈F Eta(f, h′)

inff∈F Eso(f , h′)
≥ (M − 1)2

8
.
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Proof. We follow the construction in the proof of Theorem 9, fix an ε = 1/2 and let U ⊂ {x :
‖x‖2 = 1} such that 〈u, v〉 ≤ 1− ε for all u, v ∈ U, u 6= v.

For any source tasks set T , let UT = {u : ∃t ∈ T , u ∈ arg maxu∈U 〈u, ft〉} be a subset of U . Thus,
|UT | ≤ T ≤ b|U |/2c. Let V = U \ UT . For any f ∈ T , v ∈ V , similarly to the previous argument,
we have 〈f, v〉 ≤ 1− ε/4 = 1/8. Therefore, 〈f, v〉 ≤ 1− ε/4 = 1/8 ≤ x2.

For any set of prediction functions in source tasks, let V be the set defined in the above lemma.
Consider any u ∈ U \ V and let V ′ = U \ (V ∪ u). By this construction, we have fu(u) = σ(x1),
while all f ∈ T , f(u) = σ(x2). Note that

inf
f∈F

1

|V ′|
∑
x∈V ′

(fu(u)− f(x))2 ≥ |V
′| − 1

|V ′|
≥ 1

2
(σ(x1)− σ(x2))2,

while ∑
f∈T

1

|V ′|
∑
x∈V ′

(f(u)− f(x))2 ≤ 4 sup
x≤x2

σ(x2)2.

Thus
inff∈F

1
|V ′|

∑
x∈V ′(fu(u)− f(x))2∑

f∈T
1
|V ′|

∑
x∈V ′(f(u)− f(x))2

≥ (M − 1)2

8

F Proof of Theorem 5

Proof. Since dims(F∗) is at least dE , for any set {f1, . . . , ft}, there exists a ft+1 that is (F∗, ε)-
independent of {f1, . . . , ft}. By definition, we have

∃x1, x2 ∈ X ,
t∑
i=1

‖fi(x1)− fi(x2)‖22 ≤ ε2, while ‖ft+1(x1)− ft+1(x2)‖22 ≥ ε2.

We only need to construct appropriate data distribution PX and representation g, g∗ to finish the
proof. As we do not make any assumption on g, g∗ and PX , it would be simple to let X1 = g(X)
and X2 = g∗(X).

We let the distribution of X1 be the point mass on x1. Let X2 be the uniform distribution over
{x1, x2}.
For the excess error of source tasks, we have

inf
f ′1,...,f

′
t

t∑
i=1

EX1,X2
‖f ′i(X1)− fi(X2)‖22

≤
t∑
i=1

EX1,X2
‖fi(X1)− fi(X2)‖22

=

t∑
i=1

1

2
‖fi(x1)− fi(x2)‖22 ≤

ε2

2
.

For the excess error of the target task ft+1, we have

inf
f ′t+1∈F

EX‖f ′t+1(X1)− ft+1(X2)‖22

= inf
f ′t+1∈F

[
1

2
‖f ′t+1(x1)− ft+1(x2)‖22 +

1

2
‖f ′t+1(x1)− ft+1(x1)‖22]

≥ inf
a∈R

[
1

2
‖a− ft+1(x2)‖22 +

1

2
‖a− ft+1(x1)‖22]

=
1

4
‖ft+1(x1)− ft+1(x2)‖22 ≥

ε2

4
.

The statement follows.
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G Extending to general loss functions

In all the above analyses, we assume the square loss function for both source and target tasks. We first
show that diversity under square loss implies diversity under any convex loss function. Let ∇l(x, y)
be the gradient of function∇l(·, y) evaluated at x.
Lemma 4. Any task set F that is (ν, µ)-diverse over any prediction space under square loss is also
(ν/c1, µ/c1)-diverse over the same space under loss l, if l is c1 strongly-convex and for all x ∈ X

E[∇l(g∗(X), Y ) | X = x] = 0 (5)

Proof. Using the definition of the strongly convex and (5),
EX,Y [l(ft ◦ h(X), Y )− l(f∗t ◦ h∗(X), Y )]

≥ EX,Y [∇l (f∗t ◦ h∗(X), Y )
T

(f∗t ◦ h∗(X)− ft ◦ h(X)) + c1 ‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22]

= c1EX,Y [‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22],

which is the generalization error under the square loss.

