
An Analysis of Constant Step Size SGD in the Non-convex
Regime: Asymptotic Normality and Bias

SUPPLEMENTARY DOCUMENT

A Proofs for Sections 2 and 3

A.1 Preliminaries and Additional Notations

Note that the sequence of iterates {θ(η)
k }k≥0 is a homogeneous Markov chain [1]. We denote the

(sub-)σ-algebra (of F) of events up to and including the k-th iteration as Fk. By definition, the
discrete-time stochastic process defined in (2) is adapted to its natural filtration {Fk}k≥0. We denote
the Markov kernel on (Rd,B(Rd)) associated with SGD iterates (2) by P with

P (θ
(η)
k , A) = P(θ

(η)
k+1 ∈ A|θ

(η)
k ) P− a.s., ∀A ∈ B(Rd), k ≥ 0 .

Define the k-th power of this kernel iteratively: define P 1 := P, and for k ≥ 1, for all θ̃ ∈ Rd and
A ∈ B(Rd), define

P k+1(θ̃, A) :=

∫
Rd
P (θ̃, dθ)P k(θ,A) .

For any function φ : Rd → R and k ≥ 0, define the measurable function P kφ(θ) : Rd → R for all
θ ∈ Rd via

P kφ(θ) =

∫
φ(θ̃)P k(θ, dθ̃) .

Given the Lφ-Lipschitz function φ : Rd → R and the expectation of φ under the stationary measure
πη, define the function h as

h : Rd → R
θ 7→ φ(θ)− πη(φ) .

Note that πη(h) = 0 and h is Lφ-Lipschitz. Define the partial sum Sn(φ) :=
∑n−1
k=0 h(θ

(η)
k ).

Moreover, we define

θ̄η :=

∫
Rd
θdπη(θ) .

A.2 Proofs of Proposition 2.1 and Theorem 2.1

We start with some preliminary results required to prove the CLT.

Lemma A.1. Under Assumptions 2.1-2.3, it holds for any η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
and any

fixed initial point θ(η)
0 = θ0 ∈ Rd that

E[ ‖θ(η)
k+1‖

2 + 1|Fk] ≤ α†( ‖θ(η)
k ‖

2 + 1) + β† .

Here, α† ∈ (0, 1) and β† ∈ (0,∞) are constants depending on η. The explicit formulas of α†, β† are
given in the proof.

Proof of Lemma A.1. Define Uη :=
α−
√

max{α2−(3L2+Lξ),0}
3L2+Lξ

. Given η ∈ (0, Uη), define

α† = 1 + η2(3L2 + Lξ)− 2ηα ,

and note that with this definition α† ∈ (0, 1) whenever η ∈ (0, Uη). Then, with η, α†, and the fixed
initial point θ(η)

0 = θ0 ∈ Rd, we set

β† := κ(α
1/2
† − α†) ,
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where

κ :=
4η(α+ β) + 12η2L2

α
1/2
† − α†

∨
1 .

It follows that β† > 0. Note that

E[1 + ‖θ(η)
k+1‖

2|Fk]

=E[1 + ‖θ(η)
k − η

(
∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )
)
‖2|Fk]

=1 + E
[
‖θ(η)
k ‖

2 + η2 ‖∇f(θ
(η)
k )‖2 + η2 ‖ξk+1(θ

(η)
k )‖2 − 2η〈θ(η)

k , ∇f(θ
(η)
k )〉|Fk

]
.

The last step follows from the Assumption 2.3. By Assumption 2.1, we have

‖∇f(θ
(η)
k )‖2 ≤ L2(1 + ‖θ(η)

k ‖)
2 .

Squaring both sides and using the fact that (1 + ‖θ(η)
k ‖)2 ≤ 3( ‖θ(η)

k ‖2 + 3) gives

‖∇f(θ
(η)
k )‖2 ≤ 3L2( ‖θ(η)

k ‖
2 + 3) .

By Assumption 2.2, we obtain

〈θ(η)
k , ∇f(θ

(η)
k )〉 ≥ α ‖θ(η)

k ‖
2 − β .

By Assumption 2.3, it holds that

E[ ‖ξk+1(θ
(η)
k )‖2|Fk] ≤ Lξ(1 + ‖θ(η)

k ‖
2) .

Plugging the previous three inequalities into the first display provides us with

E[1 + ‖θ(η)
k+1‖

2|Fk] ≤ 1 + 9η2L2 + η2Lξ + 2ηβ + (1 + 3η2L2 + η2Lξ − 2ηα) ‖θ(η)
k ‖

2 . (10)

Recall that α† = 1 + η2(3L2 + Lξ)− 2ηα. Plugging α† back into the previous display yields

E[ ‖θ(η)
k+1‖

2 + 1|Fk] ≤ α†( ‖θ(η)
k ‖

2 + 1) + 2η(α+ β) + 6η2L2 .

Note that β† = κ(α
1/2
† − α†), where

κ ≥ 4η(α+ β) + 12η2L2

α
1/2
† − α†

.

It then follows that E[ ‖θ(η)
k+1‖2 + 1|Fk] ≤ α†( ‖θ(η)

k ‖2 + 1) + β† as desired.

Corollary A.1 (Bounded second moment). Under the assumptions stated in Lemma A.1, with the

constant step size η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
the stationary distribution πη satisfies

µ2,η :=

∫
‖θ‖2πη(dθ) ≤ 3 +

2β

α
.

Proof of Corollary A.1. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

By display (10), it holds that

E[‖θ(η)
k+1‖

2] ≤ 9η2L2 + η2Lξ + 2ηβ + (1 + 3η2L2 + η2Lξ − 2ηα) ‖θ(η)
k ‖

2 .

Using the fact that by stationarity E[‖θ(η)
k+1‖2] = E[‖θ(η)

k ‖2] and rearranging the previous display
gives

E[‖θ(η)
k ‖

2] ≤ 9ηL2 + ηLξ + 2β

2α− η(3L2 + Lξ)
≤ 3 +

2β

α
.
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Corollary A.2 (Lyapunov condition). Under the assumptions stated in Lemma A.1, given the step
size specified in Lemma A.1, it holds that

E[V (θ
(η)
k+1)|Fk] ≤ α†V (θ

(η)
k ) + β† ,

where the Lyapunov function V (θ) is defined via

V (θ) := ‖θ‖2 + 1 . (11)

Observe that by the proof of Lemma 15.2.8 in [75] this also implies that the drift condition (V4)
in [75] holds with V defined above, b = β†, β = (1− α†)/2 and the following set C

C :=
{
θ ∈ Rd : V (θ) ≤ 2β†

γ − α†

}
, (12)

for an arbitrary but fixed γ ∈ (α
1/2
† , 1).

