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Abstract

Label noise generally degenerates the performance of deep learning algorithms
because deep neural networks easily overfit label errors. Let X and Y denote the
instance and clean label, respectively. When Y is a cause of X , according to which
many datasets have been constructed, e.g., SVHN and CIFAR, the distributions of
P (X) and P (Y |X) are generally entangled. This means that the unsupervised
instances are helpful to learn the classifier and thus reduce the side effect of label
noise. However, it remains elusive on how to exploit the causal information to
handle the label-noise problem. We propose to model and make use of the causal
process in order to correct the label-noise effect. Empirically, the proposed method
outperforms all state-of-the-art methods on both synthetic and real-world label-
noise datasets.

1 Introduction

Learning with noisy labels can be dated back to [1] and has recently drawn a lot of attention
[15, 19, 11, 10, 28]. In real life, large-scale datasets are likely to contain label noise. It is partly
because that many cheap but imperfect data collection methods such as crowd-sourcing and web
crawling are widely used to build large-scale datasets. Training with such data usually lead to poor
generalization abilities of deep neural networks because they can memorize noisy labels [2, 33].

To improve the generalization ability of training with noisy labels, one family of existing label-noise
learning methods is to model how the label noise was generated [17, 19, 27, 34, 14]. Specifically,
these methods try to reveal the transition relationship from clean labels to noisy labels of instances,
i.e., the distribution P (Ỹ |Y,X), where Ỹ , Y and X are the random variables for the noisy label,
latent clean label, and instance, respectively. The advantage of modelling label noise is that given only
the noisy data, when the transition relationship is identifiable, classifiers can be learned to converge
to the optimal ones defined by the clean data, with theoretical guarantees. However, the transition
relationship is not identifiable in general. To make it identifiable, various assumptions have been
made on the transition relationship. For example, Natarajan et al. [17] assume that the transition
relationship is instance independent, i.e., P (Ỹ |Y,X) = P (Ỹ |Y ); Xia et al. [30] assume that the
P (Ỹ |Y,X) is dependent on different parts of an instance. Cheng et al. [7] assume that the label noise
rates are upper bounded. In practice, these assumptions may not be satisfied and are generally hard to
be verified given noisy data alone.

Inspired by causal learning [20, 25, 21, 23], we provide a causal perspective of label-noise learning
method named CausalNL. We exploit the causal information to help identifiability of the tran-
sition matrix P (Ỹ |Y,X) other than making assumptions directly on the transition relationship.
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Figure 1: A graphical causal model
which reveals a generative process
of the data which contains instance-
dependent label noise, where the
shaded variables are observable and
the unshaded variables are latent.

Specifically, we assume that the data containing instance-
dependent label noise is generated according to the causal
graph in Fig. 1. For example, for the Street View House Num-
bers (SVHN) dataset [18], X represents the image containing
the digit; Y represents the clean label of the digit shown on the
plate; Z represents the latent variable that captures the infor-
mation affecting the generation of the images, e.g., orientation,
lighting, and font style. Here Y is naturally a cause of X and
the causal generative process can be described in the following
way. First, the house plate is generated according to the street
number and attached to the front door. Then, the house plate
is captured by a camera (installed in a Google street view car)
to form X , taking into account of other factors such as illu-
mination and viewpoint. Finally, the images containing house
numbers are collected and relabeled to form the dataset. Let us
denote the annotated label by the noisy label Ỹ as the annotator may not be always reliable, especially
when the dataset is very large but the budget is limited. During the annotation process, the noisy
labels were generated according to both the images and the range of predefined digit numbers. Hence,
both X and Y are causes of Ỹ . Note that most existing image datasets are collected with the causal
relationship that Y causes X . For example, see the widely used FashionMNIST and CIFAR. When
we synthesize instance-dependent label noise based on them, we will have the causal graph illustrated
in Fig. 1. Note also that some datasets are generated with the causal relationship that X causes Y .
Other than using domain knowledge, the different causal relationships can be verified by employing
causal discovery [26, 25, 21, 37].