Note that Equation (5), is a common assumption made in various analyses of stochastic gradient
descent (Jin et al., 2021).

On the other direction, we show that any established diversity over the target task with square loss
also implies the diversity over the same target task with any loss l if ∇2l � c2I for some c2 > 0.
Lemma 5. Any task set F that is (ν, µ)-diverse over a target prediction space under square loss is
also (νc2, µc2)-diverse over the same space under loss l, if ∇2l(·, y) � c2I for all y ∈ Yta and for
all x ∈ X we have E[∇l(g∗(X), Y ) | X = x] = 0.

Proof. The proof is the same as the proof above except for changing the direction of inequality.
Using the definition of the strongly convex and (5),

EX,Y [l(ft ◦ h(X), Y )− l(f∗t ◦ h∗(X), Y )]

≤ EX,Y [∇l (f∗t ◦ h∗(X), Y )
T

(f∗t ◦ h∗(X)− ft ◦ h(X)) + c2 ‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22]

= c2EX,Y [‖f∗t ◦ h∗(X)− ft ◦ h(X)‖22],

which is the generalization error under the square loss.

H Missing proofs in Section 6

Assume we have T tasks, which is (ν, µ)-diverse over Fso, and Yso ⊂ R. Then we can construct
a new source task so with multivariate outputs, i.e. Yso ⊂ RT , such that Hso = F⊗Tso and each
dimension k on the output, given an input x, is generated by

Yk(X) = f∗k ◦ h∗(X) + ε.

Intuitively, this task is equivalent to T source tasks of a single output, which is formally described in
the following Theorem.
Theorem 10. Let so be a source task with Yso ⊂ RK and f∗so(·) = (m∗1(·), . . . ,m∗K(·)) for some
class M : Z 7→ R. Then if the task set t1, . . . , tK with prediction functions m∗1, . . . ,m

∗
K from

hypothesis classM is (ν, µ)-diverse overM, then so is ( νK ,
µ
K )-diverse over the same class.

Proof. This can be derived directly from the definition of diversity. We use t to denote the new task.
By definition,

inf
fso∈Fso

Eso(fso, h) = inf
hso

EX‖(m1 ◦ (X), . . . ,mK ◦ h(X))− (m∗1 ◦ h∗(X), . . . ,m∗K ◦ h∗(X))‖22

=

K∑
k=1

inf
mk∈M

‖mk ◦ h(X)−m∗k ◦ h∗(X)‖22

=

K∑
k=1

inf
mk∈M

Etk(ftk , h)
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As (t1, . . . , tK) is (ν, µ)-diverse, we have

supm∗∈M infm∈M Em∗(m,h)

infhso∈Fso Eso(fso, h) + µ/ν
=

1

K

supm∗∈M infm∈M Em∗(m,h)
1
K

∑K
k=1 infmk∈M Etk(hk, h) + µ

νK

≤ ν

K
.

For the multiclass classification problem, we try to explain the success of the pretrained model
on ImageNet, a single multi-class classification task. For a classification problem with K-levels,
a common way is to train a model that outputs a K-dimensional vector, upon which a Softmax
function is applied to give the final classification result. A popular choice of the loss function is the
cross-entropy loss.

Now we formally introduce our model. Let the Softmax function be q : RK 7→ [0, 1]K . Assume
our response variable y ∈ RK is sampled from a multinomial distribution with mean function
q(f∗so ◦ h∗(x)) ∈ [0, 1]K , where h∗ ∈ H : X 7→ Z and f∗so ∈ Fso : Z 7→ RK . We use the
cross-entropy loss l : [0, 1]K × [0, 1]K 7→ R, l(p, q) = −

∑K
k=1 pk log(qk).

Assumption 4. [Boundedness] We assume that any f ◦ h(x) ∈ Fso × H is bounded in
[− log(B), log(B)] for some constant positive B. We also assume the true function mink U(f∗ ◦
h∗(x))k ≥ 1/B∗ for some B∗ > 0.