Corollary A.3 (Minorization condition). Under Assumptions 2.1-2.3, given the step size specified in
Lemma A.1, there exists a constant ζ > 0, and a probability measure ν† (depending on η which is
suppressed in the notation) with ν†(C) = 1 and ν†(Cc) = 0, such that

P (θ,A) ≥ ζν†(A)

holds for any A ∈ B(Rd) and θ ∈ C for the set C defined in (12).

Proof of Corollary A.3. Recall the definition of the markov chain (2), we have

ξk+1(θ
(η)
k ) =

θ
(η)
k − θ

(η)
k+1

η
−∇f(θ

(η)
k ) .

Recall that the distribution of ξ1(θ) can be decomposed as µ1,θ + µ2,θ where µ1,θ has density pθ. It
then holds for any θ ∈ Rd that

P (θ, C) = P(θ
(η)
k+1 ∈ C|θ

(η)
k = θ) ≥

∫
t∈C

1

ηd
pθ

(θ − t
η
−∇f(θ)

)
dt > 0 . (13)

This implies every state in the state space is within reach of any other state over the set C. Define the
probability measure ν† with density

pν†(t) := I{θ ∈ C} infθ∈C p(t|θ)∫
t∈C infθ∈C p(t|θ)dt

,

and set the constant ζ :=
∫
t∈C infθ∈C p(t|θ)dt. By Assumption 2.3 and the display (13), it holds that

ζ > 0, ν†(C) = 1 and ν†(Cc) = 0. Moreover, it holds that any A ∈ B(Rd) and θ ∈ C that

P (θ,A) ≥ ζν†(A) .

This implies the minorization condition is met for all choices of η given by Lemma A.1.

Lemma A.2. Under Assumptions 2.1-2.3, the chain {θ(η)
k }k≥0 is an aperiodic, ψ-irreducible, and

Harris recurrent chain, with an invariant measure πη.

Remark A.1. This lemma implies the chain {θ(η)
k }k≥0 is positive.

Proof of Lemma A.2. Step 1: We show that the chain {θ(η)
k }k≥0 is aperiodic. By Assumption 2.3,

there does not exist d ≥ 2 and a partition of size d + 1 such that B(Rd) = (∪̇di=1Di)∪̇N, where
∪̇ denotes the disjoint union, and N is a ψ-null (transient) set, such that P (θ,Di+1) = 1 holds for
ψ-a.e. θ ∈ Di. Thus, the largest period of the chain defined in (2) is 1, which implies the chain is
aperiodic.
Step 2: We show that the chain {θ(η)

k }k≥0 is ψ-irreducible, and recurrent with an invariant prob-
ability measure. We note that by Assumption 2.3, there exists some non-zero σ-finite measure ψ
on (Rd,B(Rd)) such that for any θ ∈ Rd and any A ∈ B(Rd) with ψ(A) > 0, it holds that

P(θ
(η)
k+1 ∈ A|θ

(η)
k = θ) ≥

∫
θ̃∈A

1

ηd
pθ

(θ − θ̃
η
−∇f(θ)

)
dθ̃ > 0 ,
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where pθ was defined in Assumption 2.3. This implies the Markov chain defined in (2) is ψ-irreducible.
By the Lyapunov condition established in Corollary A.2, part (iii) of Theorem 15.0.1 in [75] holds. It
then follows by condition (i) of this theorem that the chain {θ(η)

k }k≥0 is recurrent with an invariant
probability measure πη.
Step 3: We show that the chain is Harris recurrent. Define the hitting time τC := inf{n > 0 : θ

(η)
n ∈

C}, where the set C is defined in (12). By Corollary A.4 in [72], it holds for any fixed θ(η)
0 = θ0 ∈ Rd

that

P(τC <∞) = 1 .

By Proposition 10.2.4 in [58], the chain is Harris recurrent.

Now, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. (a) By Lemma A.2, the chain {θ(η)
k }k≥0 is an aperiodic Harris recurrent

chain, with an invariant measure πη. Note that the chain is also positive. Thus condition (i) of
Theorem 13.0.1 in [75] is satisfied and this implies the existence of a unique invariant measure πη.
The fact that this stationary distribution has a finite second moment was established in Corollary A.1.
(b) By Lemma A.2, the iterates {θ(η)

k }k≥0 are realiztions from a ψ-irreducible and aperiodic chain.
Note that

|φ(θ)| ≤κφ(1 + ‖θ‖)

≤2κφ
√

1 + ‖θ‖2
≤2κφV (θ) .

By Corollary A.2, the condition (iv) of Theorem 16.0.1 in [75] with V (θ) = 2κφ(1 + ‖θ‖2) is
fulfilled. By part (ii) in that theorem, it holds that for fixed θ(η)

0 = θ0 ∈ Rd

|P kφ(θ0)− πη(φ)| ≤κρkV (θ0) ,

where ρ ∈ (0, 1), κ > 0 are constants depending on φ.

We now prove Theorem 2.1. In order to do so, we first derive the central limit theorem for the function
h when the Markov chain starting from its stationary distribution πη.
Lemma A.3 (CLT with stationary initial distribution). Assume Assumptions 2.1-2.3 hold. For any

step size η ∈
(

0,
α−
√

(α2−(3L2+Lξ))∨0

3L2+Lξ

)
, it holds that

n−1/2Sn(φ) −→
Pπη
N (0, σ2

πη (φ)) ,

where σ2
πη (φ) = 2πη(hĥ)− πη(h2) with ĥ =

∑∞
k=0 P

kh.

