
Appendix to “Reducing Collision Checking for
Sampling-Based Motion Planning Using Graph

Neural Networks”

Chenning Yu
Computer Science and Engineering

UC San Diego
chy010@ucsd.edu

Sicun Gao
Computer Science and Engineering

UC San Diego
sicung@ucsd.edu

1 More Details on GNN Architectures

Feed
Forward

Feed
Forward

Feed
Forward

Attention

Add & Norm

FeedForward

Add & Norm

EdgesObstaclesVertices

N x

Attention

Add & Norm

FeedForward

Add & Norm

N x

Concat

Concat

Goal

Feed
Forward

Vertex
Embedding

Edge
Embedding

Vertex
Embedding

Edge
Embedding

b. Message Passing

a. Graph Embedding

GNN Update

k iterations

1.1 Obstacle Encoding

In the experiment part, we find obstacle encoding is helpful to the GNN explorer, which can optimize
the explored path further with the smoother. We elaborate on the formulation of the obstacle encoding.

In this work, we consider an obstacle as a 2D or 3D box depending on the workspace, denoted as
o = (p1, · · · , pn, l1, · · · , ln) ∈ R2n, n ∈ [2, 3], where pi and li are the center and length of the box
along the i-th dimension. The environment configuration is written as O ∈ R|{o}|×2n, where |{o}| is
the number of the obstacles. Note that |{o}| is a variable number, since the number of obstacles can
be different for each problem.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Given MLPs f (i)ax , f
(i)
ay , f

(i)
Kx
, f

(i)
Qx
, f

(i)
Vx
, f

(i)
Ky
, f

(i)
Qy
, f

(i)
Vy

, the obstacle encoding is formulated as:

ax = LN(x+Att(f
K

(i)
x
(O), f

Q
(i)
x
(x), f

V
(i)
x

(O))) and x = LN(ax + f (i)ax (ax))

ay = LN(y +Att(f
K

(i)
y
(O), f

Q
(i)
y
(y), f

V
(i)
y

(O))) and y = LN(ay + f (i)ay (ay))
(1)

where LN denotes the layer normalization [1]. This architecture follows the standard transformer
block design [6].

1.2 Special Features

The overall special features for GNN explorer and smoother are described as follows:

Special features in explorer architecture. The GNN explorer embeds vertices with x =
hx(v, vg, (v − vg)

2, v − vg), with an MLP hx. The yl is computed as yl = hy(vj − vi, vj , vi),
with an MLP hy . Optionally, we utilize the obstacle encoding to update the x and y. With Equation
1, the x and y will merge the information from obstacles through multiple attention blocks, which is
set as 3 in our experiments.

As mentioned in the main part, the GNN explorer will update x and y over multiple loops. During
training, we iterate x and y over a random number of loops between 1 and 10. Intuitively, taking
random loops encourages the GNN to converge faster, which also helps propagating the gradient.
During evaluation, the GNN explorer will output x and y after 10 loops. For loops larger than 10,
significant improvement on performance is not perceived. Finally, with an MLP fη , the GNN explorer
will output η = fη(y), which will be used as the priority to explore corresponding edges.

Special features in smoother architecture. The GNN smoother embeds vertices with x = hx(v),
with an MLP hx. The yl is computed as yl = hy(vj − vi, vj , vi), with an MLP hy . Each time x and
y are updated, the GNN smoother will output a new smoother path π′ = {(ui, u′i)}i∈[0,k] , where
ui = fu(xi),∀vi ∈ π, given an MLP fu. The u0 and u′k are manually replaced by vs and vg, to
satisfy the path constraint. We assume the new smoother path has the same number of nodes as
the original path. Since the GNN smoother could gain novel local geometric information with the
changed configuration of the new path, we dynamically update G = 〈V,E〉, via (i) replacing those
nodes labeled as path nodes in V by the nodes on new path, (ii) replacing E by generating a k-NN
graph on the updated V . With the updated graph G, we repeat the above operation, and subsequently
get another new path, which forms a loop. By updating the graph and the new path iteratively and
dynamically, the path is potentially improved to be shorter at each round by perceiving the changing
local neighbors. During training, the GNN smoother outputs π′, after a random number of loops,
which is between 1 and 10. During evaluation, the GNN smoother will output π′ after only one loop,
but will be called 5 times in total for each smoothing tasks.