Theorem 11. Under Assumption 4, a K-class classification problem with f∗so(·) =
(m∗1(·), . . . ,m∗K(·)) for some m∗1, . . . ,m

∗
K ∈ M and Softmax-cross-entropy loss function is

(2B2
∗B

4ν,B2
∗µ)-diverse over any the function classM as long as f∗so with L2 loss is (ν, µ)-diverse

overM.

Proof. We consider any target task with prediction function fromM⊗K′ . Let U : RK
′ 7→ [0, 1]K

′
be

the softmax function. We first try to remove the cross-entropy loss. By definition, the generalization
error of any f ◦ h ∈M⊗K′ ×H is

Eta(f ◦ h)− Eta(h∗ ◦ h∗)

= EX,Y [−
K′∑
i=1

1(Y = i) log(
U(f ◦ h)

U(f∗ ◦ h∗)
)]

= EX [−
K′∑
i=1

U(f∗ ◦ h∗) log(
U(f ◦ h)

U(f∗ ◦ h∗)
)], (6)

which gives us the KL-divergence between two distributions U(f ◦ h) and U(f∗ ◦ h∗).

Lemma 6. For any two discrete distributions p, q ∈ [0, 1]K , we have

KL(p, q) ≥ 1

2
(

K∑
i=1

|p− q|)2 ≥ 1

2

K∑
i=1

(pi − qi)2.

On the other hand, if mini pi ≥ b for some positive b, then

KL(p, q) ≤ 1

b2

K′∑
i=1

(pi − qi)2.

Proof. The first inequality is from Theorem 2 in Dragomir and Gluscevic (2000). The second
inequality is by simple calculus.

By the assumption 4, we have that for any h, g, x,

U(f ◦ h(x))i ∈ [
1

KB2
,

1

1 + (K − 1)/B2
].
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We also have
∑K
i=1 exp(f ◦ h(x)i) ∈ [K/B,KB]. To proceed,

supf∗ta∈M⊗Kta inf f̂ta Eta(f̂ta ◦ h)− Eta(f∗ta ◦ h∗)

inf f̂so∈M⊗Kso Eso(f̂so ◦ h)− Eso(f∗so ◦ h∗) +
B2
∗µ

2B2
∗B

4ν

(Applying (6) and Lemma 6)

≤ 2B2
∗

supf∗ta∈M⊗Kta inf f̂ta EX‖U(f̂ta ◦ h(X))− U(f∗ta ◦ h∗(X))‖22
inf f̂so∈M⊗Kso EX‖U(f̂so ◦ h(X))− U(f∗so ◦ h∗(X))‖22 + µ

B4ν

(Using the boundedness of
K∑
i=1

exp (f ◦ h(x)i))

≤ 2B2
∗B

2
supf∗ta∈M⊗Kta inf f̂ta EX‖ exp(f̂ta ◦ h(X))− exp(f∗ta ◦ h∗(X))‖22
inf f̂so∈M⊗Kso EX‖ exp(f̂so ◦ h(X))− exp(f∗so ◦ h∗(X))‖22 + µ

B2ν

(Using the Lipschitz and convexity of exp)

≤ 2B2
∗B

4
supf∗ta∈M⊗Kta inf f̂ta EX‖f̂ta ◦ h(X)− f∗ta ◦ h∗(X)‖22
inf f̂so∈M⊗Kso EX‖f̂so ◦ h(X)− f∗so ◦ h∗(X)‖22 + µ/ν

≤ 2B2
∗B

4ν.

The diversity follows.

I Experimental details

Each dimension of inputs is generated from N (0, 1). We use Adam with default parameters for all
the training with a learning rate 0.001. We choose ReLu as the activation function.

True parameters. The true parameters are initialized in the following way. All the biases are set
by 0. The weights in the shared representation are sampled from N (0, 1/

√
nu). The weights in the

prediction function for the source task are set to be orthonormal when Kso = 1 and p ≤ nu. For the
target prediction function or source prediction function if Kso > 1, the weights are sampled from
N (0, 1/

√
nu) as in the representation part.

Hyperparameters. Without further mentioning, we use the number of hidden units, nu = 4, input
dimension p = 4, K = 5, Kta = Kso = 1, the number of observations nso = 1000 and nta = 100
by default. Note that since p is set to be 4 by default, equivalently we will have nso · p = 4000
observations.
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