Proof of Lemma A.3. We prove the claim by appealing to Theorem 17.0.1 in [75]. In order to do
so, we first show that the chain {θ(η)

k }k≥0 is V -uniformly ergodic, where the function V is defined
in (11). Then, we establish the CLT by employing Theorem 17.0.1 in [75].
Step 1: We show that the chain {θ(η)

k }k≥0 is V -uniformly ergodic. By Lemma A.2 and Proposi-
tion 2.1, the chain {θ(η)

k }k≥0 is positive Harris recurrent with a unique stationary distribution πη.
Note that the chain {θ(η)

k }k≥0 is also ψ-irreducible and aperiodic. By Corollary A.2, condition
(iv) of Theorem 16.0.1 in [75] is satisfied. Then, it follows from part (i) of this theorem that the
iterates {θ(η)

k }k≥0 is V -uniformly ergodic.
Step 2: We now establish the CLT for the averaged SGD iterates starting from the stationary distribu-
tion πη . Note that for the test function φ(θ), it holds for any θ ∈ Rd that

|φ(θ)| ≤ κφ(1 + ‖θ‖) ≤ 2κφ
√

1 + ‖θ‖2 ,

which implies
|φ(θ)|2 ≤ 4κ2

φV (θ) .
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Thus the conditions required to leverage Theorem 17.0.1 (ii), (iv) with g(θ) = φ(θ) in [75] are
satisfied. Hence, by Theorem 17.0.1 in [75], we obtain

1√
n

n−1∑
k=0

h(θ
(η)
k ) −→

Pπη
N (0, σ2

πη (φ)) ,

where σ2
πη (φ) = 2πη(hĥ)− πη(h2) > 0.

Proof of Theorem 2.1. By Lemma A.2 and Lemma A.3, the desired result follows readily from
Proposition 17.1.6 in [75].

A.3 Proofs of Proposition B.1, Theorem 3.1, Theorem 3.2, and Theorem 3.3

We need the following auxiliary lemmas.

Lemma A.4. Assumptions 2.1 and 2.2 implies

〈∇f(θ), θ − θ∗〉 ≥ α′‖θ − θ∗‖2 − β′ ,

where θ∗ ∈ Rd is any critical point of function f , and α′, β′ are positive constants.

Proof of Lemma A.4. When θ∗ = 0, the result follows trivially from Assumption 2.2. Assume
‖θ∗‖ > 0. Note that

〈∇f(θ), θ − θ∗〉 = 〈∇f(θ), θ〉 − 〈∇f(θ), θ∗〉 .

By Assumption 2.2, it holds that

〈∇f(θ), θ〉 ≥ α‖θ‖2 − β
≥ α(‖θ − θ∗‖2 + ‖θ∗‖2 − 2‖θ∗‖‖θ − θ∗‖)− β .

By Assumption 2.1, Cauchy-Schwarz inequality and triangular inequality, it holds that

〈∇f(θ), θ∗〉 ≤ ‖∇f(θ)‖‖θ∗‖ ≤ L‖θ∗‖(1 + ‖θ − θ∗‖+ ‖θ∗‖) .

Combing the previous two displays yields

〈∇f(θ), θ − θ∗〉
≥α(‖θ − θ∗‖2 + ‖θ∗‖2 − 2‖θ∗‖‖θ − θ∗‖)− β − L‖θ∗‖(1 + ‖θ − θ∗‖+ ‖θ∗‖)

≥α
2
‖θ − θ∗‖2 − β − L‖θ∗‖2 − L‖θ∗‖ .

The desired result follows by setting α′ := α
2 and β′ := β +

(√
α+ 2L√

α

)2‖θ∗‖2 + L‖θ∗‖.

Lemma A.5. Under Assumptions 2.2 and 3.1, it holds for any k ≥ 1 and θ ∈ Rd that

E[‖ξk+1(θ)‖r] ≤ L′ξ
r/4

(1 + ‖θ − θ∗‖r) , for r ∈ {2, 3, 4},

where θ∗ ∈ Rd is any critical point of function f , and L′ξ := 8Lξ(1 + (β/α)4).

Proof of Lemma A.5. By Assumptions 2.2 and 3.1, it holds that

E[‖ξk+1(θ)‖4] ≤ Lξ(1 + ‖θ‖4)

≤ Lξ(1 + 8‖θ − θ∗‖4 + 8‖θ∗‖4)

≤ Lξ(1 + 8‖θ − θ∗‖4 + 8(β/α)4)

≤ L′ξ(1 + ‖θ − θ∗‖4) ,
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where L′ξ := 8Lξ(1 + (β/α)4). Similarly, for r ∈ {2, 3} we have

E[‖ξk+1(θ)‖r] ≤ E[‖ξk+1(θ)‖4]r/4

≤ Lr/4ξ (1 + ‖θ‖4)r/4

≤ Lr/4ξ (1 + ‖θ‖r)

≤ Lr/4ξ (1 + 2r−1‖θ − θ∗‖r + 2r−1‖θ∗‖r)

≤ Lr/4ξ (1 + 2r−1‖θ − θ∗‖r + 2r−1(β/α)r)

≤ L′ξ
r/4

(1 + ‖θ − θ∗‖r) ,

where L′ξ is defined above.

Lemma A.6. Under Assumptions 2.1, 2.2, and 3.1, with step size η < 1∧ 1
10L̄

, it holds for any k ≥ 0
that

E[‖θ(η)
k+1 − θ

∗‖4|Fk]

≤(1− 4ηα′ + 32L†η
2)‖θ(η)

k − θ
∗‖4 + η(4β′ + 24L̄2 + 12L′ξ

1/2
+ 64)‖θ(η)

k − θ
∗‖2

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32(L′ξ)
3/2) . (14)

where L† := L̄2 + 16
(
L

3/4
ξ (1 + (β/α)3) ∨ L1/2

ξ (1 + (β/α)2) ∨ Lξ(1 + (β/α)4)
)

with L̄ :=

L(1 + ‖θ∗‖), L′ξ is from Lemma A.5, and θ∗ is any critical points of fuction f.

Proof of Lemma A.6. Define ∆k := ‖θ(η)
k − θ∗‖. It holds by Assumption 2.1 that

‖∇f(θ
(η)
k )‖ ≤ L̄∆k + L̄ ,

where L̄ = L(‖θ∗‖+ 1). Note that

∆4
k+1 =(∆2

k + η2 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2 − 2η〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉)2

=∆4
k + η4 ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖4 + 4η2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2

+ 2η2∆2
k ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2 − 4η∆2

k〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉

− 4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉
=∆4

k + I + II + III + IV + V ,

where

I := η4 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖4

II := 4η2〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2

III := 2η2∆2
k ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2

IV := −4η∆2
k〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉

V := −4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉 .

