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A Experimental Results

A.1 Additional Details of Experimental Setup

Baselines: For fair comparisons with other methods, we either use the best results reported in
the paper or retrained models with optimal hyper-parameters described by the papers. Details of
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Figure 4: Comparison of Activated Channel Maps. Comparison of Activated Channel Maps of a
normally trained model, robust teacher and student trained with the proposed method. The x-axis of
figure represents channel number of a specific layer and y-axis represents ACM value. Our method
makes ACM of student similar to the robust teacher.

comparison for all the experimental results in the main text are as follows. For Table 1, we take
clean accuracy and auto-attack results from [2] and PGD-100 results are the best PGD attack reported
results (with the same or similar setting as ours) taken from the respective papers. For Table 2, we
take Shafahi et al. [11], Wong et al. [12]’s reported results and evaluated our model with the same
settings of PGD attack. For Table 3, we train the same models with PGD7-AT [8], RKD [4] and our
method. For PGD7-AT and RKD, we use optimal hyper-parameters reported in the papers. For Table
4, we train the same models with PGD7-AT [8], and our method and evaluated all models with the
same settings of PGD attack. The size ratio is computed based on the number of trainable parameters
of the student to the trainable parameters of teacher. The purpose of Table 5 is a comparison of
our method with IGAM [1] under transfer learning settings. We used PGD7-AT and normal results
reported by them. Unlike them, however, results of our method are mean of five repetitions. For
Figure 3, we train the same models with the same proportion of data with PGD7-AT and our method.

Adversarial Training: We use standard PGD-7 Adversarial Training with the step size of 2/255
and ε = 8/255.

Teacher Models: We use four teachers in the paper. For most of our CIFAR experiments, we use a
WideResNet-28-10 trained by Gowal et al. [5]. For some experiments, we also use WideResNet-34-20
trained on CIFAR-10 by Gowal et al. [5] and WideResNet-28-10 trained on tiny ImageNet trained by
[6]. For ImageNet experiments, we use ResNet-50 provided by [10].

Student Models: Student models share all the architectural design of respective teachers e.g. if
teacher model by Gowal et al. [5] uses Swish activation function, student models also uses Swish
activation. For main CIFAR-10 experiments, we use WideResNet-34-10 following many relevant
works like Zhang et al. [13], Chan et al. [1], Pang et al. [9], etc. We also use students with different
widths (20, 10, 5, 1) and depths (34, 28, 22, 16, 10). For ImageNet, we use ResNet50 following
[11, 12].

Optimizer Setting: For CIFAR experiments, we use SGD with Nesterov momentum 0.9, initial
learning rate of 0.1, cosine annealing learning rate decay without restarts, weight decay of 5× 10−4
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and a batch size of 128. For ImageNet, the model is trained for 120 epochs by SGD with a momentum
0.9, weight decay of 5× 10−5, batch size of 2048, initial learning rate of 0.8, and cosine learning
rate decay. We also use a gradual warmup strategy that increases the learning rate from 0.16 to 0.8
linearly in the first 5 epochs.

Augmentation: All the experiments of our method use Mixup augmentation with coefficient 1
for CIFAR and 0.2 for ImageNet; unless mentioned otherwise. For CIFAR, we also use standard
augmentation: randomly cropping a part of 32× 32 from the padded image followed by a random
horizontal flip provided by PyTorch. For ImageNet, we do two experiments: one with only mixup
and one with mixup and random augmentation.

Hyper-parameter Selection: Our method adds a new hyper-parameter αacm. Two other hyper-
parameters of our loss are αkld and temperature γ. The selection process for them is detailed in
Section A.4. For αacm, we use ablation study to find optimal range of αacm and all of the other
experiments are done with αacm ∈ {2000, 5000} and best results are reported.

Compute Infrastructure: We train CIFAR models on one NVIDIA Tesla V100. For ImageNet, we
train models in a distributed fashion using 32 GPUs in the cloud.

A.2 Activated Channel Maps

Figure 5: Mapping func-
tion gc is applied channel-
wise to get the Activated
Channel Maps (ACM).

Our method transfers robustness by matching Activated Channel Maps
(ACMs) of robust teacher and student on natural examples. To get Ac-
tivated Channel Maps, we first get an output of a model at a specific layer
called activationsA. These activations are then passed through a mapping
function to get activation maps: ai = gc(Ai) and normalized with the
magnitude. This process is illustrated in Figure 5. The size of activated
channel map is equal to number of channels in a layer e.g. if activation
has a size of Ai ∈ RC×H×W then activated channel maps shape will be
ai ∈ RC×1×1.

We show Activated Channel Maps of three different blocks of a normally
trained WideResNet-16-10, a robust teacher WideResNet-28-10 and a
student WideResNet-16-10 trained with our method in Figure 4. The
maps are generated on 500 natural examples of CIFAR-10 test set. The
Figure shows an average of maps produced on all the examples and sorted
in ascending order. The x-axis in the Figure represents channels and the
y-axis represents the Activated Channel Map values. The distribution of
Activated Channel Maps of our method is spectacularly similar to the
robust teacher.

