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Abstract

In the natural world, life has found innumerable ways to survive and often thrive.
Between and even within species, each individual is in some manner unique, and
this diversity lends adaptability and robustness to life. In this work, we aim to
learn a space of diverse and high-reward policies in a given environment. To this
end, we introduce a generative model of policies for reinforcement learning, which
maps a low-dimensional latent space to an agent policy space. Our method enables
learning an entire population of agent policies, without requiring the use of separate
policy parameters. Just as real world populations can adapt and evolve via natural
selection, our method is able to adapt to changes in our environment solely by
selecting for policies in latent space. We test our generative model’s capabilities in
a variety of environments, including an open-ended grid-world and a two-player
soccer environment. Code, visualizations, and additional experiments can be found
at https://kennyderek.github.io/adap/.

1 Introduction

Quick thought experiment: imagine our world was such that all people acted, thought, and looked
exactly the same in every situation. Would we ever have found the influential dissenters that sparked
scientific, political, and cultural revolutions?

In reinforcement learning (RL), it is common to learn a single policy that fits an environment.
However, it is often desirable to instead find an entire array of high performing policies. To this end,
we propose learning a generative model of policies. At a high level, we aim to show that purposefully
learning a diverse policy space for a given environment can be competitive to learning a single policy,
while better encompassing a range of skillful behaviors that are adaptable and robust to changes in the
task and environment. We name our method of learning a space of adaptable agent polices: ADAP.

Why should we bother with finding more than one policy per environment? We propose two primary
reasons. First, RL environments are continually approaching greater levels of open-endedness and
complexity. For a given environment, there might be an entire manifold of valid and near-equally
high performing strategies. By finding points across this manifold, we avoid ‘having all eggs in one
basket,’ granting robustness and adaptability to environmental changes. In the event of a change,
we are able to adapt our generated population to select individuals that can still survive given the
ablation, much like natural selection drives evolution in the real world. Secondly, using a generative
model of policies as a population of agents makes intuitive sense in multi-agent environments, in
which different agents should have the capacity to act like they are unique individuals. However, it is
common in many multi-agent reinforcement learning settings to deploy the same policy across all
agents, such that they are essentially distributed clones. Doing so may reduce the multi-modality of
the agent population, resulting in a single ‘average’ agent.

Previous work has touched on ideas akin to a generative model of policies. In hierarchical RL, the
high-level policy controller can be considered a generator of sub-policies that are ‘options’ [1, 2, 3].
But these methods are designed to find decomposable skills that aid in the construction of just one
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downstream controller policy. A core idea of our work is that of quality diversity [4], which aims
to optimize a population of agents along the axes of both reward and diversity. Traditional methods
often use evolutionary search over a discrete-sized population of separate agents, each with their
own policy parameters. This consumes more time and training resources, and limits the number
of potential behaviors. Our work integrates the goals of quality diversity into time and memory
efficient deep RL by simulating an entire population of agents via a generative model of policies,
with diversity bounded only by capacity of the generator.

The rest of the paper is organized as follows. First we introduce our generative model of policies
and the diversity objective that guides its learning. Next, we explore the potentials of learning a
population of agents by ablating environments and then searching for suitable policies, directly in
latent space. We primarily study two environments: Markov Soccer [5] and Farmworld. Farmworld
is a new environment we have developed for testing diversity in a multi-agent, open-ended gridworld.
At the website linked in the abstract, one can find qualitative results of experiments presented in this
paper, as well as additional results on toy environments of CartPole [6] and a standard multi-goal
environment.

2 Method

Let Z be a sample space of n dimensional vectors, and Z be a random variable defined uniformly
over Z . Then, we learn a mapping, G : ϕ,Z, from generator weights ϕ and latent distribution Z to a
space of policies Π.

The generator Gϕ itself is not a policy. It must be conditioned on a draw z ∼ Z in order to define a
learned set of behaviors. In this sense, z is a stochastic parameter of Gϕ, and is sampled once at the
beginning of each agent episode.