To obtain the expectation E[∆4
k+1], we first calculate the conditional expectation E[∆4

k+1|Fk]. For
this, we proceed the conditional expectation of the above five terms separately. Note that

E[I|Fk] =η4E[ ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖4|Fk]

≤η4E[8 ‖∇f(θ
(η)
k )‖4 + 8 ‖ξk+1(θ

(η)
k )‖4|Fk]

≤8η4(8L̄4∆4
k + 8L̄4 + L′ξ∆

4
k + L′ξ) .

The first inequality follows from the fact that (x+ y)4 ≤ 8(x4 + y4),∀x, y > 0. The last inequality
follows from Assumptions 2.1 and Lemma A.5. Using the same trick and invoking Cauchy-Schwarz
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inequality gives

E[II|Fk] =4η2E[〈∇f(θ
(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉2|Fk]

≤4η2∆2
kE[ ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2|Fk]

≤8η2∆2
k(2L̄2∆2

k + 2L̄2 + L′ξ
1/2

∆2
k + L′ξ

1/2
) .

Similarly, we have

E[III|Fk] =2η2∆2
kE[ ‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2|Fk]

≤4η2∆2
k(2L̄2∆2

k + 2L̄2 + L′ξ
1/2

∆2
k + L′ξ

1/2
) .

Using Cauchy-Schwarz inequality again, we obtain

E[V|Fk] =E[−4η3 ‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖2〈∇f(θ

(η)
k ) + ξk+1(θ

(η)
k ), θ

(η)
k − θ

∗〉|Fk]

≤4η3E[‖∇f(θ
(η)
k ) + ξk+1(θ

(η)
k )‖3‖θ(η)

k − θ
∗‖|Fk]

=4η3∆kE
[
‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖3|Fk

]
≤4η3∆kE

[
4‖∇f(θ

(η)
k )‖3 + 4‖ξk+1(θ

(η)
k )‖3|Fk

]
.

Note that by Lemma A.5, it holds for any k ≥ 1 and θ ∈ Rd that

E[‖ξk(θ)‖3] ≤ L′ξ
3/4

(1 + ‖θ − θ∗‖3) .

Combining this with the previous display yields

E[V|Fk] ≤16η3∆k(4L̄3∆3
k + 4L̄3 + L′ξ

3/4
+ L′ξ

3/4
∆3
k)

=64L̄3η3∆4
k + 16η3L′ξ

3/4
∆4
k + 16η2(∆kη4L̄3 + ∆kηL

′
ξ
3/4

) .

Collecting pieces gives

E[∆4
k+1|Fk] ≤∆4

k(1 + 64η4L̄4 + 64η3L̄3 + 24η2L̄2 + 8η2L′ξ + 12η2L′ξ
1/2

+ 16η2L′ξ
3/4

)

− 4η∆2
k〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉

+ η2
(
64η2L̄4 + 8η2L′ξ + 24L̄2∆2

k + 12L′ξ∆
2
k + 64∆2

k + 32(η4L̄3)2 + 32(ηL′ξ
3/4

)2
)

≤∆4
k[1 + 32η2(L̄2 + L′ξ + L′ξ

1/2
+ L′ξ

3/4
)]− 4η∆2

k〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉

+ η
(
64L̄4η + 8L′ξη + 24L̄2∆2

k + 12L′ξ
1/2

∆2
k + 64∆2

k + 32(4L̄3)2η + 32(L′ξ)
3/2η

)
.

The above inequalities are based on the fact that η < 1
10L̄
∧ 1 and xy ≤ 2x2 + 2y2,∀x, y > 0. By

Lemma A.4, we handle the term IV as following

E[∆4
k+1|Fk] ≤∆4

k

(
1− 4ηα′ + 32η2(L̄2 + L′ξ + L′ξ

1/2
+ L′ξ

3/4
)
)

+ η
(
4β′∆2

k + 64L̄4η + 8L′ξη + 24L̄2∆2
k + 12L′ξ

1/2
∆2
k + 64∆2

k + 32(4L̄3)2η + 32L′ξ
3/2
η
)
.

Define L† := L̄2 + 16
(
L

3/4
ξ (1 + (β/α)3) ∨ L1/2

ξ (1 + (β/α)2) ∨ Lξ(1 + (β/α)4)
)

. Note that

L† > L̄2 + L′ξ + L′ξ
1/2

+ L′ξ
3/4
. Combing this with the previous display gives

E[∆4
k+1|Fk]

≤∆4
k(1− 4ηα′ + 32η2L†)

+ η
(
4β′∆2

k + 64L̄4η + 8L′ξη + 24L̄2∆2
k + 12L′ξ

1/2
∆2
k + 64∆2

k + 32(4L̄3)2η + 32L′ξ
3/2
η
)

≤(1− 4ηα′ + 32L†η
2)∆4

k + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)∆2
k + η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ

3/2
) .
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Lemma A.7. Assume Assumptions 2.1-2.3 holds. With the step size

η ≤
α−

√
(α2 − (3L2 + Lξ)) ∨ 0

3L2 + Lξ
∧ α

64L†
∧ 1 ,

the chain (2) has the stationary distribution πη , and the chain has finite 4-th moment:

E[‖θ(η)
k+1‖

4] ≤ µ4,η ,

where

µ4,η :=
8

7α

(
(β + 6L2 + 3L

1/2
ξ + 16)µ2,η + 16L4 + 2Lξ + 128L6 + 8L

3/2
ξ

)
with µ2,η defined in Corollary A.1, and L† defined in Lemma A.6.

Proof of Lemma A.7. Similar to display (14), we can derive

E[‖θ(η)
k+1‖

4|Fk] ≤(1− 4ηα+ 32L†0η
2)‖θ(η)

k ‖
4

+ η
[
(4β + 24L2 + 12L

1/2
ξ + 64)‖θ(η)

k ‖
2 + η(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
,

where L†0 := L2 + Lξ + L
1/2
ξ + L

3/4
ξ . Recall the definition of L† in Lemma A.6, it holds that

L† ≥ L†0, which implies

E[‖θ(η)
k+1‖

4|Fk] ≤(1− 4ηα+ 32L†η
2)‖θ(η)

k ‖
4

+ η
[
(4β + 24L2 + 12L

1/2
ξ + 64)‖θ(η)

k ‖
2 + η(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
,

Note that the chain starts from the stationary distribution πη, taking the expectation on both sides
gives

(4ηα− 32L†η
2)E[‖θ(η)

k ‖
4]

≤η(4β + 24L2 + 12L
1/2
ξ + 64)E[‖θ(η)

k ‖
2] + η2(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ ) .