2 Environments and Datasets

We conduct the experiment on 6 different environments, which are described in details as follows, :

Maze The maze contains a 2D point robot. The datasets for training set and the test set
for ”Easy2D” is at https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/
algorithm [2]. To generate the ”Hard2D”, we utilize the script provided by https://github.com/
RLAgent/gated-path-planning-networks [5]. The Hard mazes are generated by controlling
the obstacle density not less than 46%, and the distance from start to goal not less than 1.

UR5 The UR5 contains a UR5 robot arm [8], which has 6 degrees of freedom. There are two sets
of boxes, poles and pads, which are set to generate in two different size range. The poles and pads
are randomly generated in the workspace for each problem.

Snake The Snake environment contains a snake robot with 5 sticks, with another 2 degrees for the
end position, which means 7D in total. The mazes are the same set of 2D mazes from NEXT.

2

https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/algorithm
https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/algorithm
https://github.com/RLAgent/gated-path-planning-networks
https://github.com/RLAgent/gated-path-planning-networks

Maze (2D) Snake (7D)UR5 (6D)

Kuka (7D) Extended Kuka (13D) Dual Kuka (14D)

Figure 1: Demonstrations of all our environments.

Kuka, Extended Kuka The Kuka environment contains a 7DoF Kuka arm with fixed base position.
The extended Kuka environment contains an extended 13DoF kuka arm. The boxes are randomly
generated in the workspace for each problem.

Dual Kuka The environment contains two 7DoF KUKA arms, with 14DoF in total. Each arm need
to reach the goal configuration, while required to not only avoid collision with the obstacles but also
the other arm.

All the environments except the mazes are all implemented by PyBullet [3] with the MIT license.
The URDF files are contained in our supplementary codes.

3 Tables for Overall Performance

Here we list the overall performances of all the methods on all the environments, including the
averaged value with the standard deviation.

Table 1: Success rate. Our algorithm benefits from the probabilistic complete property from the RGG,
which samples uniformly from free space,

Easy2D Hard2D UR5 Snake Kuka7D 13D 14D
GNN 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
GNN w/o OE 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN w/o OE + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
BIT* 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

NEXT 0.99±0.00 0.97±0.00 0.37±0.00 0.72±0.01 0.88±0.01 0.61±0.01 0.67±0.00
RRT* 0.87±0.00 0.54±0.01 0.39±0.00 0.69±0.00 0.83±0.00 0.67±0.01 0.70±0.00

LazySP 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

Table 2: Collision check. GNN performs the best in most high dimensional problems.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 336.25±3.71 715.65±6.76 2474.03±40.35 1602.16±22.66 350.52±8.29 521.70±44.58 486.95±12.99
GNN + Smoother 496.79±4.68 1029.72±8.33 5182.02±191.40 2813.75±15.01 477.32±9.06 830.95±49.06 791.78±14.27

GNN w/o OE 332.30±4.00 703.72±5.78 2556.63±49.91 1605.73±24.00 353.89±7.47 588.65±51.04 547.16±37.61
GNN w/o OE + Smoother 565.38±6.37 1126.02±9.91 3715.40±132.41 2757.88±62.64 466.06±6.70 820.70±55.97 789.25±36.54

BIT* 478.88±10.95 1253.56±15.38 4055.73±286.93 1612.22±78.85 1951.81±424.82 1175.42±287.68 1276.95±230.88
NEXT 270.23±13.92 1206.09±18.62 6461.13±14.31 4788.84±20.60 2488.49±33.76 4958.80±99.51 4559.99±21.92
RRT* 1785.46±27.93 4080.07±32.69 3135.36±4.03 3352.45±15.68 1698.04±28.34 3004.45±55.36 2796.99±13.89

