Adaptable Agent Populations
via a Generative Model of Policies

Kenneth Derek Phillip Isola
MIT CSAIL MIT CSAIL
kderek@alum.mit.edu phillipi@mit.edu
Abstract

In the natural world, life has found innumerable ways to survive and often thrive.
Between and even within species, each individual is in some manner unique, and
this diversity lends adaptability and robustness to life. In this work, we aim to
learn a space of diverse and high-reward policies in a given environment. To this
end, we introduce a generative model of policies for reinforcement learning, which
maps a low-dimensional latent space to an agent policy space. Our method enables
learning an entire population of agent policies, without requiring the use of separate
policy parameters. Just as real world populations can adapt and evolve via natural
selection, our method is able to adapt to changes in our environment solely by
selecting for policies in latent space. We test our generative model’s capabilities in
a variety of environments, including an open-ended grid-world and a two-player
soccer environment. Code, visualizations, and additional experiments can be found
athttps://kennyderek.github.io/adap/.

1 Introduction

Quick thought experiment: imagine our world was such that all people acted, thought, and looked
exactly the same in every situation. Would we ever have found the influential dissenters that sparked
scientific, political, and cultural revolutions?

In reinforcement learning (RL), it is common to learn a single policy that fits an environment.
However, it is often desirable to instead find an entire array of high performing policies. To this end,
we propose learning a generative model of policies. At a high level, we aim to show that purposefully
learning a diverse policy space for a given environment can be competitive to learning a single policy,
while better encompassing a range of skillful behaviors that are adaptable and robust to changes in the
task and environment. We name our method of learning a space of adaptable agent polices: ADAP.

Why should we bother with finding more than one policy per environment? We propose two primary
reasons. First, RL environments are continually approaching greater levels of open-endedness and
complexity. For a given environment, there might be an entire manifold of valid and near-equally
high performing strategies. By finding points across this manifold, we avoid ‘having all eggs in one
basket,” granting robustness and adaptability to environmental changes. In the event of a change,
we are able to adapt our generated population to select individuals that can still survive given the
ablation, much like natural selection drives evolution in the real world. Secondly, using a generative
model of policies as a population of agents makes intuitive sense in multi-agent environments, in
which different agents should have the capacity to act like they are unique individuals. However, it is
common in many multi-agent reinforcement learning settings to deploy the same policy across all
agents, such that they are essentially distributed clones. Doing so may reduce the multi-modality of
the agent population, resulting in a single ‘average’ agent.

Previous work has touched on ideas akin to a generative model of policies. In hierarchical RL, the
high-level policy controller can be considered a generator of sub-policies that are ‘options’ [[1, 2} 3]
But these methods are designed to find decomposable skills that aid in the construction of just one

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://kennyderek.github.io/adap/

downstream controller policy. A core idea of our work is that of quality diversity [4]], which aims
to optimize a population of agents along the axes of both reward and diversity. Traditional methods
often use evolutionary search over a discrete-sized population of separate agents, each with their
own policy parameters. This consumes more time and training resources, and limits the number
of potential behaviors. Our work integrates the goals of quality diversity into time and memory
efficient deep RL by simulating an entire population of agents via a generative model of policies,
with diversity bounded only by capacity of the generator.

The rest of the paper is organized as follows. First we introduce our generative model of policies
and the diversity objective that guides its learning. Next, we explore the potentials of learning a
population of agents by ablating environments and then searching for suitable policies, directly in
latent space. We primarily study two environments: Markov Soccer [3] and Farmworld. Farmworld
is a new environment we have developed for testing diversity in a multi-agent, open-ended gridworld.
At the website linked in the abstract, one can find qualitative results of experiments presented in this
paper, as well as additional results on toy environments of CartPole [6] and a standard multi-goal
environment.

2 Method

Let Z be a sample space of n dimensional vectors, and Z be a random variable defined uniformly
over Z. Then, we learn a mapping, G : ;Z, from generator weights and latent distribution Z to a
space of policies

The generator G itself is not a policy. It must be conditioned on adraw z ~ Z in order to define a
learned set of behaviors. In this sense, Z is a stochastic parameter of G , and is sampled once at the
beginning of each agent episode.