We also note that E[‖θ(η)
k ‖2] = µ2,η for µ2,η from Corollary A.1. Plugging this into the previous

display and rearranging the inequality yields

E[‖θ(η)
k+1‖

4]

≤ η

4ηα− 32L†η2
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η +

η2

4ηα− 32L†η2
(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

≤ η

4ηα− 32L†η2
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η +

η

4ηα− 32L†η2
(64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

≤ 2

7α

[
(4β + 24L2 + 12L

1/2
ξ + 64)µ2,η + (64L4 + 8Lξ + 32(4L3)2 + 32L

3/2
ξ )

]
as desired.

We are now ready to prove Proposition B.1.

Proof of Proposition B.1. Define ∆k := ‖θ(η)
k − θ∗‖. By Lemma A.6, we have

E[∆4
k+1|Fk]

≤(1− 4ηα′ + 32L†η
2)∆4

k + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)∆2
k

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

) .

Taking expectation on both sides then gives

E[∆4
k+1]

≤(1− 4ηα′ + 32L†η
2)E[∆4

k] + η(4β′ + 24L̄2 + 12L′ξ
1/2

+ 64)E[∆2
k]

+ η2(64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

) .
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Set

% := 1− 4ηα′ + 32L†η
2

A1 := 64L̄4 + 8L′ξ + 32(4L̄3)2 + 32L′ξ
3/2

A2 := 4β′ + 24L̄2 + 12L′ξ
1/2

+ 64 .

By Cauchy-Schwatz inequality, we then have

E[∆4
k+1] ≤ %E[∆4

k] +A1η
2 +A2E1/2[∆4

k]η .

Note that when 0 < η <
α′−
√

(α′2−4L†)

16L†
1l(α′2 > 8L†) + α′

32L†
1l(α′2 ≤ 8L†), it follows that

% >
1

2
1l(α′2 ≥ 8L†) + (1− 3α′2

32L2
†

)1l(α′2 < 8L†) ≥
1

4
.

Set D :=
√
A1 ∨A2. We then find

E1/2[∆4
k+1] ≤ √%E1/2[∆4

k] +Dη .

By a straightforward induction, we have

E1/2[∆4
k] ≤ %k/2E1/2[∆4

0] +
Dη

1−√%
.

Notice that η ≤ α′

16L†
, it then follows that

% = 1− 4ηα′ + 32L†η
2 ≤ 1− 2ηα′ ,

which implies

1

1−√%
≤ 1

1−
√

1− 2ηα′
≤ 1

ηα′
.

Combining this with previous display gives

E1/2[∆4
k] ≤ %k/2E1/2[∆4

0] +
D

α′
.

By Proposition 2.1, there exists a unique stationary distribution πη .

Consider the chain starting from the stationary distribution πη. Note that E[∆4
0] ≤ 8(E[‖θ(η)

0 ‖4] +
‖θ∗‖4). By Lemma A.7, it follows that

E[∆4
0] ≤ 8µ4,η + 8‖θ∗‖4 ,

where the constant µ4,η is defined in Lemma A.7. Plugging this into previous display provides us
with

(∫
‖θ − θ∗‖4πη(dθ)

)1/4

= O(1) .

Note that it holds for the Lφ-Lipschitz continuous test function φ that

|πη(φ)− φ(θ∗)| ≤ Lφ
∫
‖θ − θ∗‖πη(dθ)

≤ Lφ
[∫
‖θ − θ∗‖4πη(dθ)

]1/4
,

Thus, we obtain

|πη(φ)− φ(θ∗)| = O(1)

as desired.
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To prove Theorem 3.1, we need the following lemma.

Lemma A.8. For any a, b, δ > 0, it holds for any x ≥ δ
a +

√
b
a that

ax2 − b ≥ δx .

Proof of Lemma A.8. Define the function h(x) := ax2 − b − δx. When x ≥ δ+
√
δ2+4ab
2a , it holds

that h(x) ≥ 0. Note that
√
δ2 + 4ab ≤ δ +

√
4ab, it follows that when

x ≥ δ + δ +
√

4ab

2a
,

it holds that h(x) ≥ 0. The desired result then follows readily.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

Define ∆k := ‖θ(η)
k − θ∗‖. Note that under Assumptions 3.2 and 3.1, Lemma A.5 still holds. By

Assumptions 2.1, 3.1, and Lemma A.5 , we have

E
[
∆2
k+1|Fk

]
=E
[
∆2
k + η2 ‖∇f(θ

(η)
k )‖2 + η2 ‖ξk+1(θ

(η)
k )‖2 − 2η〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉|Fk
]

≤∆2
k + η2

(
3L2(2∆2

k + 2‖θ∗‖2 + 3) + L′ξ
1/2

(1 + ∆2
k)
)
− 2η〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉

=∆2
k + 6L2η2∆2

k + L′ξ
1/2
η2∆2

k + η2C1 − 2η〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉

where C1 := 6‖θ∗‖2L2 + 9L2 +L′ξ
1/2
. Note that the chain starts from the stationary distribution πη,

which implies E[∆2
k+1] = E[∆2

k] for all k ≥ 0. Taking the expectation on both sides and rearranging
the inequality yields

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≤ η(3L2 + L′ξ
1/2

)E[∆2
k] +

η

2
C1 .

By Corollary A.1, it follows that

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≤ C2η , (15)

where C2 := 2(3L2 + L′ξ
1/2

)(µ2,η + ‖θ∗‖2)+C1/2 and µ2,η is defined in Corollary A.1. Moreover,
by Assumption 3.2, Lemma A.8, and Jensen’s inequality, we have

E[〈∇f(θ
(η)
k ), θ

(η)
k − θ

∗〉] ≥ δE[∆k1l(∆k ≥ R)] + g(E[∆k1l(∆k < R)]) .