In our experiments, Z is the sample space of all three dimensional vectors with magnitude one (i.e.
the surface of the unit sphere). Practically, we use the low dimension of three, so that we can perform
a key subject of this paper: rapid optimization, or adaptation, of G by changing Z rather than ϕ (fine
tuning ϕ would be more typical in literature). We require magnitude one so that there is at least one
non-zero element for any z ∼ Z, which we found important for providing signal and stability in the
training of G. It is possible that with higher dimensions, this stipulation could be relaxed.

Figure 1: Method Diagram. Upon agent initialization, we sample a latent zi ∼ Z which, along with
ϕ, defines an agent policy for the episode. We update Gϕ by optimizing two objectives. The PPO
surrogate loss is optimized in an online manner, using the trajectory τ from the generated policy
πϕ,zi . Meanwhile, the diversity regularizer loss is optimized over independently sampled policy pairs
πϕ,zj , πϕ,zk ∼ Z.

Diversity Regularization In order to learn a diverse space of unique policies, we introduce a
diversity regularization objective. Since policies define a space of actions taken over different states,
we propose that in order for two policies to be distinct, they must have different action distributions
given the same state. To this end, we define the objective Ldiv (1):

Ldiv(ϕ) = E
s∈S

[
E

zi,zj∼Z
exp

(
−DKL(πϕ,zi;b(s)∥πϕ,zj ;b(s))

)]
(1)

in which DKL is the KL-divergence between the two policy action distributions πϕ,zi and πϕ,zj , and
b is a smoothing constant over the action distributions.

Optimization of G In our experiments, we optimize the diversity objective in an online fashion
using gradient descent, in conjunction with a PPO [7] clipped-surrogate objective and an entropy
regularization objective. Our full optimization problem is
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max
ϕ

LPPO(ϕ)− αLdiv(ϕ)

where LPPO is Equation 9 in [7] and α is a coefficient to scale the diversity regularization objective.
See Algorithm 1 in the supplement for additional details.

Adaptation via Optimization in the Latent Space of G By learning an entire space of policies Π,
we are able to search our policy space for the highest performing policy, whether dealing with the
training environment or an ablated future environment.

In contrast to searching over policy parameters through transfer learning or fine-tuning, we are able
to quickly search over the low-dimensional latent space (dimensionality 3 in our experiments). In
fact, we can quickly adapt back and forth to various situations: the search procedure often takes less
than 30 seconds, or 100 episode rollouts, to find any high quality solutions that exist. Over the course
of a small number of generations, we evaluate randomly sampled latents, and keep higher performing
ones with greater probability. In the event that episodes have a high degree of variablility per run –
such as in the Markov Soccer environment – it may be necessary to run several episodes per latent
vector and average the returns. Details can be found in Algorithm 2 of the supplement.

Model Architecture Similarly to prior work [3], we have found that richer integrations between
the latent vector and the observation can yield a more multi-modal policy space. To induce this richer
integration, we introduce a multiplicative model denoted "(x)" for latent integration, and compare
the results to a baseline of concatenating "(+)" the latent sample to the observation. We describe this
architecture in the supplement.

3 Related Work

Quality Diversity The evolutionary computing community has developed various quality diversity
(QD) algorithms that aim to find a balance of novel and high-performing individuals within a
population. Some methods can even be considered policy generators: NEAT and HyperNEAT [8, 9]
use an indirect encoding to construct a network architecture. To encourage diversity, these methods
use an idea known as fitness sharing: if genotypes are too similar, then they will split reward.

While NEAT and HyperNEAT encourage diversity of parameters, other methods encourage diversity
of behavior. Novelty Search (NS) [10] learns individuals that have high novelty along some user
defined behavioral distance metric. For example, in a maze navigation task, the behavioral character-
istic could be the final resting location of the individual, and agents are selected based on how far
away they end up from an archive of past individuals. Unfortunately, as shown in [11], the choice of
this characteristic can critical, and domain dependent. Additionally, NS focuses mainly on finding
novel solutions, and ignores fitness, or reward. NS with Local Competition [12] and MapElites [13]
aim to solve this problem by selecting for individuals with high fitness, but only against individuals
in the same phenotypic or genotypic region, respectively.