A.3 Limitation of Proposed Method for Distillation

We show results for distillation with different settings in the paper. To see the limits of our distillation
method, we perform an experiment where we progressively reduce the number of channels and
layers of the student. The results are shown in Figure 6. For individual values and comparison with
PGD7-AT, please see Table 10.

We observe that our method works well for a compression ratio of > 0.1 (student has 0.1× teacher’s
trainable parameters). We also observe that robustness transfer deteriorates significantly if depth or
width is reduced significantly (e.g., depth reduced from 28 to 10; width reduced from from 10 to 1).
The degradation based on width can be attributed to the transformation function and we expect that
other functions may work better. The depth degradation may be due to the representational capability
of the student model. We leave further investigation of this for future work.

A.4 Ablation Studies

A.4.1 Effect of Individual Components

To see the effect of individual components of our proposed method, we perform an experiment where
we switch different components. The results are shown in Table 6.
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(a) The figure shows effect of decreasing number of layers and number of channels on accuracy and robustness for
our method. The teacher model is a robust WideResNet-28-10 and student models are WideResNet-Depth-Width.

(b) The figure shows compression ration vs accuracy and robustness for our method. The dotted red line
represents compression ratio of 0.1. Our method works in transferring robustness beyond this point except for
dips caused by WideResNet of depth 10.

Figure 6: Limits of Distillation. Plots show limits of our method in distilling a large teacher model’s
robustness to a small student model without adversarial training.

Table 6: Impact of Individual Components. Impact of different components of our proposed
distillation method. We use WideResNet-34-10 as student following Table 1 in the main text.

Std. Setting w/o KD w/o Mixup Only ACM Only KD
Mapping Function (gc) X X X X
Teacher Soft Labels X X X
Mixup X X
ACM Loss X X X X
Accuracy 90.76 92.50 91.17 92.87 89.38
Robustness 56.65 52.29 49.53 48.38 0.21

In summary, ACM loss alone can transfer significant robustness from the teacher; the addition of
soft labels and mixup further improves this transfer. Specifically, robustness with only ACM loss
is 48.38%, the addition of soft-labels improves it to 49.53%, the addition of mixup improves it to
52.29%, and the addition of both of these components make final robustness to 56.65%. Also, note
that only soft labels are not enough to transfer robustness in this case, as shown by KD Only column.
This is in line with the observations of Goldblum et al. [4].

A.4.2 Role of Intermediate Features

To understand the role of low, mid, and high-level features, we performed experiments on CIFAR-10
by progressively changing blocks used for distillation. For this ablation study, we kept all the standard
settings reported in the Section A.1. Our correspondence of blocks and features is as follows: block
2: low-level features; block 3: mid-level features; block 4: high-level features. Please note that block
1 corresponds to the output of the first layer only. Therefore, we do not call it low-level features. The
results are shown in the Table 7.
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Features Used Accuracy Robustness
Low-Level (2) 86.36 17.24
Mid-Level (3) 88.30 39.37
High-Level (4) 91.18 33.13
Low+Mid Level (2+3) 88.15 41.92
Mid+High Level (3+4) 90.69 52.79
First Layer Only (1) 86.00 0.31
No First Layer (2+3+4) 90.69 56.15
All Features 90.76 56.65

Table 7: Impact of of using different intermediate features on clean accuracy and robustness of
student.

As shown in the Table 7, mid-level features play a more important role in robustness transfer and
high-level features play a crucial role in accuracy transfer. The robustness of the student is 39.37%
when we only use mid-level features, but it decreases to 33.13% when high-level features are utilized
alone. On the other hand, clean accuracy improves when we only use high-level features: 88.30%
with mid-level compared with 91.18% with high-level features. In addition, a combination of mid
and high-level features is enough to get close to optimal robustness and accuracy. But the addition of
low-level features improves robustness even further.

Apart from these low, mid, and high-level features, we also used the output of the first layer in the
proposed loss function. Our experiments above show that the improvement brought by first layer
distillation is relatively small. Specifically, the addition of the first layer in the above-mentioned
experiments brings ≤ 1% improvement for robustness.

In summary, all level features (low, mid, high level) improve robustness and accuracy. However,
mid-level features seem to be more critical for robustness and high-level features for accuracy.

A.4.3 Comparison of Losses

The purpose of ACM loss is to match activated channel maps of teacher and student. It is possible to
distill robustness by directly matching intermediate features of teacher and student. However, this
direct way of distillation overlooks differences between the teacher and the student such as structure,
number of channels, size of activations, how and on what data teacher is trained, etc.

To see the effect of directly distilling the intermediate features, we also have conducted an ablation
study comparing direct distillation (`2-loss) with ACM-based distillation while progressively increas-
ing differences between the teacher and the student. We have kept all the standard settings (Section
A.1) and used similar settings for direct distillation for a fair comparison.

The results are reported in Table 8. When teacher and student are similar, ACM performs slightly
better than direct distillation (56.65% vs. 56.12%). However, when the number of channels of teacher
and student is different, the performance gap increases (48.75% vs. 44.95%). This gap increases
further when both channels and the number of layers are different (47.18% vs. 41.90%). A similar
gap is also visible in terms of clean accuracy for all these cases.