When the latent clean label Y is a cause of X , P (X) will generally contain some information about
P (Y |X). This is because, under such a generative process, the distributions of P (X) and P (Y |X)
are entangled [22, 39]. To help estimate P (Y |X) with P (X), we make use of the causal generative
process to estimate P (X|Y ), which directly benefits from P (X) by generative modeling. The
modeling of P (X|Y ) in turn encourages the identifiability of the transition relationship and helps
learn P (Y |X). For example, in Fig. 2(a), we have added instance-dependent label-noise with a rate
45% (i.e., IDLN-45%) to the MOON dataset and employed different methods [10, 36] to solve the
label-noise learning problem. As illustrated in Fig. 2(b) and Fig. 2(c), previous methods fail to infer
clean labels. In contrast, by constraining the conditional distribution of the instances, i.e., restricting
the data of each class to be on a manifold by setting the dimension of the latent variable Z to be
1-dimensional, the label transition as well as the clean labels can be successfully recovered (by the
proposed method), which is showed in Fig. 2(d). It is worth noting that the idea of finding P (Y |X)
by modeling P (Y ) and P (X|Y ) instead has been exploited in the context of domain adaptation;
for instance, it inspires target shift, (generalized) conditional shift and other settings for domain
adaptation [38, 9]

Specifically, to make use of the causal graph to contribute to the identifiability of the transition matrix,
we propose a causally inspired deep generative method, which models the causal structure with all the
observable and latent variables, i.e., the instance X , the noisy label Ỹ , the latent feature Z, and the
latent clean label Y . The proposed generative model captures the variables’ relationship indicated by
the causal graph. Furthermore, built on the variational autoencoder (VAE) framework [12], we build
an inference network which could efficiently infer the latent variables Z and Y when maximising
the marginal likelihood p(X, Ỹ ) on the given noisy data. In the decoder phase, the data will be
reconstructed by exploiting the conditional distribution of instances P (X|Y,Z) and the transition
relationship P (Ỹ |Y,X), i.e.,

pθ(X, Ỹ ) =

∫
z,y

P (Z = z)P (Y = y)pθ1(X|Y = y, Z = z)pθ2(Ỹ |Y = y,X)dzdy

will be exploited, where θ := (θ1, θ2) are the parameters of the causal generative model (more details
can be found in Section 3). Ay a high level, according to the equation, given the noisy data and
the distributions of Z and Y , constraining pθ1(X|Y,Z) will also greatly reduce the uncertainty of
pθ2(Ỹ |Y,X) and thus contribute to the identifiability of the transition matrix. Note that adding a
constraint on pθ1(X|Y, Z) is natural; for example, images often have a low-dimensional manifold [3].
We can restrict P (Z) to fulfill the constraint on pθ1(X|Y,Z). By exploiting the causal structure and
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Figure 2: (a) An illustration of the MOON training dataset which contains 45% of instance-dependent
label noise. Different instances have different noise rates which are randomly generated according to
Xia et al. [30]. (b)-(d) The illustration of the classification performance of co-teaching, mixup, and
our method, respectively.

the constraint on instances to better model label noise, the proposed method significantly outperforms
the baselines. When the label noise rate is large, the superiority is evidenced by a large gain in the
classification performance.

The rest of the paper is organized as follows. In Section 2, we briefly review the background
knowledge of label-noise learning and causality. In Section 3, we formulate our method, named
CausalNL, and discuss how it helps to learn a clean classifier, followed by the implementation details.
Experimental validations are provided in Section 4. Section 5 concludes the paper.

2 Noisy Labels and Causality

In this section, firstly, we introduce how to model label noise. Then, we introduce the structural
causal model and discuss how to exploit the model to encourage the identifiability of the transition
relationship and help learn the classifier.

Transition Relationship To build a statistically consistent classifier that converges to the optimal
classifier defined on clean data by only employing noisy data, the transition relationship P (Ỹ |Y,X)
has to be identified. Given an instance, the conditional distribution can be written in an C × C
matrix which is called the transition matrix [19, 29, 30], where C represents the number of classes.
Specifically, for each instance x, there is a transition matrix T (x). The ij-th entry of the transition
matrix is Tij(x) = P (Ỹ = i|Y = j,X = x), which represents the probability that the instance x
with the clean label Y = j will have a noisy label Ỹ = i.

The transition matrix has been widely studied to build statistically consistent classifiers, because
the clean class posterior distribution P (Y |x) = [P (Y = 1|X = x), . . . , P (Y = C|X = x)]>

can be inferred by using the transition matrix and the noisy class posterior P (Ỹ |x) = [P (Ỹ =

1|X = x), . . . , P (Ỹ = C|X = x)]>, i.e., we have P (Ỹ |x) = T (x)P (Y |x). Specifically, the
transition matrix has been used to modify loss functions to build risk-consistent estimators; see, e.g.,
[8, 19, 35, 28], and has been used to correct hypotheses to build classifier-consistent algorithms; see,
e.g., [17, 24, 19]. Moreover, the state-of-the-art statically inconsistent algorithms [11, 10] also use
diagonal entries of the transition matrix to help select reliable examples used for training.