There are several prior and concurrent works that aim to connect ideas of quality diversity with
deep reinforcement learning. Like quality diversity algorithms, these methods optimize a fixed-
size population or archive of policies to be distinct from each other. [14, 15] aim to find a set of
policies that yield diverse trajectories. [15] in particular focuses on the application to multi-agent
environments and zero-shot coordination. [16] uses a KL-divergence over policies; but a policy’s
diversity is optimized over previous SGD updates of itself, thus limiting the potential multi-modality
of solutions. [17] optimizes for diversity of the total population via maximizing the determinant of
a population distance matrix, but works best only with small populations of size three or five. [18]
uses a method reminiscent of DIAYN, but introduces ideas to balance quality with diversity. It is
especially similar to ADAP in optimizing the latent space to achieve robustness, but only searches
over a fixed-size set of latent vectors and focuses on single-agent environments. Other methods have
explored indirectly influencing diversity via differing training hyperparameters as in Population-Based
Training [19], or using reward randomization as in [20].

Importantly, both classical QD algorithms [10, 12, 13] and most deep RL methods [14, 15, 16, 17, 19,
20] use sets of distinct agent parameters to learn a diverse population. ADAP makes the connection
that we can encode unique policies into a latent space (an idea that also appears in a few recent
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works [2, 3, 21, 18]), and frames learning a diverse population as a generative modelling problem.
Additionally, in distinction from classical QD methods that use a non-differential genetic algorithm
or evolutionary search for optimization, ADAP is able to directly optimize for diversity and policy
credit assignment via gradient descent.

Option Discovery for Hierarchical RL The option framework introduced by [1] could be thought
of as learning a generator of skills, which are temporal abstractions over actions that can be used by
a downstream, higher-level controller. Recent works like DIAYN [2] and others [3, 21] in option
discovery learn a fixed set of diverse skills that are discriminable by observed state or trajectory:
such as learning to move left, or move right. These skills are generally not meant to be the final
agent policy, DIAYN even learns skills without any extrinsic environmental reward. However, these
methods are most similar to ADAP in terms of mapping a latent sample to final agent policies.

Goal-Conditioned Reinforcement Learning Yet another way to induce diverse policy behaviors
is through using goal-conditioned policies [22, 23, 24] that use a family of task-defined value or Q
functions or expert trajectories [25] to incentivize diversity. These methods require structure in how
to define diversity, such as defining a value function family over states [24].

Multi-Agent Roles Recent works generate specialized agent policies in a multi-agent setting,
building on QMIX [26]. ROMA [27] learns agent roles that are not static through agent trajectories,
require optimizing several additional objectives, and are learned jointly with other roles via a joint
action-value function. Similarly, MAVEN [28] optimizes the mutual information between joint agent
actions and a latent variable. While a single latent sample in ADAP encodes a single agent ‘species‘,
a latent sample in these works encode how a group of agents should behave together: thus we cannot
employ adaptation based on individual selection.

4 Introduction to Farmworld

Figure 2: Standard
Farmworld Training En-
vironment

We test our learning G in a new open-ended grid-world environment called
Farmworld, that supports multi-agent interaction and partially observable
observations. The idea behind Farmworld is simple: agents move about
the map to gather food from various resources, such as chickens and
towers that spawn in random locations. In out experiments, agents only
optimize their own reward: a single agent gets exactly 0.1 reward for
each timestep it is alive. Thus, lifetime is directly proportional to reward.
Agents can live longer by attacking other agents, chickens, and towers: for
example, a chickens might take two timesteps of sword hits to yield five
timesteps worth of health. To avoid cannibalism in our experiments, we
set agents to gain zero health from other agents. Of course, these numbers
are configurable to achieve different environment dynamics.

Furthermore, Farmworld is a partially-observable environment: agents see only what is in a certain
tile radius from their location. In our experiments, the observation is a vector representation of the
units and tiles. Additional details of the Farmworld are provided in the supplement.

5 Baselines

We use compare the ADAP algorithm to two algorithmic baselines. For each of the baselines, as well
as ADAP, we experiment with both concatenation (+) and multiplicative model (x) types, and use
consistent observation spaces, action spaces, and latent distributions - so the only difference is the
diversity algorithm itself.

The first baseline is Vanilla PPO, which we call the "Vanilla" baseline. The only difference between
Vanilla and ADAP is that the former does not use the diversity regularization loss in Equation 1.
Vanilla policies still receive samples from latent distribution Z - there is simply no objective term
that enforces a diverse policy actions conditional on these samples.