LazySP 351.80±2.47 801.21±6.74 2742.12±113.08 1595.74±48.15 369.36±19.42 546.64±29.40 604.64±38.84

3

Table 3: Path cost. With the GNN smoother, our path cost is the lowest from UR5 to 14D.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 1.34±0.01 2.39±0.02 4.54±0.17 4.33±0.05 9.15±0.11 15.91±0.15 15.26±0.21
GNN + Smoother 1.18±0.01 2.05±0.01 4.12±0.12 3.91±0.01 6.14±0.02 8.98±0.06 8.86±0.08

GNN w/o OE 1.36±0.01 2.41±0.03 4.50±0.15 4.35±0.03 9.00±0.04 15.52±0.06 15.34±0.14
GNN w/o OE + Smoother 1.46±0.01 2.45±0.03 4.45±0.15 4.43±0.02 8.18±0.06 12.91±0.13 12.59±0.03

BIT* 1.11±0.00 2.00±0.02 4.33±0.09 3.95±0.02 6.57±0.04 9.41±0.07 9.54±0.04
NEXT 1.02±0.00 1.71±0.01 4.62±0.05 5.45±0.04 7.74±0.06 10.17±0.07 10.66±0.12
RRT* 1.14±0.01 1.79±0.01 4.66±0.03 4.69±0.05 6.95±0.02 9.81±0.04 10.52±0.03

LazySP 1.20±0.01 2.11±0.01 4.30±0.06 4.18±0.03 8.16±0.05 13.51±0.06 13.54±0.06

Table 4: Total running time. GNN requires low time cost due to its optimization on collision checks.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 35.07±0.78 80.57±1.16 290.41±3.20 218.83±3.41 56.77±1.89 102.67±10.48 84.25±3.16
GNN + Smoother 48.71±0.79 99.40±1.18 481.31±13.31 312.30±2.64 72.32±1.93 143.71±11.00 119.68±2.95

GNN w/o OE 35.43±0.66 80.19±1.04 298.18±4.25 221.26±2.29 57.62±1.87 116.69±11.75 95.19±8.36
GNN w/o OE + Smoother 51.59±0.76 101.40±1.17 386.30±9.97 310.42±4.39 72.39±1.85 149.86±12.19 125.09±8.25

BIT* 47.69±3.43 146.55±2.88 387.44±27.34 183.84±6.69 199.19±42.31 183.54±40.22 167.81±21.43
NEXT 166.46±4.81 499.65±4.40 7150.17±690.44 4355.78±28.44 1837.28±40.04 4750.26±88.29 4450.67±278.09
RRT* 77.20±1.03 166.06±1.35 396.86±0.45 425.87±2.46 166.98±2.43 465.80±8.58 392.57±2.74

LazySP 83.65±1.97 287.30±11.93 905.22±97.21 236.79±31.76 339.97±61.63 301.63±67.92 465.30±93.14

4 Breakdown of the Total Planning Time

(a) (b)
0 10 20 30 40 50 60 70

LazySP

NEXT

RRT*

GNN

BIT*

Others (Rewiring, Nearest Neighbor...)
Heap / Sorting / Shortest Path
Collision Checking
Neural Network

Figure 2: On the left environment, we breakdown the total planning time into various operations. The
time taken by each operation is shown on the right chart.

As shown in Figure 2, we breakdown the total planning time into various operations on an example
environment. We found that our method takes most of the time sorting the priority on the frontier.
On contrary, BIT* and RRT* take relatively large amount of time checking for collisions. NEXT
needs to recalculate the exploration bonus, and sort the candidates to explore, which takes prohibitive
computation. LazySP searches for global shortest path every time an edge is in collision, which
makes the search on path become the bottleneck.

5 Ablation Study

5.1 Varying Training Set Size for Explorer

We conduct further experiments to analyze the effect of the training set size. We train the GNN path
explorer with the 0 (0%), 10 (0.5%), 40 (2%), 200 (10%), 400 (20%), 800 (40%), 1200 (60%), 1600
(80%), 2000 (100%) problems in this new training set. The performance of collision checks, path
costs, and total time on the testing problems are demonstrated in Figure 3.