However, the distribution P (Ỹ |Y,X) is not generally identifiable [28]. To make it identifiable, one
has to resort to additional assumptions. The most widely used assumption is that given clean label Y ,
the noisy label Ỹ is conditionally independent of instance X , i.e., P (Ỹ |Y,X) = P (Ỹ |Y ). Under
such an assumption, the transition relationship P (Ỹ |Y ) can be successfully identified with the anchor
point assumption [15, 34, 14]. However, in the real-world scenarios, this assumption may be hard to
satisfied. Although P (Ỹ |Y ) can be used to approximate P (Ỹ |Y,X), the approximation error can be
large in many cases. As for the efforts to model the instance-dependent transition matrix directly,
existing methods rely on rather strong assumptions, e.g., the bounded noise rate assumption [7], the
part-dependent label noise assumption [30], and the requirement of additional information about
the transition matrix [4]. Although the assumptions help the methods achieve superior performance
empirically, they are generally difficult to verify or fulfill, limiting their applications in practice.

Structural Causal Model Motivated by the limitation of the current methods, we provide a new
causal perspective to learn the identifiable of instance-dependent label noise model. Here we briefly

3



 

X co-teaching 
loss

 

 
 

ce loss

reconstruction 
loss

reconstruction 
loss

ce loss

Figure 3: A working flow of our method.

introduce some background knowledge of causality [25] used in this paper. A structural causal model
(SCM) consists of a set of variables connected by a set of functions. It represents a flow of information
and reveals causal relationships among all the variables, providing a fine-grained description of the
data generation process. The causal structure encoded by SCMs can be represented as a graphical
casual model as shown in Fig. 1, where each node is a variable and each edge is a function involving
noise. The SCM corresponding to the graph in Fig. 1 can be written as

Z = εZ , Y = εY , X = f(Z, Y, εX), Ỹ = f(X,Y, εỸ ), (1)
where εZ , εY , εX and εỸ are independent exogenous variables, and they sometimes also called error
variables. For example, εX are an error variable for X , which is responsible for any difference
between the actual value of X and the value predicted on the basis of Z and Y alone. Each equation
specifies a distribution of a variable conditioned on its parents (which are an empty set for root cause
variables in the graph).

By making use of the SCM, the benefit of the instances to learning the classifier can be clearly
explained. Specifically, the instance X is a function of its label Y and latent feature Z, which means
that the instance X is generated from Y and Z. Therefore X must contains information about its
clean label Y and latent feature Z. That is the reason that P (X) can help identify P (Y |X) and also
P (Z|X). However, since we do not have clean labels, it is hard to fully identify P (Y |X) from P (X)
in the unsupervised setting. For example, on the MOON dataset shown in Fig. 2 , we can possibly
discover the two clusters by enforcing the manifold constraint, but it is impossible to see which class
each cluster belongs to. We show in the following that we can make use of the property of P (X|Y )
to help model label noise, i.e., encourage the identifiability of the transition relationship, thereby
learning a better classifier.

Specifically, under the Markov condition [20], which intuitively means the independence of exogenous
variables, the joint distribution P (Ỹ , X, Y, Z) specified by the SCM can be factorized as follows.

P (X, Ỹ , Y, Z) = P (Y )P (Z)P (X|Y,Z)P (Ỹ |Y,X). (2)
This motivates us to extend VAE [12] to perform inference in our causal model to fit the noisy data in
the next section. In the decoder phase, given the noisy data and the distributions of Z and Y , adding
a constraint on P (X|Y,Z) will reduce the uncertainty in the distribution P (Ỹ |Y,X). In other words,
modeling of P (X|Y,Z) will encourage the identifiability of the transition relationship and thus better
model label noise. Since P (Ỹ |Y,X) functions as a bridge to connect the noisy labels to clean labels,
we accordingly can better learn P (Y |X) or the classifier by only using the noisy data.