To further explore the effect of this difference, we also performed one experiment under transfer
learning settings for CIFAR-100 (Table 5 in the paper). Here, the teacher is trained on a different
dataset (ImageNet), so the difference between the two models is larger. The performance gap is also
wider. ACM outperforms direct distillation significantly (clean accuracy: 65.69% vs. 57.86% and
robustness: 24.14% vs. 16.20%).

A.4.4 Effect of αacm

The only extra hyper-parameters introduced by our algorithm is the weight of ACM loss (αacm). To
see the effect of αacm, we perform an ablation experiment with WideResNet-34-10 as student. To
avoid any confounding effect of other factors, we use only ACM loss in this experiment. The results
are shown in Figure 7(a).

In summary, the clean accuracy of the model is less sensitive to αacm compared with robustness. For
instance when we vary the values of αacm from 100000 to 100, the clean accuracy changes from 94

5



Method Teacher Student Accuracy Robustness
Distillation for CIFAR-10

Full WRN28-10 WRN34-10 89.98 56.12
MixACM WRN28-10 WRN34-10 90.76 56.65
Full WRN28-10 WRN28-5 88.46 44.95
MixACM WRN28-10 WRN28-5 90.26 48.75
Full WRN-34-20 WRN16-10 84.27 41.9
MixACM. WRN-34-20 WRN16-10 86.31 47.18

Transfer Learning for CIFAR-100

Direct WRN28-10 WRN34-10 57.86 16.20
ACM WRN28-10 WRN34-10 65.69 24.14

Table 8: Effect of using direct loss vs. MixACM loss on distillation and transfer learning.

(a) Effect of αacm on accuracy and robustness.

(b) Effect of αkld and temperature γ on accuracy and robustness. The dotted red line represents training without
soft labels (i.e., αkld = 0).

Figure 7: Hyper-parameter Selection. Comparison of three different hyper-parameters on accuracy
and robustness.

to 92 while robustness changes from 50 to 30. The value of αacm also acts as a trade-off between
clean accuracy and robustness.

A.4.5 Effect of αkld and temperature γ

Our proposed method uses soft labels with KLD loss [7]. This loss has two hyper-parameters: αkld
and temperature γ. We select best values of these hyper-parameters with an experiment where we set
αacm = 5000 and tried three different settings of these two parameters. The results are reported in
Figure 7(b). The student is a WideResNet-34-10. We select best values: αkld = 0.95, γ = 10. We
use these hyper-parameter values for all of our experiments.
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Table 9: Effect of different transformation functions for robustness transfer from robust WideResNet-
28-10 to WideResNet-28-5.

Teacher Transform Student Transform Accuracy Robustness
None Adaptive Max Pool 89.92 46.41
None Adaptive Avg Pool 90.04 46.27
None Affine 88.86 30.27
Adaptive Max Pool None 90.26 48.75
Adaptive Avg Pool None 89.99 42.01
Affine None 88.39 23.51

Table 10: Distillation with Different Size Ratios. The table shows result of distillation from a
large teacher to a progressively small student. Size ratio is ratio of number of trainable parameters
in student to teacher. Our method works well to reduce teacher size 10×. However, significant
compression of depth and width causes a sharp deterioration of performance.

Teacher Student Size Ratio PGD7-AT Ours

Acc. Rob. Acc. Rob.

WRN 28-10 WRN 28-10 100% 84.17 49.23 90.48 54.05
WRN 28-5 25.04% 83.90 47.74 90.26 48.75
WRN 28-1 1.01% 78.89 48.27 83.86 8.67
WRN 22-10 73.5% 84.26 49.29 90.40 51.23
WRN 22-5 18.40% 83.73 48.93 89.49 46.16
WRN 22-1 0.75% 78.36 47.57 82.74 5.81

WRN 16-10 46.92% 83.90 47.55 89.93 48.09
WRN 16-5 11.76% 83.51 48.11 88.96 36.95
WRN 16-1 0.48% 75.69 44.46 79.90 2.45
WRN 10-10 20.38% 78.59 44.41 86.31 6.54
WRN 10-5 5.12% 78.16 44.04 82.82 3.41
WRN 10-1 0.21% 67.11 38.85 66.65 1.15

A.4.6 Comparison of Transforms

Our method requires a transformation function applied on Activated Channel Maps if teacher and
student have different number of channels. For this purpose, we compare performance of three
different transformation functions: a fully connected layer, an adaptive average pool function or
adaptive max pool function. We applied these functions under two settings: applied on teacher’s
activated channel maps or applied on student’s activated channel maps. The results are shown in
Table 9.

B Theoretical Results

This appendix has full proofs for results in Section 4. The order is as follows. We first prove that the
population adversarial error can be bounded above by the sum of an empirical adversarial loss and
a distillation loss. Then we consider a binary classification task with the logistic loss function and
prove that the distillation loss can be approximated by the mixup augmentation based loss.