As shown, the overall performance of the GNN explorer is robust, even with 2% problems of the
original training set. There are two reasons here: (i) The GNN models we propose are relatively

4

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

0 500 1000 1500 2000

50

100

150

200

250

300

350

400

Total Time

0 10 40 200 400 800 1200 1600 2000
0

500

1000

1500

2000

2500

3000

3500

Collision Check

0 10 40 200 400 800 1200 1600 2000
0

10

20

30

40

50

Path Cost

Figure 3: Ablation study on the different training set size. All the performances become stable at
relatively few training set size (around 40 problems, 2% of the original training set).

lightweight in terms of the parameter numbers, which means that it is suffice to train it with small
amount of data. (ii) Our GNN model does not depend on the global feature of the whole graph, as it
only aggregates the information from local neighborhoods. Though each problem yields a different
graph in terms of global characteristic, they can share similar local geometric patterns, which is
beneficial for the efficiency of learning GNN models.

5.2 Feature Choices

In this experiment, we replace the vertex embedding x = hx(v, vg, (v − vg)
2, v − vg) by x =

hx(v, vg), which removes the L2 distance heuristic on features. We retrain the new GNN with the
same training set, and compare to the original architecture on 4 environments. As shown in Figure 4,
the performances of two GNNs are close to each other from 2D to 7D environments (0.5%, 0.6%,
1.0% in terms of collision checking), and the original GNN is slightly better on 14D environment
(6.8% in terms of collision checking, 0.9% in terms of path cost). The L2 distance heuristic is helpful
in high dimensions, but does not have much effect, due to the complex geometry of the C-space.

Easy2D Hard2D 7D 14D

0

5

10

15

20 Path Cost

Easy2D Hard2D 7D 14D

0

100

200

300

400

500

600

700

800

900

Collision Check

Easy2D
0

100

200

300

400

500

600

700

800

900 Without Heuristic

With Heuristic

Collision Check

Figure 4: Comparison of performance of GNN explorers with vertex embedding x as hx(v, vg) and
hx(v, vg, (v−vg)2, v−vg) respectively. Results show that the GNN explorer with heuristics perform
slightly better for high-dimensional problems.

5.3 GNN Smoother Versus Oracle Smoother

2D Easy 2D Hard UR5 Snake Kuka7D 13D 14D

0

2k

4k

6k

8k

10k

12k

14k

16k

18k

Co
lli

si
on

 C
he

ck

2D Easy 2D Hard UR5 Snake Kuka7D 13D 14D

0

1

2

3

4

5

6

7

Pa
th

 C
os

t I
m

pr
ov

em
en

t

2D Easy 2D Hard UR5 Snake Kuka7D 13D 14D

0

200

400

600

800

1000

1200

To
ta

l T
im

e

2D Easy
0

2k

4k

6k

8k

10k

12k

14k

16k

18k
GNN Smoother Oracle

Co
lli

si
on

 C
he

ck

Figure 5: Comparison of performance between our GNN smoother and the oracle to trained on.
Our GNN smoother learns to smooth the path with comparable improvement as the oracle, and also
requires fewer collision checking steps and less total time.

In this experiment, we replace the learned GNN smoother by the oracle smoother, which is the expert
that GNN smoother imitates. We compare these two smoothers, given the same path explored by

5

the GNN explorer on the test problems. As shown in Figure 5, our smoother requires much fewer
collision checks and time, while maintaining comparable improvement on the explored path, which
is contributed by the incremental way of smoothing, and the generalizablity of the GNN. More
specifically, the GNN smoother requires 3.9%, 8.8%, 10.5%, 8.0%, 1.9%, 3.7%, 3.5% as many
collision checks as the oracle on each environment, while maintaining 80.7%, 86.9%, 101.5%, 93.2%,
94.9%, 103.2%, 109.9% as much improvement as the oracle for each environment.