There are normally two ways to add constraints on the instances, i.e., assuming a specific parametric
generative model or introducing prior knowledge of the instances. In this paper, since we mainly
study the image classification problem with noisy labels, we focus on the manifold property of images
and apply the low-dimensional manifold constraint to the instances.

3 Causality Captured Instance-Dependent Label-Noise Learning

In this section, we propose a structural generative method which captures the causal relationship and
utilizes P (X) to help identify the label-noise transition matrix, and therefore, our method leads to a
better classifier that assigns more accurate labels.
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3.1 Variational Inference under the Structural Causal Model

To model the generation process of noisy data and to approximate the distribution of the noisy
data, our method is designed to follow the causal factorization (see Eq. 2). Specifically, our model
contains two decoder networks which jointly model a distribution pθ(X, Ỹ |Y,Z) and two encoder
(inference) networks which jointly model the posterior distribution qφ(Z, Y |X). Here we discuss
each component of our model in detail.

Let the two decoder networks model the distributions pθ1(X|Y, Z) and pθ2(Ỹ |Y,X), respectively.
Let θ1 and θ2 be learnable parameters of the distributions. Without loss of generality, we set p(Z) to a
standard normal distribution and p(Y ) to a uniform distribution. Then, modeling the joint distribution
in Eq. 2 boils down to modeling the distribution pθ(X, Ỹ |Y, Z), which is decomposed as follows:

pθ(X, Ỹ |Y, Z) = pθ1(X|Y,Z)pθ2(Ỹ |Y,X). (3)

To infer latent variables Z and Y with only observable variables X and Ỹ , we design an inference
network which model the variational distribution qφ(Z, Y |Ỹ , X). Specifically, let qφ2(Z|Y,X) and
qφ1

(Y |Ỹ , X) be the distributions parameterized by learnable parameters φ1 and φ2, and then the
posterior distribution can be decomposed as follows:

qφ(Z, Y |Ỹ , X) = qφ2
(Z|Y,X)qφ1

(Y |Ỹ , X), (4)

where we do not include Ỹ as a conditioning variable in qφ2(Z|Y,X) because the causal graph
implies Z ⊥⊥ Ỹ |X,Y . One problem with this posterior form is that we cannot directly employ
qφ1

(Y |Ỹ , X) to predict labels on the test data, on which Ỹ is absent.

To reduce computational costs and to allow our method efficiently infer clean labels, we approximate
qφ1(Y |Ỹ , X) by assuming that given the instance X , the clean label Y is conditionally independent
from the noisy label Ỹ , i.e., qφ1

(Y |Ỹ , X) = qφ1
(Y |X). This approximation is expected not to have

very large approximation error because the images contain sufficient information to predict the clean
labels. Thus, we could simplify Eq. 4 as follows

qφ(Z, Y |X) = qφ2
(Z|Y,X)qφ1

(Y |X), (5)

such that our encoder networks model qφ2
(Z|Y,X) and qφ1

(Y |X), respectively. This way, qφ1
(Y |X)

can be used to infer clean labels efficiently.2 We also found that the encoder network modelling
qφ1(Y |X) can directly act as a regularizer, which helps to identify pθ2(Ỹ |Y,X). Moreover, be
benefited from this, our method can serve as a general framework which can be easily integrated with
the current discriminative label-noise methods [28, 16, 10], and we will showcase it by collaborating
co-teaching [10] with our method.

Optimization of Parameters Because the marginal distribution pθ(X, Ỹ ) is usually intractable, to
learn the set of parameters {θ1, θ2, φ1, φ2} given only noisy data, we follow the variational inference
framework [5] to maximize the negative evidence lower-bound ELBO(x, ỹ) of the marginal likeli-
hood of each datapoint (x, ỹ) instead of maximizing the marginal likelihood itself. By ensembling
our decoder and encoder networks, ELBO(x, ỹ) is derived as follows:

ELBO(x, ỹ) = E(z,y)∼qφ(Z,Y |x) [log pθ1(x|y, z)] + Ey∼qφ1
(Y |x) [log pθ2(ỹ|y, x)]

− kl(qφ1
(Y |x)‖p(Y ))− Ey∼qφ1

(Y |x) [kl(qφ(Z|y, x)‖p(Z))] , (6)

where kl(·) is the Kullback–Leibler divergence between two distributions. The derivation details are
left out in Appendix A. Our model learns the class-conditional distribution P (X|Y ) by maximiz-
ing the first expectation in ELBO, which is equivalent to minimizing the reconstruction loss [12].
By learning P (X), the inference network qφ1