B.1 Proof of Theorem 4.1

Theorem. We consider task of mapping input x ∈ X ⊆ Rd to label y ∈ Y = {1, 2, . . . ,K}. Denote
the training data as D = {(x1, y1), ..., (xn, yn)}, where each data point is sampled from a ground
truth distribution P. The goal is to learn a classifier f : X → RK from a hypothetical space F . Let
L(f(x), y) = 1− φγ

(
f(x), y

)
be the loss function, where γ > 0 is the temperature and

φγ
(
f(x), y

)
=

exp(f(x)y/γ)∑K
k=1 exp(f(x)k/γ)

.
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Suppose a classifier f is decomposed into g ◦ h, where h ∈ H is a feature extractor and g ∈ G stands
for the top model. We considered supervision of a teacher feature extractor hT (x) trained on same
or similar dataset. Then, with probability 1− δ, for any f ∈ F ,

E
[

max
‖δ‖∞≤ε

I{ŷ(x+ δ) 6= y}
]
≤ 2L̃(f,D) +

8

γ
L̃dis(f,D) + 4RS(ΨT ) +

16

n
+ 6

√
2/δ

2n
, (1)

where RS is the Rademacher complexity, ΨT =
{

max‖δ‖∞<ε L(g ◦ hT (x+ δ), y) : g ∈ G
}

and

L̃dis(f,D) =
1

n
inf
g∈G

n∑
i=1

max
‖δ‖∞<ε

∣∣f(xi + δ)− g ◦ hT (xi + δ)
∣∣.

Proof: Denote the adversarial loss with ε-bounded `∞ adversarial attacks as

L̃(f(x), y) = max
‖δ‖∞<ε

L
(
f(x+ δ), y

)
.

Let j ∈ {1, . . . , log2(n)} and τj = 22−j . Here, for simplicity, we assume log2(n) is a positive
integer. Then, we denote the following classes of functions ΨT = {L̃(g ◦ hT (x), y) : g ∈ G} and

Ψj = {L̃(f(x), y) : inf
g∈G

1

n

n∑
i=1

|L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)| ≤ τj}.

By the classical generalization bound with the Rademacher complexity, with probability at least 1− δ,
for any L̃ ∈ Ψj ,

E
[
L̃(f(x), y)

]
≤ 1

n

n∑
i=1

L̃(f(xi), yi) + 2RS(Ψj) + 3

√
2/δ

2n
, (2)

where

RS(Ψj) =
1

n
Eε
[

sup
L̃(f)∈Ψj

n∑
i=1

εiL̃
(
f(xi), yi

)]
.

Furthermore, we have

RS(Ψj) =
1

n
Eε
[

sup
L̃∈Ψj

inf
g∈G

n∑
i=1

εiL̃
(
f(xi), yi

)]
=

1

n
Eε
[

sup
L̃(f)∈Ψj

inf
g∈G

n∑
i=1

εi
(
L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi) + L̃(g ◦ hT (xi), yi)

)]
≤ 1

n
Eε
[

sup
L̃(f)∈Ψj

inf
g∈G

max
i
|εi|

n∑
i=1

∣∣L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)
∣∣]

+
1

n
Eε
[

sup
g∈G

n∑
i=1

εiL̃(g ◦ hT (xi), yi)
]

≤ τj + RS(ΨT ).

Plugging the upper bound of RS(Ψj) into (2), we have with probability at least 1− δ,

E
[
L̃(f(x), y)

]
≤ 1

n

n∑
i=1

L̃(f(xi), yi) + 2τj + 2RS(ΨT ) + 3

√
2/δ

2n
. (3)

Then the inequality (3) holds for all f ∈ F and j with probability at least 1 − log2(n)δ. Given f ,
then for any g ∈ G,

1

n

n∑
i=1

∣∣L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)
∣∣ ≤ 2.

8



This implies that for any given f , there exists j ∈ {1, . . . , log2(n)} such that L̃(f(x), y) ∈ Ψj . We
select the smallest j that satisfies

τj ≥
1

n
inf
g∈G

n∑
i=1

∣∣L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)
∣∣ ≥ 1

2
τj − 21−log2(n).

Then

τj ≤
4

n
+

2

n
inf
g∈G

n∑
i=1

∣∣L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)
∣∣.

Furthermore, the inequality (3) can be rewritten as

E
[
L̃(f(x), y)

]
≤ 1

n

n∑
i=1

L̃(f(xi), yi) +
8

n

+
4

n
inf
g∈G

n∑
i=1

∣∣L̃(f(xi), yi)− L̃(g ◦ hT (xi), yi)
∣∣

+2RS(ΨT ) + 3

√
2/δ

2n
, (4)

with probability at least 1− δ. In addition,

L̃(f(x), y) ≤ max
‖δ‖∞<ε

∣∣L(f(x), y)− L(g ◦ hT (x), y)
∣∣+ L̃(g ◦ hT (x), y),

L̃(g ◦ hT (x), y) ≤ max
‖δ‖∞<ε

∣∣L(f(x), y)− L(g ◦ hT (x), y)
∣∣+ L̃(f(x), y).