Combining this with previous display provides us with

E[∆k1l(∆k ≥ R)] ≤ C2

δ
η ,

and

E[∆k1l(∆k < R)] ≤ g−1(C2η) .

Collecting pieces then gives

E
[
∆k

]
=E
[
∆k1l(‖θ(η)

k − θ
∗‖ < R)

]
+ E

[
∆k1l(‖θ(η)

k − θ
∗‖ ≥ R)

]
≤C2

δ
η + g−1(C2η) .

Thus, it holds for the Lφ-Lipschitz continuous test function φ that

|πη(φ)− φ(θ∗)| ≤ Lφ
∫
‖θ − θ∗‖πη(dθ) ≤ Lφ

(C2

δ
η + g−1(C2η)

)
.
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Now, we provide the proof of Theorem 3.2.

Proof of Theorem 3.2. Consider the chain {θ(η)
k }k≥0 starting from the stationary distribution πη.

Note that by the assumption that ‖∇2f(θ)‖ ≤ L̃(1 + ‖θ‖) and Taylor expansion, we have

f(θ
(η)
k+1) =f(θ

(η)
k ) + 〈∇f(θ

(η)
k ), θ

(η)
k+1 − θ

(η)
k 〉+

1

2
(θ

(η)
k+1 − θ

(η)
k )>∇2f(θ̃)(θ

(η)
k+1 − θ

(η)
k )

≤f(θ
(η)
k ) + 〈∇f(θ

(η)
k ), θ

(η)
k+1 − θ

(η)
k 〉+

1

2
L̃‖θ(η)

k+1 − θ
(η)
k ‖

2(1 + ‖θ̃‖) ,

where θ̃ ∈ Rd is a convex combination between θ(η)
k+1 and θ(η)

k . By definition of SGD iterates in (2),
it follows that

f(θ
(η)
k+1) ≤f(θ

(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉+

L̃

2
η2‖∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )‖2(1 + ‖θ̃‖)

=f(θ
(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(1 + ‖θ̃‖)

≤f(θ
(η)
k )− η〈∇f(θ

(η)
k ), ∇f(θ

(η)
k ) + ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(1 + max{‖θ(η)

k ‖, ‖θ
(η)
k+1‖})

≤f(θ
(η)
k )− η‖∇f(θ

(η)
k )‖2 − η〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
+
L̃

2
η2
(
‖∇f(θ

(η)
k ‖

2 + ‖ξk+1(θ
(η)
k )‖2 + 2〈∇f(θ

(η)
k ), ξk+1(θ

(η)
k )〉

)
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖) .

Taking the conditional expectation on both sides, using Cauchy-Schwarz inequality, Assumption 3.1
and the fact that (1 + x4)1/2 ≤ 1 + x2,∀x > 0 gives

E[f(θ
(η)
k+1)|Fk]

≤f(θ
(η)
k ) + (

L̃

2
η2 − η)‖∇f(θ

(η)
k )‖2 +

L̃

2
Lξη

2(1 + ‖θ(η)
k ‖

2) + 0

+
L̃

2
η2E

[
‖∇f(θ

(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)|Fk

]
+
L̃

2
η2E1/2

[
‖ξk+1(θ

(η)
k )‖4|Fk

]
E1/2

[
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk
]

+ 0 + L̃η2E[‖∇f(θ
(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk]

≤f(θ
(η)
k ) + (

L̃

2
η2 − η)‖∇f(θ

(η)
k )‖2 +

L̃

2
Lξη

2(1 + ‖θ(η)
k ‖

2)

+
L̃

2
η2E

[
‖∇f(θ

(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)|Fk

]
+
L̃

2
η2L

1/2
ξ (1 + ‖θ(η)

k ‖
2)E1/2

[
(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk
]

+ L̃η2E[‖∇f(θ
(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk] .

We then take expectation on both sides. For this, we bound the last three terms separately. Note that
the chain starts from the initial distribution πη . By Hölder’s inequality, we obtain

E[‖∇f(θ
(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)]

≤E[‖∇f(θ
(η)
k )‖2‖θ(η)

k ‖] + E[‖∇f(θ
(η)
k )‖2‖θ(η)

k+1‖]

≤E1/2[‖∇f(θ
(η)
k )‖4]E1/2[‖θ(η)

k ‖
2] + E1/2[‖∇f(θ

(η)
k )‖4]E1/2[‖θ(η)

k ‖
2] .
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By Assumption 2.1 and the fact that (x+ y)4 ≤ 9(x4 + y4),∀x, y ∈ R, we have

E1/2[‖∇f(θ
(η)
k )‖4] ≤ L2E1/2[(1 + ‖θ(η)

k ‖)
4] ≤ 3L2

√
1 + E[‖θ(η)

k ‖4] .

By Lemma A.7, it holds that E[‖θ(η)
k ‖4] < µ4,η, where the constant µ4,η is defined in Lemma A.7.

Moreover, by Corollary A.1, we also have E[‖θ(η)
k ‖2] ≤ µ2,η, where the constant µ2,η is defined in

Corollary A.1. Combining these with previous display gives

E[‖∇f(θ
(η)
k )‖2(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)] ≤ 6L2

√
1 + µ4,η

√
µ2,η .

Using the same trick, we obtain

E
[
(1 + ‖θ(η)

k ‖
2)E1/2[(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk]
]

≤E1/2[(1 + ‖θ(η)
k ‖

2)2]E1/2
[
E[(‖θ(η)

k ‖+ ‖θ(η)
k+1‖)

2|Fk]
]

≤E1/2[2 + 2‖θ(η)
k ‖

4]E1/2
[
E[2‖θ(η)

k ‖
2 + 2‖θ(η)

k+1‖
2|Fk]

]
≤4E1/2[1 + ‖θ(η)

k ‖
4]E1/2[‖θ(η)

k ‖
2]

≤4
√
µ2,η

√
1 + µ4,η .