(Y |X) has to select a suitable parameter φ∗ which
samples the y and z to minimize the reconstruction loss E(z,y)∼qφ(Z,Y |x) [log pθ1(x|y, z)]. When the
dimension of Z is chosen to be much smaller than that of X , to obtain a smaller reconstruction error,
the decoder has to utilize the information provided by Y , and force the value of Y to be useful for

2Theoretically, this approximation is not necessary and can be easily removed. Specifically, we could let an
encoder model qφ1(Y |Ỹ , X). Then q(Y |X) is obtained as q(Y |X) =

∑
i qφ1(Y |Ỹ = i,X)qφ3(Ỹ = i|X),

where qφ3(Ỹ |X) is the noisy class-posterior distribution and can be learned by using noisy training data.
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Algorithm 1 CausalNL

Input: A noisy sample S, Average noise rate ρ, Total epoch Tmax, Batch size N .
1: For T = 1, . . . , Tmax:
2: For mini-batch S̄ = {xi}Ni=0, L̃ = {ỹi}Ni=0 in S:
3: Feed S̄ to encoders q̂φ1

1
and q̂φ2

1
to get clean label sets L1 and L2, respectively;

4: Feed (S̄, L1) to encoder q̂φ1
2

to get a representation set H1, feed (S̄, L2) to q̂φ2
2

to get H2;
5: Update q̂φ1

2
and q̂φ2

2
with co-teaching loss;

6: Feed (L1, H1) to decoder p̂θ11 to get reconstructed dataset S̄1, feed (L2, H2) to p̂θ21 to get S̄2;
7: Feed (S̄1, L1) to decoder p̂θ12 to get predicted noisy labels L̃1, feed (S̄2, L2) to p̂θ22 to get L̃2;
8: Update networks q̂φ1

1
, q̂φ1

2
, p̂θ11 and p̂θ12 by calculating ELBO on (S̄, S̄1, L̃, L̃1), update

networks q̂φ2
1
, q̂φ2

2
, p̂θ21 and p̂θ22 by calculating ELBO on (S̄, S̄2, L̃, L̃2);

Output: The inference network q̂φ1
1
.

prediction. Furthermore, we constrain the Y to be a one-hot vector, and then Y could be a cluster ID
of which the manifold of the X belongs.

So far, the latent variable Y can be inferred as a cluster ID instead of a clean class ID. To further
link the clusters to clean labels, a naive approach is to select some reliable examples and keep
the cluster numbers to be consistent with the noisy labels on these examples. In such a way, the
latent representation Z and clean label Y can be effectively inferred, and therefore, it encourages
the identifiability of the transition relationship pθ2(Ỹ |Y,X). To achieve this, instead of explicitly
selecting the reliable example in advance, our method is trained end-to-end, i.e., reliable examples
are selected dynamically during the update of parameters of our model by using the co-teaching
technique [10]. The advantage of this approach is that the selection bias of the reliable example
[6] can be greatly reduced. Intuitively, the accurately selected reliable examples can encourage
the identifiability of pθ2(Ỹ |Y,X) and pθ1(X|Y, Z), and the accurately estimated pθ2(Ỹ |Y,X) and
pθ1(X|Y,Z) will encourage the network to select more reliable examples.

3.2 Practical Implementation

Our method is summarized in Algorithm 1 and illustrated in Fig. 3. Here we introduce the structure
of our model and loss functions.

Model Structure Because we incorporate co-teaching in our model training, we need to add a copy
of the decoder and encoders in our method. As the two branches share the same architectures, we
first present the details of the first branch and then briefly introduce the second branch.

For the first branch, we need a set of encoders and decoders to model the distributions in Eq. 3 and 5.
Specifically, we have two encoder networks

Y1 = q̂φ1
1
(X), Z1 ∼ q̂φ1

2
(X,Y1)

for Eq. 5 and two decoder networks

X1 = p̂θ11 (Y1, Z1), Ỹ1 = p̂θ12 (X1, Y1)

for Eq. 3. The first encoder q̂φ1
1
(X) takes an instance X as input q̂φ1

1
(X) and output a predicted

clean label Y1. The second encoder q̂φ1
2
(X,Y1) takes both the instance X and the generated label

Y1 as input and outputs a latent feature Z1. Then the generated Y1 and Z1 are passed through the
decoder p̂θ11 (Y1, Z1) which will generate a reconstructed image X1. Finally, the generated X1 and
Y1 are the input to another decoder p̂θ12 (X1, Y1) which returns predicted noisy labels Ỹ1. It is worth
mentioning that the reparameterization trick [12] is used for sampling, so as to allow backpropagation
in q̂φ1

2
(X,Y1).