So we have

E
[
L̃(f(x), y)

]
≤ 1

n

n∑
i=1

L̃(f(xi), yi) +
8

n

+
4

n
inf
g∈G

n∑
i=1

max
‖δ‖∞<ε

∣∣L(f(xi + δ), yi)− L(g ◦ hT (xi + δ), yi)
∣∣

+2RS(ΨT ) + 3

√
2/δ

2n
,

Next we show the relationship between the adversarial accuracy and E
[
L̃(f(x), y)

]
. The adversarial

loss function L̃ can be rewritten as

L̃(f(x), y) = max
‖δ‖∞<ε

∑
k 6=y exp

(
f(x+ δ)k/γ

)∑
k∈[K] exp

(
f(x+ δ)k/γ

)
= max

‖δ‖∞<ε

1

1 +
exp
(
f(x+δ)y/γ

)
∑
k 6=y exp

(
f(x+δ)k/γ

)
= max

‖δ‖∞<ε

1

1 + exp
(
f(x+ δ)y/γ − ln(

∑
k 6=y exp(f(x+ δ)k/γ))

)
= max

‖δ‖∞<ε
σ
(
− f(x+ δ)y

γ
+ ln

(∑
k 6=y

exp(
f(x+ δ)k

γ
)
))
, (5)

where σ is the sigmoid function. Notice that σ is a monotonically increasing function and

ln
(∑
k 6=y

exp(
f(x+ δ)k

γ
)
)
≥ max

k 6=y

f(x+ δ)k
γ

.

Then we have

L̃(f(x), y) ≥ max
‖δ‖∞<ε

σ
(
− f(x+ δ)y

γ
+ max

k 6=y

f(x+ δ)k
γ

)
(6)
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If there exists δ such that f(x+ δ)y ≤ maxk 6=y f(x+ δ)k, then

max
‖δ‖∞<ε

σ
(
− f(x+ δ)y

γ
+ max

k 6=y

f(x+ δ)k
γ

)
≥ 1

2
max
‖δ‖∞<ε

I
(
f(x+ δ)y ≤ max

k 6=y
f(x+ δ)k

)
. (7)

In contrast, if for any δ, f(x+ δ)y > maxk 6=y f(x+ δ)k, then

σ
(
− f(x+ δ)y

γ
+ max

k 6=y

f(x+ δ)k
γ

)
≥ I
(
f(x+ δ)y ≤ max

k 6=y
f(x+ δ)k

)
. (8)

Combining (7) and (8),

2L̃(f(x), y) ≥ max
‖δ‖∞<ε

I
(
f(x+ δ)y ≤ max

k 6=y
f(x+ δ)k

)
. (9)

According to (4) and (9), we have

P
[
{(x, y) : ∃δ, ‖δ‖∞ < ε s.t. ŷ(x+ δ) 6= y}

]
= E

[
max
‖δ‖∞<ε

I
(
f(x+ δ)y ≤ max

k 6=y
f(x+ δ)k

)]
≤ 2E

[
L̃(f(x), y)

]
≤ 2

n

n∑
i=1

L̃(f(xi), yi) +
16

n

+
8

n
inf
g∈G

n∑
i=1

max
‖δ‖∞<ε

∣∣L(f(xi + δ), yi)− L(g ◦ hT (xi + δ), yi)
∣∣

+4RS(ΨT ) + 6

√
2/δ

2n
,

with probability at least 1− δ. According to [3],

P
[
{(x, y) : ∃δ, ‖δ‖∞ < ε s.t. ŷ(x+ δ) 6= y}

]
≤ 2

n

n∑
i=1

L̃(f(xi), yi) +
16

n

+
8

nγ
inf
g∈G

n∑
i=1

max
‖δ‖∞<ε

∣∣f(xi + δ)− g ◦ hT (xi + δ)
∣∣

+4RS(ΨT ) + 6

√
2/δ

2n
.

�

B.2 Proof of Theorem 4.2

In this section, we start with a binary classification task and logistic regression. Denote

fθ(x) = θ>x, g(fθ(x)) =
1

1 + exp(−fθ(x))
, h(fθ(x)) = log

(
1 + exp(fθ(x))

)
.

Then the loss function L can be rewritten as

L(fθ(x), y) = h(fθ(x))− yfθ(x).

Notice that ‖δ‖∞ ≤ ε implies ‖δ‖2 ≤ ε
√
d, and therefore

max
‖δ‖∞≤ε

L(fθ(x), y) ≤ max
‖δ‖2≤ε

√
d
L(fθ(x), y),

where d is the dimension of the input x. The standard empirical loss function can be written as

L(fθ,D) =
1

n

n∑
i=1

L
(
fθ(xi),yi

)
=

1

n

n∑
i=1

h
(
fθ(xi)

)
− yifθ(xi),

10



where D = {(xi,yi), i = 1, . . . , n}. For a given ε > 0, we consider the adversarial loss with
l2-attack of size ε

√
d, that is,

L̃(fθ,D) =
1

n

n∑
i=1

max
‖δi‖2≤ε

√
d
L̃
(
fθ(xi + δi),yi

)
=

1

n

n∑
i=1

L̃
(
fθ(xi),yi

)
Consider the data-dependent parameter space:

Θ = {θ ∈ Rd : yifθ(xi) + (yi − 1)fθ(xi) ≥ 0,

and |y∗i − g(fθ(xi))| ≤ β|yi − g(fθ(xi))|, for all i = 1, . . . , n}.
The first inequality considers the zero training error (0-1 loss). That is fθ(x) > 0 when y = 1 and
fθ(x) ≤ 0 if y = 0. The second inequality constraints the distillation, i.e. g(fθ(xi) is closed to the
soft label given by the teacher model. Now we are ready to state the following theorem:

Theorem. Suppose there exists a constant cx > 0 such that ‖xi‖2 > cx
√
d for all i ∈ {1, · · · , n}.