5.4 Varying the k in k-NN

As suggested in Xue and Kumar [7], we set the k in the k-NN graph as proportional to the logarithm
of the number of vertices, which is formulated as dk0 · log |Vf |

log 100 e. Here we test different k0 for the
k-NN, choosing among {1, 2, 4, 10, 20, 40}, as demonstrated in Figure 6.

It is not surprising for the success rate to increase when k increases, since there are more edges
in the graph, which increases the possibility to find a feasible path. The path cost also decreases
with increasing k, since on average there might be fewer segments on a path. The collision checks
and total running time first decrease then increase, since larger k brings higher possibility to find a
feasible path with fewer intermediate vertices, but also brings more edges to check on the frontier.

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

1 2 4 10 20 40
0

2k

4k

6k

8k

10k

Collision Check

1 2 4 10 20 40
0

5

10

15

20

Path Cost

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Success Rate

0 10 20 30 40
0

200

400

600

800

1000

1200
Total Time

Figure 6: Ablation study on different k0 for k-NN. Performances are best at k0 ∈ [10, 20].

5.5 Varying the Batch Size

In this experiment, we inspect the effect of the batch size. While constraining the maxi-
mum sampling number from free space to be 1000, we set the batch sampling size among
{50, 100, 200, 250, 500, 1000}. We see that the success rate drops when the batch size increases,
since the GNN explorer is given fewer opportunities to fail and re-sample. The collision checks grows
with the batch size, because the graphs would contain more edges with larger batch size on average.
The path cost is lower with larger batches, similar to the effect of higher k, due to higher possibility
to find a feasible path with fewer intermediate vertices. The total time raises when the batch size goes
larger, because larger batches brings denser graphs, which enlarges both CPU and GPU costs.

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

2

4

6

8

10
2D Easy 2D Hard

UR5 Snake

Kuka7D 13D

14D

Pa
th

 C
os

t

50 100 200 250 500 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

Collision Check

50 100 200 250 500 1000
0

2

4

6

8

10

Path Cost

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Success Rate

0 200 400 600 800 1000
0

200

400

600

800

1000

Total Time

Figure 7: Ablation study on different batch size for batch sampling. Larger batches tend to yield
lower success rate and path costs, while requiring more collision checks and running time.

6 Hyperparameters

The hyperparameters that we use are listed in the following table.

6

Hyperparameters Values
Maximum sampling number 1000

k for k-NN d10 · log |Vf |
log 100 e

GNN batch size 100
BIT* batch size 100

RRT*/NEXT step size on 2D 5e-2
RRT*/NEXT step size on 7D/13D/14D 5e-1

Training epoch 20
Training batch size 8

Learning rate 1e-3
Random seeds 1234, 2341, 3412, 4123

7 Algorithms

Algorithm 1: GNNExplorer
Input: obstacles O, start vs, goal vg , batch size n, node limit Tmax
Sample n nodes from Cfree to Vf
Sample n nodes from Cobs to Vc
Initialize G = {V : {vs, vg} ∪ Vf ∪ Vc, E : k-NN(Vf) ∪ k-NN(V)}
Initialize i = 0, E0 = k-NN(Vf), VT0 = {vs}, ET0 = ∅
η = NE(V,E,O)
repeat

select ei with η
Ei ← Ei \ {ei}
if ei : (vi, v′i) ⊆ Cfree then
VTi+1

← VTi ∪ {v′i}
ETi+1 ← ETi ∪ {ei}
Ei+1 ← Ei
Ef (Ti+1)← {ej : (vj , v′j) ∈ Ei+1 | vj ∈ VTi+1 , v

′
j 6∈ VTi+1}

i← i+ 1
if ||v′i − vg||22 ≤ δ then
π ← path from vs to vg on tree Ti
return π

end if
end if
if Ei ∩ Ef (Ti) == ∅ then

Sample n nodes from Cfree, add to Vf
Sample n nodes from Cobs, add to Vc
V ← {vs, vg} ∪ Vf ∪ Vc
Ei ← k-NN(Vf) \ (E \ Ei)
E ← k-NN(Vf) ∪ k-NN(V)
η = NE(V,E,O)

end if
until |Vf | > Tmax
return ∅

The smoothing oracle that we use is similar to the approach of gradient-informed path smoothing
proposed by Heiden et al. [4]. Since the gradient in the configuration space is complex, we replace
the gradient smoother by a random perturbation smoother. The oracle smoother jointly calls the
random perturbation smoother and a segment smoother over multiple iterations. These two smoothers
are described in Algorithm 3 and 4.