In our experiments, Z is the sample space of all three dimensional vectors with magnitude one (i.e.
the surface of the unit sphere). Practically, we use the low dimension of three, so that we can perform
a key subject of this paper: rapid optimization, or adaptation, of G by changing Z rather than (fine
tuning would be more typical in literature). We require magnitude one so that there is at least one
non-zero element for any z ~ Z, which we found important for providing signal and stability in the
training of G. It is possible that with higher dimensions, this stipulation could be relaxed.

Diversity Regularizer Loss

Environment

z-Z

.................................. >

Figure 1: Method Diagram. Upon agent initialization, we sample a latent z; ~ Z which, along with
, defines an agent policy for the episode. We update G by optimizing two objectives. The PPO
surrogate loss is optimized in an online manner, using the trajectory from the generated policy
-z, Meanwhile, the diversity regularizer loss is optimized over independently sampled policy pairs

;zj; Zk Z.

Diversity Regularization In order to learn a diverse space of unique policies, we introduce a
diversity regularization objective. Since policies define a space of actions taken over different states,
we propose that in order for two policies to be distinct, they must have different action distributions
given the same state. To this end, we define the objective Lgiy (I):

Laiv()= E E exp(Dri(z:p(S)K ;z_j;b(s))) (1
s2S |zi5z; Z

in which Dk is the KL-divergence between the two policy action distributions ., and .z, and

b is a smoothing constant over the action distributions.

Optimization of G In our experiments, we optimize the diversity objective in an online fashion
using gradient descent, in conjunction with a PPO [[7] clipped-surrogate objective and an entropy
regularization objective. Our full optimization problem is

maxLppo() Laiv()

where Lppo is Equation 9 in [7] and is a coefficient to scale the diversity regularization objective.
See Algorithm 1 in the supplement for additional details.

Adaptation via Optimization in the Latent Space of G By learning an entire space of policies ,
we are able to search our policy space for the highest performing policy, whether dealing with the
training environment or an ablated future environment.

In contrast to searching over policy parameters through transfer learning or fine-tuning, we are able
to quickly search over the low-dimensional latent space (dimensionality 3 in our experiments). In
fact, we can quickly adapt back and forth to various situations: the search procedure often takes less
than 30 seconds, or 100 episode rollouts, to find any high quality solutions that exist. Over the course
of a small number of generations, we evaluate randomly sampled latents, and keep higher performing
ones with greater probability. In the event that episodes have a high degree of variablility per run —
such as in the Markov Soccer environment — it may be necessary to run several episodes per latent
vector and average the returns. Details can be found in Algorithm 2 of the supplement.

Model Architecture Similarly to prior work [3]], we have found that richer integrations between
the latent vector and the observation can yield a more multi-modal policy space. To induce this richer
integration, we introduce a multiplicative model denoted "(x)" for latent integration, and compare
the results to a baseline of concatenating "(+)" the latent sample to the observation. We describe this
architecture in the supplement.

3 Related Work

Quality Diversity The evolutionary computing community has developed various quality diversity
(QD) algorithms that aim to find a balance of novel and high-performing individuals within a
population. Some methods can even be considered policy generators: NEAT and HyperNEAT [}, 9]
use an indirect encoding to construct a network architecture. To encourage diversity, these methods
use an idea known as fitness sharing: if genotypes are too similar, then they will split reward.

While NEAT and HyperNEAT encourage diversity of parameters, other methods encourage diversity
of behavior. Novelty Search (NS) [10] learns individuals that have high novelty along some user
defined behavioral distance metric. For example, in a maze navigation task, the behavioral character-
istic could be the final resting location of the individual, and agents are selected based on how far
away they end up from an archive of past individuals. Unfortunately, as shown in [[L1], the choice of
this characteristic can critical, and domain dependent. Additionally, NS focuses mainly on finding
novel solutions, and ignores fitness, or reward. NS with Local Competition [12]] and MapElites [[13]]
aim to solve this problem by selecting for individuals with high fitness, but only against individuals
in the same phenotypic or genotypic region, respectively.