Then, for any θ ∈ Θ, we have

L̃(fθ,D) + αL̃(fθ,Ddis) ≤ Lmix(fθ,D) + αLmix(fθ,Ddis),
where the size of the adversarial attack ε is

ε =
1− αβ
1 + β

cxR Eλ∼P̃λ [1− λ], with R = min
i∈{1,...,n}

| cos(θ,xi)|,

and the distribution P̃λ is

P̃λ(λ) =
α

α+ β
Beta(α+ 1, β) +

β

α+ β
Beta(β + 1, α).

Proof: By the second order Taylor approximation,

L
(
fθ(x+ δ), y

)
≈ L

(
fθ(x), y

)
+ δ>

∂

∂x
L
(
fθ(x), y

)
+

1

2
δ>

∂2

∂x∂x>
L
(
fθ(x), y

)
δ.

Note that
∂

∂x
L
(
fθ(x), y

)
=

∂

∂x

(
h(fθ(x))− yfθ(x)

)
=

∂

∂f
h(fθ(x))

∂

∂x
fθ(x)− y ∂

∂x
fθ(x)

= g
(
fθ(x)

)
θ − yθ

=
(
g(θ>x)− y

)
θ

and
∂2

∂x∂x>
L
(
fθ(x), y

)
=

∂2

∂x∂x>
(
h(fθ(x))− yfθ(x)

)
=

∂2

∂f∂f
h(fθ(x))(

∂

∂x
fθ(x))2

=
∂

∂f
g(fθ(x))θθ>

= g(θ>x)
(
1− g(θ>x)

)
θθ>.

So we have

L
(
fθ(x+ δ), y

)
≈ L

(
fθ(x), y

)
+
(
g(θ>x)− y

)
θ>δ +

1

2
g(θ>x)

(
1− g(θ>x)

)
(θ>δ)2

Furthermore

L̃(fθ,D) ≈ 1

n

n∑
i=1

L
(
fθ(xi),yi

)
+

1

n

n∑
i=1

max
‖δi‖2≤ε

√
d

{(
g(θ>xi)− yi

)
θ>δi

+
1

2
g(θ>xi)

(
1− g(θ>xi)

)
(θ>δi)

2
}

=:
1

n

n∑
i=1

L
(
fθ(xi),yi

)
+ I1.

11



Similarly, for the data Ddis = {(xi,y∗i ),y∗i = fT (xi), i = 1, . . . , n},

L̃(fθ,Ddis) ≈ 1

n

n∑
i=1

L
(
fθ(xi),y

∗
i

)
+

1

n

n∑
i=1

max
‖δi‖2≤ε

√
d

{(
g(θ>xi)− y∗i

)
θ>δi

+
1

2
g(θ>xi)

(
1− g(θ>xi)

)
(θ>δi)

2
}

=:
1

n

n∑
i=1

L
(
fθ(xi),y

∗
i

)
+ I2.

Therefore,

L̃(fθ,D) + αL̃(fθ,Ddis) =
1

n

n∑
i=1

L
(
fθ(xi),yi

)
+
α

n

n∑
i=1

L
(
fθ(xi),y

∗
i

)
+ I1 + αI2.

Furthermore

I1 + αI2 ≤ 1

n

n∑
i=1

max
‖δi‖2≤ε

√
d

((
g(θ>xi)− yi

)
θ>δi

)
+
α

n

n∑
i=1

max
‖δi‖2≤ε

√
d

((
g(θ>xi)− y∗i

)
θ>δi

)
+(1 + α)

1

2n

n∑
i=1

max
‖δi‖2≤ε

√
d
g(θ>xi)

(
1− g(θ>xi)

)
(θ>δi)

2

=
ε
√
d

n

n∑
i=1

∣∣g(θ>xi)− yi
∣∣‖θ‖2 +

αε
√
d

n

n∑
i=1

∣∣g(θ>xi)− y∗i
∣∣‖θ‖2

+(1 + α)ε2d
1

2n

n∑
i=1

g(θ>xi)
(
1− g(θ>xi)

)
‖θ‖22.