Similarly, the encoder and decoder networks in the second branch are defined as follows:

Y2 = q̂φ2
1
(X), Z2 ∼ q̂φ2

2
(X,Y2), X2 = p̂θ21 (Y2, Z2), Ỹ2 = p̂θ22 (X2, Y2).
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During training, we let two encoders q̂φ1
1
(X) and q̂φ2

1
(X) teach each other given every mini-batch.

Loss Functions We divide the loss functions into two parts. The first part is the negative ELBO in
Eq. 6, and the second part is a co-teaching loss. The detailed formulation is leaved in Appendix B.

For the negative ELBO, the first term−E(z,y)∼qφ(Z,Y |x) [log pθ1(x|y, z)] is a reconstruction loss, and
we use the `1 loss for reconstruction. The second term is −Ey∼qφ1

(Y |x) [log pθ2(ỹ|y, x)], which aims
to learn noisy labels given inference y and x, and can be simply replaced by the cross-entropy loss on
outputs of both decoders p̂θ12 (X1, Y1) and p̂θ22 (X2, Y2) with the noisy labels contained in the training
data. The additional two terms are two regularizers. To calculate kl(qφ1(Y |x)‖p(Y )), we assume
that the prior P (Y ) is a uniform distribution. Then minimizing kl(qφ1

(Y |x)‖p(Y )) is equivalent
to maximizing the entropy of qφ1

(Y |x) for each instance x, i.e., −
∑
y qφ1

(y|x) log qφ1
(y|x). The

benefit for having this term is that it could reduce the overfiting problem of the inference network.
For Ey∼qφ1

(Y |x) [kl(qφ(Z|y, x)‖p(Z))], we let p(Z) be a standard multivariate Gaussian distribu-
tion. Empirically, qφ(Z|y, x) is modeled by the encoders q̂φ1

1
(X) and q̂φ2

1
(X) which are designed

to be deterministic mappings, therefore, the expectation can be removed, and only the kl term
kl(qφ(Z|y, x)‖p(Z)) is left. When p(Z) is a Gaussian distribution, the kl term nicely has a closed
form solution [12], i.e., − 1

2

∑J
j=1(1 + log((σj)

2)− (µj)
2 − (σj)

2), where J is the dimension of a
latent representation z, and σj and µj are the encoder outputs.

For the co-teaching loss, we follow the work of Han et al. [10]. Intuitively, two encoders q̂φ1
1
(X) and

q̂φ2
1
(X) feed all data forward and selects some data of possibly clean labels. Then, two networks

communicate with each other to select possible clean data in this mini-batch and use them for training.
Finally, each encoder backpropagates over the data selected by its peer network and updates itself by
cross-entropy loss.

4 Experiments

In this section, we compare the classification accuracy of proposed method with popular label-noise
learning algorithms [15, 19, 11, 10, 28, 36, 16] on both synthetic and real-world datasets.

4.1 Experimental Setup

Datasets We examine the efficacy of our approach on manually corrupted versions of four datasets,
i.e., FashionMNIST [31], SVHN [18], CIFAR10, CIFAR100 [13], and one real-world noisy dataset,
i.e., Clothing1M [32]. FashionMNIST contains 60,000 training images and 10,000 test images with
10 classes; SVHN contains 73,257 training images and 26,032 test images with 10 classes. CIFAR10
contains 50,000 training images and 10,000 test images. CIFAR10 and CIFAR100 both contain 50,000
training images and 10,000 test images but the former has 10 classes of images, and the latter has 10
classes of images. The four datasets contain clean data. We add instance-dependent label noise to
the training sets manually according to Xia et al. [30]. Clothing1M has 1M images with real-world
noisy labels and 10k images with clean labels for testing. For all the synthetic noisy datasets, the
experiments are repeated 5 times.