There are several prior and concurrent works that aim to connect ideas of quality diversity with
deep reinforcement learning. Like quality diversity algorithms, these methods optimize a fixed-
size population or archive of policies to be distinct from each other. [14}[15] aim to find a set of
policies that yield diverse trajectories. [15]] in particular focuses on the application to multi-agent
environments and zero-shot coordination. [[16] uses a KL-divergence over policies; but a policy’s
diversity is optimized over previous SGD updates of itself, thus limiting the potential multi-modality
of solutions. [17] optimizes for diversity of the total population via maximizing the determinant of
a population distance matrix, but works best only with small populations of size three or five. [[18]
uses a method reminiscent of DIAYN, but introduces ideas to balance quality with diversity. It is
especially similar to ADAP in optimizing the latent space to achieve robustness, but only searches
over a fixed-size set of latent vectors and focuses on single-agent environments. Other methods have
explored indirectly influencing diversity via differing training hyperparameters as in Population-Based
Training [19]], or using reward randomization as in [20].

Importantly, both classical QD algorithms [10} 12} [13]] and most deep RL methods [[14} 15,116} 17} 19,
20] use sets of distinct agent parameters to learn a diverse population. ADAP makes the connection
that we can encode unique policies into a latent space (an idea that also appears in a few recent

works [2,3,121,[18]), and frames learning a diverse population as a generative modelling problem.
Additionally, in distinction from classical QD methods that use a non-differential genetic algorithm
or evolutionary search for optimization, ADAP is able to directly optimize for diversity and policy
credit assignment via gradient descent.

Option Discovery for Hierarchical RL The option framework introduced bg][could be thought

of as learning a generator of skills, which are temporal abstractions over actions that can be used by
a downstream, higher-level controller. Recent works like DIAZNdnd others(3, [21] in option
discovery learn a xed set of diverse skills that are discriminable by observed state or trajectory:
such as learning to move left, or move right. These skills are generally not meant to be the nal
agent policy, DIAYN even learns skills without any extrinsic environmental reward. However, these
methods are most similar to ADAP in terms of mapping a latent sample to nal agent policies.

Goal-Conditioned Reinforcement Learning Yet another way to induce diverse policy behaviors
is through using goal-conditioned polici€2[[23,24] that use a family of task-de ned value or Q
functions or expert trajectorie&9)] to incentivize diversity. These methods require structure in how
to de ne diversity, such as de ning a value function family over states [24].

Multi-Agent Roles Recent works generate specialized agent policies in a multi-agent setting,
building on QMIX [26]. ROMA [27] learns agent roles that are not static through agent trajectories,
require optimizing several additional objectives, and are learned jointly with other roles via a joint
action-value function. Similarly, MAVENZ8] optimizes the mutual information between joint agent
actions and a latent variable. While a single latent sample in ADAP encodes a single agent “species’,
a latent sample in these works encode how a group of agents should behave together: thus we cannot
employ adaptation based on individual selection.

4 Introduction to Farmworld

We test our learning in a new open-ended grid-world environment called

Farmworld, that supports multi-agent interaction and partially observable

observations. The idea behind Farmworld is simple: agents move about

the map to gather food from various resources, such as chickens and

towers that spawn in random locations. In out experiments, agents only

optimize their own reward: a single agent gets exactly 0.1 reward for

each timestep it is alive. Thus, lifetime is directly proportional to reward.

Agents can live longer by attacking other agents, chickens, and towers: for

example, a chickens might take two timesteps of sword hits to yield ve

timesteps worth of health. To avoid cannibalism in our experiments, igure 2: Standard
set agents to gain zero health from other agents. Of course, these nuniaensworld Training En-
are con gurable to achieve different environment dynamics. vironment

Furthermore, Farmworld is a partially-observable environment: agents see only what is in a certain
tile radius from their location. In our experiments, the observation is a vector representation of the
units and tiles. Additional details of the Farmworld are provided in the supplement.

5 Baselines

We use compare the ADAP algorithm to two algorithmic baselines. For each of the baselines, as well
as ADAP, we experiment with both concatenation (+) and multiplicative model (x) types, and use
consistent observation spaces, action spaces, and latent distributions - so the only difference is the
diversity algorithm itself.