Next we shall bound L̃(fθ,D) + αL̃(fθ,Ddis) by mixup augmentation. Consider the following loss:

Lmix(fθ,D) =
1

n2

n∑
i=1

n∑
j=1

Eλ∼Pλ
[
L(fθ(xij(λ)),yij(λ))

]
,

Lmix(fθ,Ddis) =
1

n2

n∑
i=1

n∑
j=1

Eλ∼Pλ
[
L(fθ(xij(λ)),y∗ij(λ))

]
,

where Pλ is a Beta distribution Beta(α, β), yij(λ) = λyi+(1−λ)yj and y∗ij(λ) = λy∗i +(1−λ)y∗j .
We start with Lmix(fθ,D):

Lmix(fθ,D) =
1

n2

n∑
i=1

n∑
j=1

Eλ∼Pλ
[
h(θ>xij(λ))− yij(λ)θ>xij(λ)

]
=

1

n2

n∑
i=1

n∑
j=1

Eλ∼Pλ
{
λ
[
h(θ>xij(λ))− yiθ

>xij(λ)
]

+(1− λ)
[
h(θ>xij(λ))− yjθ

>xij(λ)
]}

We introduce a 0-1 random variable B such that the conditional distribution of B given λ is

P (B = 1|λ) = λ, and P (B = 0|λ) = 1− λ.
Rewrite Lmix(fθ,D) as

Lmix(fθ,D) =
1

n2

n∑
i=1

n∑
j=1

Eλ∼Pλ
{
EB|λ

{
B
[
h(θ>xij(λ))− yiθ

>xij(λ)
]

+(1−B)
[
h(θ>xij(λ))− yjθ

>xij(λ)
]}}

.

12



Notice that

P (λ,B = 1) = P (B = 1|λ)P (λ) =
λα(1− λ)β−1

B(α, β)
=
λα(1− λ)β−1

B(α+ 1, β)
× α

α+ β

P (λ,B = 0) = P (B = 0|λ)P (λ) =
λα−1(1− λ)β

B(α, β)
=
λα−1(1− λ)β

B(α, β + 1)
× β

α+ β

where B(·, ·) is the Beta function. Thus the marginal distribution of B is

P (B = 1) =
α

α+ β
and P (B = 0) =

β

α+ β

and the conditional distribution of λ given B is

P (λ|B = 1) = Beta(α+ 1, β) and P (λ|B = 0) = Beta(α, β + 1).

Then we have

Lmix(fθ,D) =
1

n2

n∑
i=1

n∑
j=1

EB
{
Eλ|B

{
B
[
h(θ>xij(λ))− yiθ

>xij(λ)
]

+(1−B)
[
h(θ>xij(λ))− yjθ

>xij(λ)
]}}

=
1

n2

n∑
i=1

n∑
j=1

{ α

α+ β
Eλ∼Beta(α+1,β)

[
h(θ>xij(λ))− yiθ

>xij(λ)
]

+
β

α+ β
Eλ∼Beta(α,β+1)

[
h(θ>xij(λ))− yjθ

>xij(λ)
]}
.

In addition, let

λ′ = 1− λ ∼ Beta(β + 1, α).

So we can transform the random variable from λ to λ′ and have

Eλ∼Beta(α,β+1)

[
h(θ>xij(λ))− yjθ

>xij(λ)
]

= Eλ′∼Beta(β+1,α)

[
h(θ>xji(λ

′))− yjθ
>xji(λ

′)
]
.

Plug this equation into Lmix(fθ,D),

Lmix(fθ,D) =
1

n2

n∑
i=1

n∑
j=1

{ α

α+ β
Eλ∼Beta(α+1,β)

[
h(θ>xij(λ))− yiθ

>xij(λ)
]

+
β

α+ β
Eλ∼Beta(β+1,α)

[
h(θ>xij(λ))− yiθ

>xij(λ)
]}

=
1

n2

n∑
i=1

n∑
j=1

Eλ∼P̃λ
[
h(θ>xij(λ))− yiθ

>xij(λ)
]
,

where

P̃λ(λ) =
α

α+ β
Beta(α+ 1, β) +

β

α+ β
Beta(β + 1, α).

To proceed further, we denote Pn(x) as the empirical distribution of x induced by the training sample.
Then I2 can be rewritten as

Lmix(fθ,D) =
1

n

n∑
i=1

Ex∼PnEλ∼P̃λ
[
h(θ>(λxi + (1− λ)x))

−yiθ>(λxi + (1− λ)x)
]

=
1

n

n∑
i=1

Ex∼PnEλ∼P̃λψi(γ),
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where γ = 1− λ and

ψi(γ) = h(θ>((1− γ)xi + γx))− yiθ
>((1− γ)xi + γx).

By the second order Taylor expansion,

ψi(γ) = ψi(0) + ψ′i(0)γ +
1

2
ψ′′i (0)γ2 +O(γ3).

Furthermore,

ψ′i(0) = h′(θ>xi)θ
>(x− xi)− yiθ

>(x− xi)

=
(
g(θTxi)− yi

)
θ>(x− xi),

and

ψ′′i (0) = h′′(θ>xi)[θ
>(x− xi)]

2

= g(θTxi)
(
1− g(θTxi)

)
[θ>(x− xi)]

2.

Thus we have Lmix(fθ,D) = 1
n

∑n
i=1 L(fθ(xi),yi) + I3 + I4, where

I3 = Eλ∼P̃λ [1− λ]
1

n

n∑
i=1

Ex∼Pn
[(
g(θTxi)− yi

)
θ>(x− xi)

]
,

I4 = Eλ∼P̃λ [(1− λ)2]
1

2n

n∑
i=1

Ex∼Pn
[
g(θTxi)

(
1− g(θTxi)

)
[θ>(x− xi)]

2
]
.