Network structure and optimization For a fair comparison, all experiments are conducted on
NVIDIA Tesla V100, and all methods are implemented by PyTorch. Dimension of the latent
representation Z is set to 25 for all synthetic noisy datasets. For encoder networks q̂φ1

1
(X) and

q̂φ2
1
(X), we use the same network structures with the baseline method. Specially, we use a ResNet-18

network for FashionMNIST, a ResNet-34 network for SVHN and CIFAR10, a ResNet-50 network
for CIFAR100 without pretraining. For Clothing1M, we use ResNet-50 networks pre-trained on
ImageNet. The data-augmentation methods random crop and horizontal flip are used for our method.
For Clothing1M, we use a ResNet-50 network pre-trained on ImageNet, and the clean training data is
not used. The dimensionality of the latent representation Z is set to 100. Due to limited space, we
leave the detailed structure of other decoders and encoders in Appendix C.

Baselines and measurements We compare the proposed method with the following state-of-the-art
approaches: (i). CE, which trains the standard deep network with the cross-entropy loss on noisy
datasets. (ii). Decoupling [16], which trains two networks on samples whose predictions from the two
networks are different. (iii). MentorNet [11] and Co-teaching [10], which mainly handle noisy labels
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Table 1: Means and standard deviations (percentage) of classification accuracy on FashionMNIST
with different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 88.54±0.32 88.38±0.42 84.22±0.35 69.72±0.72 52.32±0.68
Co-teaching 91.21±0.31 90.30±0.42 89.10±0.29 86.78±0.90 63.22±1.56
Decoupling 90.70±0.28 90.34±0.36 88.78±0.44 87.54±0.53 68.32±1.77
MentorNet 91.57±0.29 90.52±0.41 88.14±0.76 85.12±0.76 61.62±1.42

Mixup 88.68±0.37 88.02±0.37 85.47±0.55 79.57±0.75 66.02±2.58
Forward 90.05±0.43 88.65±0.43 86.27±0.48 73.35±1.03 58.23±3.14
Reweight 90.27±0.27 89.58±0.37 87.04±0.32 80.69±0.89 64.13±1.23

T-Revision 91.58±0.31 90.11±0.61 89.46±0.42 84.01±1.14 68.99±1.04

CausalNL 90.84±0.31 90.68±0.37 90.01±0.45 88.75±0.81 78.19±1.01

Table 2: Means and standard deviations (percentage) of classification accuracy on SVHN with
different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 91.51±0.45 91.21±0.43 87.87±1.12 67.15±1.65 51.01±3.62
Co-teaching 93.93±0.31 92.06±0.31 91.93±0.81 89.33±0.71 67.62±1.99
Decoupling 90.02±0.25 91.59±0.25 88.27±0.42 84.57±0.89 65.14±2.79
MentorNet 94.08±0.12 92.73±0.37 90.41±0.49 87.45±0.75 61.23±2.82

Mixup 89.73±0.37 90.02±0.35 85.47±0.63 82.41±0.62 68.95±2.58
Forward 91.89±0.31 91.59±0.23 89.33±0.53 80.15±1.91 62.53±3.35
Reweight 92.44±0.34 92.32±0.51 91.31±0.67 85.93±0.84 64.13±3.75

T-Revision 93.14±0.53 93.51±0.74 92.65±0.76 88.54±1.58 64.51±3.42

CausalNL 94.06±0.23 93.86±0.65 93.82±0.64 93.19±0.93 85.41±2.95

Table 3: Means and standard deviations (percentage) of classification accuracy on CIFAR10 with
different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 75.81±0.26 69.15±0.65 62.45±0.86 51.72±1.34 39.42±2.52
Co-teaching 80.96±0.31 78.56±0.61 73.41±0.78 71.60±0.79 45.92±2.21
Decoupling 78.71±0.15 75.17±0.58 61.73±0.34 58.61±1.73 50.43±2.19
MentorNet 81.03±0.24 77.22±0.47 71.83±0.49 66.18±0.64 47.89±2.03

Mixup 73.17±0.34 70.02±0.31 61.56±0.71 56.45±0.67 48.95±2.58
Forward 74.64±0.26 69.75±0.56 60.21±0.75 48.81±2.59 46.27±1.30
Reweight 76.23±0.25 70.12±0.72 62.58±0.46 51.54±0.92 45.46±2.56

T-Revision 76.15±0.37 70.36±0.54 64.09±0.37 52.42±1.01 49.02±2.13

CausalNL 81.47±0.32 80.38±0.44 77.53±0.45 78.60±1.06 67.39±1.24

by training on instances with small loss values. (iv). Forward [19], Reweight [15], and T-Revision
[28]. These approaches utilize a class-dependent transition matrix T to correct the loss function.
For these baselines, we follow the experiments settings of the original papers. We report average
test accuracy on over the last ten epochs of each model on the clean test set. Higher classification
accuracy means that the algorithm is more robust to the label noise.