By Assumptions 2.1 and 3.1, we have

E
[
E[‖∇f(θ

(η)
k )‖‖ξk+1(θ

(η)
k )‖‖θ(η)

k+1‖|Fk]
]

≤E
[
‖∇f(θ

(η)
k )‖E1/2[‖ξk+1(θ

(η)
k )‖2|Fk]E1/2[‖θ(η)

k+1‖
2|Fk]

]
≤L1/2

ξ LE
[
(1 + ‖θ(η)

k ‖)(1 + ‖θ(η)
k ‖

2)1/2E1/2[‖θ(η)
k+1‖

2|Fk]
]

≤LL1/2
ξ E

[
(1 + ‖θ(η)

k ‖)
2E1/2[‖θ(η)

k+1‖
2|Fk]

]
≤LL1/2

ξ E1/2[(1 + ‖θ(η)
k ‖)

4]E1/4[‖θ(η)
k ‖

4]

≤LL1/2
ξ

√
8 + 8µ4,η(µ4,η)1/4

=3LL
1/2
ξ (µ4,η + µ

3/4
4,η ) .

Collecting pieces then gives

E[f(θ
(η)
k+1)]

≤E[f(θ
(η)
k )] + (

L̃

2
η2 − η)E[‖∇f(θ

(η)
k )‖2] + L̃Lξη

2(1 + µ2,η)

+ 3L̃L2η2µ
1/2
2,η

√
1 + µ4,η + 2L̃L

1/2
ξ η2µ

1/2
2,η

√
1 + µ4,η + 3L̃LL

1/2
ξ η2(µ4,η + µ

3/4
4,η )

≤E[f(θ
(η)
k )] + (

L̃

2
η2 − η)E[‖∇f(θ

(η)
k )‖2] + 12η2L̃(L+ L

1/2
ξ + L

1/4
ξ )2

(
1 + µ2,η + µ4,η + µ

3/4
4,η

)
.

Recall that the iterates {θ(η)
k }k≥0 starts from the stationary distribution πη and η < 2

L̃
. Rearranging

the above display gives

E[‖∇f(θ
(η)
k )‖2] ≤ 2M̃η

2− L̃η
,

where
M̃ := 12L̃(L+ L

1/2
ξ + L

1/4
ξ )2

(
1 + µ2,η + µ4,η + µ

3/4
4,η

)
.

By Assumption 3.3 and Jensen’s inequality, it holds that

E[‖∇f(θ
(η)
k )‖2] ≥E[g(f(θ

(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] + γE[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)]

≥g(E[(f(θ
(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)]) + γE[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)] .
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Combing this with previous display gives

0 ≤ E[(f(θ
(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] ≤ g−1

( 2M̃η

2− L̃η

)
0 ≤ E[(f(θ

(η)
k )]− f∗)1l(‖θ(η)

k − θ
∗‖ > R)] ≤ 2M̃η

2− L̃η
.

This implies

0 ≤ πη(f)− f∗ = E[(f(θ
(η)
k )]− f∗

= E[(f(θ
(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ ≤ R)] + E[(f(θ

(η)
k )− f∗)1l(‖θ(η)

k − θ
∗‖ > R)]

≤ g−1
( 2M̃η

2− L̃η

)
+

2M̃η

2− L̃η
.

When the test function φ satisfies φ = φ̃ ◦ f with the Lφ̃-Lipschitz function φ̃, we obtain

|πη(φ)− φ(θ∗)| ≤Lφ̃(πη(f)− f∗) ≤ Lφ̃
(
g−1

( 2M̃η

2− L̃η

)
+

2M̃η

2− L̃η

)
as desired.

We now prove Theorem 3.3.

Proof of Theorem 3.3. Consider the chain {θ(η)
k }k≥0 starting from the stationary distirbution πη. By

display (15), it holds that
E[〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉] ≤ C2η ,

where C2 is a positive constant defined in Theorem 3.1. Note that f is convex, this implies

0 ≤ f(θ
(η)
k )− f∗ ≤ 〈∇f(θ

(η)
k ), θ

(η)
k − θ

∗〉 .
Taking the expectation on both sides and combing this with the previous display gives

0 ≤ πη(f)− f∗ ≤ C2η .

The desired result readily follows for the test function φ satisfying φ = φ̃ ◦ f with the Lφ̃-Lipschitz
function φ̃.

B Proposition B.1

Proposition B.1. Let Assumptions 2.1,2.2, and 3.1 hold. For θ∗ denoting an arbitrary critical point
of the objective function f , define the constants L̄ := L(1 + ‖θ∗‖), and

cL,α :=
α−

√(
α2−(3L2+Lξ)

)
∨0

3L2+Lξ
and c†L,α :=

α−
√

(α2−16L†)∨0

64L†

(16)

with L† := L̄2 + 16
(
L

3/4
ξ

(
1 + (β/α)3

)
∨ L1/2

ξ

(
1 + (β/α)2

)
∨ Lξ

(
1 + (β/α)4

))
. Then, for SGD

iterates initialized at a point θ0 ∈ Rd and a step size satisfying η < 1∧ 1
10L̄
∧ cL,α ∧ c†L,α , we have

E
[
‖θ(η)
k − θ∗‖4

]1/2 ≤ ρ k ‖θ0 − θ∗‖2 +D , (17)

where ρ :=
√

1− 2αη + 32L†η2 ∈ (0, 1). Consequently, for any Lφ-Lipschitz test function φ,∣∣πη(φ)− φ(θ∗)
∣∣ ≤ Lφ√D ,

where D := 64
α

(
L̄4 + Lξ

(
1 + (β/α)4

)
+ 512L̄6 + 23L

3/2
ξ

(
1 + (β/α)6

))1/2

∨ 8
α

(
β + (

√
α+ 2L/

√
α)2‖θ∗‖+ L‖θ∗‖+ 6L̄2 + 9L

1/2
ξ

(
1 + (β/α)2

)
+ 16

)
.
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The above theorem establishes that the SGD algorithm initialized far away from any critical point
will converge (in the 4-th expectation) to the ball that contains all the first-order critical points
exponentially fast. The first term in the upper bound (17) depends on the initialization, but decays
to zero exponentially fast with the number of iterations, for a fixed step size. This convergence
speed depends on the constant ρ which depends on η, and the convergence of the SGD iterates to the
stationary distribution becomes slower as η → 0. The second term in the bound (17) is a constant
independent of the iteration number as well as the step size, which serves as the squared radius of the
ball that contains all the critical points plus an additional offset to account for the randomness in the
SGD iterates. In other words, SGD algorithm initialized at any point and with any sufficiently small
step size will find this ball of interest exponentially fast.