Similarly, for the data Ddis = {(xi,y∗i ),y∗i = fT (xi), i = 1, . . . , n}, the following decomposition
also holds: Lmix(fθ,Ddis) = 1

n

∑n
i=1 L(fθ(xi),y

∗
i ) + I5 + I4, where

I5 = Eλ∼P̃λ [1− λ]
1

n

n∑
i=1

Ex∼Pn
[(
g(θTxi)− y∗i

)
θ>(x− xi)

]
.

Therefore,

Lmix(fθ,D) + αLmix(fθ,Ddis) =
1

n

n∑
i=1

L(fθ(xi),yi) +
α

n

n∑
i=1

L(fθ(xi),y
∗
i )

+(I3 + αI5) + (1 + α)I4.

For the term I3 + αI5, we have

I3 + αI5 = Eλ∼P̃λ [1− λ]
1

n

n∑
i=1

(
(1 + α)g(θTxi)− yi − αy∗i

)
θ>
(
Ex∼Pn(x)− xi

)
= Eλ∼P̃λ [1− λ]

1

n

n∑
i=1

(
yi + αy∗i − (1 + α)g(θTxi)

)
θ>xi

= Eλ∼P̃λ [1− λ]
1

n

n∑
i=1

∣∣yi + αy∗i − (1 + α)g(θTxi)
∣∣‖θ‖2‖xi‖2| cos(θ,xi)|

= Eλ∼P̃λ [1− λ]
1

n

n∑
i=1

∣∣|yi − g(θTxi)| − α|y∗i − g(θTxi)|
∣∣‖θ‖2‖xi‖2| cos(θ,xi)|

≥ Ricx
√
d Eλ∼P̃λ [1− λ]

1

n

n∑
i=1

(1− αk)
∣∣yi − g(θTxi)

∣∣‖θ‖2
≥ ε

√
d

1

n

n∑
i=1

(1 + k)
∣∣yi − g(θTxi)

∣∣‖θ‖2
≥ 1

n

n∑
i=1

max
‖δi‖2≤ε

√
d

(
yi − g(θTxi)

)
θ>δi +

α

n

n∑
i=1

max
‖δi‖2≤ε

√
d

(
y∗i − g(θTxi)

)
θ>δi.
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Now we turn to I4:

I4 = Eλ∼P̃λ [(1− λ)2]
1

2n

n∑
i=1

g(θTxi)
(
1− g(θTxi)

)
θ>Ex∼Pn [(x− xi)(x− xi)

>]θ

= Eλ∼P̃λ [(1− λ)2]
1

2n

n∑
i=1

g(θTxi)
(
1− g(θTxi)

)
θ>
(
Ex∼Pn(xx>) + xix

>
i

)
θ

≥ Eλ∼P̃λ [(1− λ)2]
1

2n

n∑
i=1

g(θTxi)
(
1− g(θTxi)

)
θ>xix

>
i θ

= R2
i c

2
xd Eλ∼P̃λ [(1− λ)2]

1

2n

n∑
i=1

g(θTxi)
(
1− g(θTxi)

)
‖θ‖22

≥ ε2d
1

2n

n∑
i=1

g(θTxi)
(
1− g(θTxi)

)
‖θ‖22

=
1

n

n∑
i=1

max
‖δi‖2≤ε

√
d
g(θ>xi)

(
1− g(θ>xi)

)
(θ>δi)

2.

Combining the results of I3 +αI5 and I4, we know that I3 +αI5 ≥ I1 +αI2. Furthermore, we have

L̃(fθ,D) + αL̃(fθ,Ddis) ≤ Lmix(fθ,D) + αLmix(fθ,Ddis).

�

Next we extend the above theorem to the case of neural networks with ReLU activation and max-
pooling. We still consider the binary classification task with the logistic loss and take fθ(x) to be a
fully connected neural network with ReLU activation function or max-pooling:

fθ(x) = a>σ
(
WN−1 · · ·σ(W2σ(W1x))

)
,

where σ(·) is a nonlinear function that consists of ReLU activation and max pooling, each Wi is
a matrix, and a is a column vector: i.e., θ consists of {Wi, i = 1, . . . ,W − 1} and a. According
to the derivatives of ReLU and max-pooling, the function fθ satisfies that ∇2

xfθ(x) = 0 and
fθ(x) = ∇xfθ(x)>x almost everywhere. Therefore a fully connected neural networks with ReLU
activation functions and max-pooling can be locally approximated by a linear function. By the results
of logistic regression, we have the following theorem:

Theorem. Suppose fθ(x) = ∇xfθ(x)>x,∇2
xfθ(x) = 0 and there exists a constant cx > 0 such that

‖xi‖2 > cx
√
d for all i ∈ {1, · · · , n}. Then, for any θ ∈ Θ, we have

L̃(fθ,D) + αL̃(fθ,Ddis) ≤ Lmix(fθ,D) + αLmix(fθ,Ddis),

where the size of the adversarial attack ε is

ε =
1− αβ
1 + β

cxR Eλ∼P̃λ [1− λ], with R = min
i∈{1,...,n}

| cos(∇xfθ(x),xi)|,

and the distribution P̃λ is

P̃λ(λ) =
α

α+ β
Beta(α+ 1, β) +

β

α+ β
Beta(β + 1, α).

�
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