4.2 Classification Accuracy Evaluation

Results on synthetic noisy datasets Tables 1, 2, 3, and 4 report the classification accuracy on the
datasets of F-MNIST, SVHN, CIFAR-10, and CIFAR100, respectively. The synthetic experiments
reveal that our method is powerful in handling instance-dependent label noise particularly in the
situation of high noise rates. Specifically, for all datasets, the classification accuracy of our method
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Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR100 with
different label noise levels.

IDN-20% IDN-30% IDN-40% IDN-45% IDN-50%

CE 30.42±0.44 24.15±0.78 21.45±0.70 15.23±1.32 14.42±2.21
Co-teaching 37.96±0.53 33.43±0.74 28.04±1.43 25.60±0.93 23.97±1.91
Decoupling 36.53±0.49 30.93±0.88 27.85±0.91 23.81±1.31 19.59±2.12
MentorNet 38.91±0.54 34.23±0.73 31.89±1.19 27.53±1.23 24.15±2.31

Mixup 32.92±0.76 29.76±0.87 25.92±1.26 23.13±2.15 21.31±1.32
Forward 36.38±0.92 33.17±0.73 26.75±0.93 21.93±1.29 19.27±2.11
Reweight 36.73±0.72 31.91±0.91 28.39±1.46 24.12±1.41 20.23±1.23

T-Revision 37.24±0.85 36.54±0.79 27.23±1.13 25.53±1.94 22.54±1.95

CausalNL 41.47±0.43 40.98±0.62 34.02±0.95 33.34±1.13 32.129±2.23

Table 5: Classification accuracy on Clothing1M. In the experiments, only noisy samples are exploited
to train and validate the deep model.

CE Decoupling MentorNet Co-teaching Forward Reweight T-Revision caualNL

68.88 54.53 56.79 60.15 69.91 70.40 70.97 72.24

decrease much slower than that of baseline methods. Additionally, the classification accuracies on
these datasets are improved by using CausalNL, which implies that our method should capture the
underlying data generation process, and then Y should be a cause of X for all these datasets.

For noisy F-MNIST, SVHN and CIFAR-10, in the easy case IDN-20%, almost all methods work well.
When the noise rate is 30%, the advantages of causalNL begin to show. We surpassed all methods
obviously. When the noise rate raises, all the baselines are gradually defeated. Finally, in the hardest
case, i.e., IDN-50%, the superiority of causalNL widens the gap of performance. The classification
accuracy of causalNL is at least over 10% higher than the best baseline method. For noisy CIFAR-100,
none of the methods works well. However, causalNL still overtakes the other methods with clear
gaps for all different levels of noise rate.

Results on the real-world noisy dataset On the real-world noisy dataset Clothing1M, our method
causalNL outperforms all the baselines, as shown in Table 5. The experimental results also show that
the noise type in Clothing1M is more likely to be instance-dependent label noise, suggesting that the
instance-independent assumption on the transition matrix sometimes can be strong.

5 Conclusion

In this paper, we have investigated how to use P (X) to help learn instance-dependent label noise.
Specifically, previous assumptions are made on the transition matrix, and the assumptions are hard
to be verified and might be violated on real-world datasets. From inspired by a causal perspective,
when Y is a cause of X , then P (X) should contain useful information to infer the clean label Y . We
propose a novel generative approach called causalNL for instance-dependent label-noise learning.
Our model makes use of the causal graph to contribute to the identifiability of the transition matrix,
and therefore helps learn clean labels. In order to learn P (X), compared to the previous methods, our
method contains more parameters. But experiments on both synthetic and real-world noisy datasets
show that a bit sacrifice on computational efficiency is worth it, i.e., the classification accuracy of
casualNL significantly outperforms all the state-of-the-art methods. Additionally, the results also
indicates that in classification problems, Y can usually be considered as a cause of X , and suggests
that the understanding and modeling of the data generation process can help leverage additional
information that is useful in solving advanced machine learning problems concerning the relationship
between different modules of the data joint distribution. In our future work, we will study the
theoretical properties of our method and establish identifiability results under certain assumptions on
the data-generative process.
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