C Proofs for Section 4

C.1 Verification of Assumptions for Example 4.1

Asymptotic normality:

Proof of Lemma 4.1. The above objective has the following gradient

∇f(θ) = 1
m

∑m
i=1

xi(〈xi, θ〉−yi)
1+(yi−〈xi, θ〉)2 + λθ.

Because ‖∇f(θ)‖ ≤
(
λmax( 1

mX>X) + λ
)
‖θ‖+ 1

m‖X
>y‖ by the triangle inequality and the fact

that the denominator is lower bounded by 1, Assumption 2.1 holds. For Assumption 2.2, we write

〈∇f(θ), θ〉 = 1
m

∑m
i=1

(〈xi, θ〉)2−yi〈xi, θ〉
1+(yi−〈xi, θ〉)2 + λ‖θ‖2 ≥ −

∥∥ 1
mX>y

∥∥‖θ‖+ λ‖θ‖2,

by Cauchy-Schwartz inequality. Next, using Young’s inequality −
∥∥ 1
mX>y

∥∥‖θ‖≥− 1
λ

∥∥ 1
mX>y

∥∥2−
λ
4 ‖θ‖

2 , Assumption 2.2 holds for α=λ/4 and β= 1
λ

∥∥ 1
mX>y

∥∥2
. Finally, the gradient noise has finite

4-th moment with support on Rd; thus, Assumption 2.3 is satisfied, and Theorem 2.1 is applicable.

Bias:

Proof of Lemma 4.2. To verify assumptions, we compute the gradient and the Hessian respectively
as

∇f(θ) =
θ

1 + ‖θ‖2
+ λθ, and ∇2f(θ) =

I

1 + ‖θ‖2
− 2θθ>

(1 + ‖θ‖2)2
+ Iλ,

with I denoting the identity matrix. For small λ the above function is clearly non-convex. To see this,
choose λ = 0.1, u = θ/‖θ‖ and note that 〈u, ∇2f(θ)u〉 < 0 whenever 1.5 ≤ ‖θ‖ ≤ 2. Also, note
that

‖∇f(θ)‖2 = ‖θ‖2
(
λ+ 1/(1 + ‖θ‖2)

)2

≥ 2λ2

1 + λ

{
f(θ)− f(θ∗)

}
.

Thus, Assumption 3.3 is satisfied for γ = 2λ2

1+λ and g(x) = γx2. Following the same steps in
the regression setting, one can also verify Assumptions 2.1-2.2. Moreover, by definition of noise
sequence (4), Assumption 3.1 is satisfied. Hence, Theorem 3.2 can be applied.

C.2 Verification of Assumptions for Example 4.2

Asymptotic normality:

Proof of Lemma 4.3. Indeed, it has the gradient

∇f(θ) = − 1
m

∑m
i=1

xi

(
yi−〈xi, θ〉

)
e−(yi−〈xi, θ〉)

2

ν+e−(yi−〈xi, θ〉)2
+ λθ .

The triangle inequality yields

‖∇f(θ)‖ ≤ 1

1 + ν

∥∥ 1
mX>y

∥∥+
( 1

1 + ν
λmax( 1

mX>X) + λ
)
‖θ‖,
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which verifies Assumption 2.1. To verify the dissipativity assumption, we can write

〈∇f(θ), θ〉 = 〈− 1
m

∑m
i=1

xi

(
yi−〈xi, θ〉

)
e−(yi−〈xi, θ〉)

2

ν+e−(yi−〈xi, θ〉)2
+ λθ, θ〉 ≥ − 1

1+ν

∥∥ 1
mX>y

∥∥‖θ‖+ λ‖θ‖2 .

The inequality follows from the triangle and Cauchy-Schwartz inequalities. Using Young’s inequality,
we obtain

− 1

1 + ν

∥∥ 1
mX>y

∥∥‖θ‖ ≥ − 1

λ(1 + ν)

∥∥ 1
mX>y

∥∥2 − λ

4(1 + ν)
‖θ‖2,

which shows that the above function is dissipative for α = λ/2 and β = 1
2λ(1+ν)2

∥∥ 1
mX>y

∥∥2
; thus,

Assumption 2.2 holds.

Bias:

Proof of Lemma 4.4. We write the gradient and the Hessian respectively, as

∇f(θ) =
θ

1 + νe‖θ‖2
+ λθ and ∇2f(θ) =

I

1 + νe‖θ‖2
− 2νe‖θ‖

2

(1 + νe‖θ‖2)2
θθ> + λI.

First, note that the Hessian can have negative eigenvalues for small values of λ. For example, for
ν = 1, λ = 0.1, and the unit direction u = θ/‖θ‖, we have 〈u, ∇2f(θ)u〉 < 0 for 1 ≤ ‖θ‖2 ≤ 2;
thus the function is non-convex. But we also have

〈∇f(θ), θ〉 = ‖θ‖2
(
λ+ 1/

(
1 + νe‖θ‖

2)) ≥ (λ+ 1/
(
1 + νeR

2))‖θ‖2
for ‖θ‖ ≤ R and 〈∇f(θ), θ〉 ≥ λ‖θ‖2 for ‖θ‖2 > R; thus, Assumption 3.2 is satisfied for α = λ,
and any β ≥ 0 and g(x) =

(
λ + 1/

(
1 + νeR

2))
x2. Following the same steps in the previous

example, one can also verify Assumptions 2.1, 3.1; therefore, Theorem 3.1 follows.

D Simulation setting for constructing CIs

Here, we provide more details about constructing the CIs based on the three methods.

Subsampling quantile: For each trajectory, we first compute the means of subsamples for each
trajectory using a rolling window of size 200. We then compute the 0.95 quantile of the empirical
distribution of the absolute values of the differences between the rolling means and the mean of this
trajectory. Employing the formula (4.4) and Corollary 4.2.1 in [89, Sections 4.2], we can construct
the 95% confidence intervals accordingly.

Subsampling var: For each trajectory, we calculate the variances of subsamples for this trajectory
using a rolling window of size 200. Combined with the mean of this trajectory, we then compute the
95% confidence interval.

Long-run var: For each trajectory, we compute the Newey-West estimate for the long-run variance
of this trajectory using the sandwich package (version 3.0-1) in R 4.0.3 (function lrvar() with
type= "Newey-West" ). Then, with the mean of this trajectory, we can compute the 95% confidence
interval.
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