The rst baseline is Vanilla PPO, which we call the "Vanilla" baseline. The only difference between
Vanilla and ADAP is that the former does not use the diversity regularization loss in Eqution 1.
Vanilla policies still receive samples from latent distributidnr there is simply no objective term

that enforces a diverse policy actions conditional on these samples.

Our second baseline was adapted from DIAYN. DIAYN is formulated as a unsupervised skill
generator, rather than a policy generator. However, we believe that it remains one of the technically

closest works, and with slight modi cations, we attempt to make a comparison between DIAYN
and ADAP. First, we highlight some differences between the methods. ADAP uses a KL-divergence
based diversity term rather than learning a skill discriminator network. This enables ADAP's policy
diversity to be optimized directly through gradient descent with respect to parametatser than be
optimized through RL as with the skill diversity of DIAYN. Additionally, the ADAP latent distribution

is de ned over a continuous sample space, in contrast to the categorical sample space of DIAYN. We
tried the standard DIAYN algorithm with categorical sample spaces and unsupervised skill discovery,
however this performed poorly on all of our Farmworld and Markov Soccer experiments. Thus, to
place the algorithms on more equal footing, we modify DIAYN: 1.) add extrinsic environmental
reward to DIAYN training (this is brie y mentioned in the DIAYN paper itself) 2.) to use the
continuous sample space 3.) train a skill regessor that minimizes predicted latent error, instead of a
skill discriminator that outputs latent class probabilities. We describe the new skill regressor in the
supplement. We call this method DIAYN*.

Training and Hyperparametehg/e train each method for the same number of timesteps (30 million),
and generally keep hyperparameters constant across methods. These are described in the supplement.

Adaptation Comparison#/hen we apply Algorithm 2 to ADARye apply the same algorithin
each of the baselines. We can do this because ADAP and baselines all share the same input latent
distributionZ - the only difference is how well they encode a diverse policy space within

6 Adaptation to Environmental Ablations via Optimizing Z

In nature, differences between species and even within species lend robustness to life as a whole. It
becomes less likely that any single perturbation in the environment will break the overall system. In
the same manner, differences between policies can lend robustness to the policy space as a whole.

Ablation | Description

Far Corner 18x18 map size. Food spawns in the bottom right, agents spawn in the top left.

Wall Bar- A rift" opens up between agents and their food. Agents must be able to navigate

rier up and around the wall.

Speed Single agent on 2x2 map. Food health yield is set very low, so agents must be
able to rapidly and consistently farm adjacent towers.

Patience Single agent on 2x2 map. Food yield is very high, but food respawn speed is
low. Agents must “ration’ their food so it lasts until the next respawn.

Poison Agents spawn on the same map in which they were trained. However, chickens

Chickens now yieldnegativehealth. Towers still yield positive health.

Training (Not an ablation: listed for reference) 10x10 map size. Food and agents are

Env. uniformly randomly distributed.

Table 1: Farmworld Ablations

Experiment We aim to test how having a diverse policy space allows us to search in latent space
for policies that better t unexpected environmental ablations. Doing so would demonstrate the
robustness of a population of policies, and simultaneously provide information about different types
of diversity that are learned 3.

To this end, we traiis on a normal Farmworld environment as shown in Section 4. Wedbkaie

the environment, changing features such as map size and features, location of food sources, and
even re-spawn times and food-yield. Lastly, we deffoyto the ablated environment amdthout
changing the parameters we optimize the latent distribution for policies that are successful in the
new environment, using the search Algorithm 2. Ablations and descriptions are available in Table 1.

Results Rather to our surprise, in each experiment trial, lear@ngsing ADAP created a policy
space containing “species' that could thrive in nearly every environmental ablation (see Figure
3). The important thing to note is the development of these speciesmagient from the training
environment a product of optimizings for both policy diversity and reward maximization.

How is it possible that ADAP produced a policy space capable of adapting to nearly every ablation?
The training environment was relatively abundant with resources scattered about a large map. Thus,

	Introduction
	Method
	Related Work
	Introduction to Farmworld
	Baselines
	Adaptation to Environmental Ablations via Optimizing Z
	Measurement of Agent Individuality and Diversity in a Population
	Adaptation and Self-Play in a Zero-Sum Two-Player Environment
	Limitations
	Conclusion
	Acknowledgements