7

Algorithm 2: GNNSmoother
Input: step size ε, stop difference δ, outer loop L, inner loop K
Input: explored path π : (vi, v

′
i)i∈[0,k], free samples Vf , collided samples Vc

for n ∈ {1 . . . L} do
G← {V : {Vπ, Vf , Vc}, E : k-NN(Vπ, V) ∪ Eπ}
π′ : (ui, u

′
i)i∈[0,k] = NS(V,E)

for m ∈ {1 . . .K} do
d← 0
for ui ∈ Vπ′ , i ∈ [1, k] do
wi ← steer vi toward ui within step ε
if ei−1 : (vi−1, wi) ⊆ Cfree then

Replace vi ∈ π with wi
d← d+ ||wi − ui||22

end if
end for
if d ≤ δ then

break
end if

end for
end for
return π

Algorithm 3: RandomSmoother
Input: path π : (vi, v

′
i)i∈[0,k], perturbation range ε, iteration LR

for n ∈ {1 . . . LR} do
pick a random node vi ∈ π, 1 ≤ i ≤ k
ui ← vi + random(−ε, ε)
if (vi−1, ui), (ui, vi+1) ⊆ Cfree and
Cost[(vi−1, ui), (ui, vi+1)] < Cost[(vi−1, vi), (vi, vi+1)] then

replace vi with ui
end if

end for
return π

Algorithm 4: SegmentSmoother
Input: perturbed path π : (vi, v

′
i)i∈[0,k] from Algorithm 3

critical = [v0, v
′
k]

for i ∈ [1, k] do
if (vi−1, v′i) 6⊆ Cfree then

append vi to critical
end if

end for
πM = ∅
for adjacent pair vi, vj ∈ critical do
V ← {vp | vp ∈ π, i ≤ p ≤ j}
E ← {(va, vb) | va, vb ∈ V, (va, vb) ⊆ Cfree}
πij ← the shortest path from vi to vj via Dijkstra(V,E)
πM ← πM ∪ πij

end for
return πM

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

8

[2] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song. Learning to plan in high dimensions via
neural exploration-exploitation trees. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJgJDAVKvB.

[3] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

[4] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme. Gradient-informed path
smoothing for wheeled mobile robots. In 2018 IEEE International Conference on Robotics and
Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 1710–1717. IEEE, 2018.
doi: 10.1109/ICRA.2018.8460818. URL https://doi.org/10.1109/ICRA.2018.8460818.

[5] L. Lee, E. Parisotto, D. S. Chaplot, E. P. Xing, and R. Salakhutdinov. Gated path planning
networks. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 2953–2961. PMLR, 2018. URL
http://proceedings.mlr.press/v80/lee18c.html.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. 2017. URL https://arxiv.org/pdf/1706.03762.
pdf.

[7] F. Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless networks.
Wireless networks, 10(2):169–181, 2004.

[8] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. arXiv preprint arXiv:2010.14406, 2020.

9

https://openreview.net/forum?id=rJgJDAVKvB
https://doi.org/10.1109/ICRA.2018.8460818
http://proceedings.mlr.press/v80/lee18c.html
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

	More Details on GNN Architectures
	Obstacle Encoding
	Special Features

	Environments and Datasets
	Tables for Overall Performance
	Breakdown of the Total Planning Time
	Ablation Study
	Varying Training Set Size for Explorer
	Feature Choices
	GNN Smoother Versus Oracle Smoother
	Varying the k in k-NN
	Varying the Batch Size

	Hyperparameters
	Algorithms