Our second baseline was adapted from DIAYN. DIAYN is formulated as a unsupervised skill
generator, rather than a policy generator. However, we believe that it remains one of the technically
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closest works, and with slight modifications, we attempt to make a comparison between DIAYN
and ADAP. First, we highlight some differences between the methods. ADAP uses a KL-divergence
based diversity term rather than learning a skill discriminator network. This enables ADAP’s policy
diversity to be optimized directly through gradient descent with respect to parameters ϕ, rather than be
optimized through RL as with the skill diversity of DIAYN. Additionally, the ADAP latent distribution
is defined over a continuous sample space, in contrast to the categorical sample space of DIAYN. We
tried the standard DIAYN algorithm with categorical sample spaces and unsupervised skill discovery,
however this performed poorly on all of our Farmworld and Markov Soccer experiments. Thus, to
place the algorithms on more equal footing, we modify DIAYN: 1.) add extrinsic environmental
reward to DIAYN training (this is briefly mentioned in the DIAYN paper itself) 2.) to use the
continuous sample space 3.) train a skill regessor that minimizes predicted latent error, instead of a
skill discriminator that outputs latent class probabilities. We describe the new skill regressor in the
supplement. We call this method DIAYN*.

Training and Hyperparameters We train each method for the same number of timesteps (30 million),
and generally keep hyperparameters constant across methods. These are described in the supplement.

Adaptation Comparisons When we apply Algorithm 2 to ADAP, we apply the same algorithm to
each of the baselines. We can do this because ADAP and baselines all share the same input latent
distribution Z - the only difference is how well they encode a diverse policy space within Z.

6 Adaptation to Environmental Ablations via Optimizing Z

In nature, differences between species and even within species lend robustness to life as a whole. It
becomes less likely that any single perturbation in the environment will break the overall system. In
the same manner, differences between policies can lend robustness to the policy space as a whole.

Ablation Description
Far Corner 18x18 map size. Food spawns in the bottom right, agents spawn in the top left.
Wall Bar-
rier

A ‘rift’ opens up between agents and their food. Agents must be able to navigate
up and around the wall.

Speed Single agent on 2x2 map. Food health yield is set very low, so agents must be
able to rapidly and consistently farm adjacent towers.

Patience Single agent on 2x2 map. Food yield is very high, but food respawn speed is
low. Agents must ‘ration’ their food so it lasts until the next respawn.

Poison
Chickens

Agents spawn on the same map in which they were trained. However, chickens
now yield negative health. Towers still yield positive health.

Training
Env.

(Not an ablation: listed for reference) 10x10 map size. Food and agents are
uniformly randomly distributed.

Table 1: Farmworld Ablations

Experiment We aim to test how having a diverse policy space allows us to search in latent space
for policies that better fit unexpected environmental ablations. Doing so would demonstrate the
robustness of a population of policies, and simultaneously provide information about different types
of diversity that are learned by G.

To this end, we train G on a normal Farmworld environment as shown in Section 4. We then ablate
the environment, changing features such as map size and features, location of food sources, and
even re-spawn times and food-yield. Lastly, we deploy G into the ablated environment and without
changing the parameters ϕ, we optimize the latent distribution for policies that are successful in the
new environment, using the search Algorithm 2. Ablations and descriptions are available in Table 1.

Results Rather to our surprise, in each experiment trial, learning G using ADAP created a policy
space Π containing ‘species’ that could thrive in nearly every environmental ablation (see Figure
3). The important thing to note is the development of these species was emergent from the training
environment – a product of optimizing G for both policy diversity and reward maximization.

How is it possible that ADAP produced a policy space capable of adapting to nearly every ablation?
The training environment was relatively abundant with resources scattered about a large map. Thus,
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Figure 3: Agent Lifetime After Latent Distribution Optimization on Ablations. The bars display the
average lifetime over 10 random seeds after applying Algorithm 2 to each of the algorithm and model
choices. We additionally plot the min and max values from each seed pool to indicate that most
baselines never come close to solving the ablations, where "solving" is indicated by the average value
surpassing the baseline health of the agent (the dashed black line). It is possible to go below initial
health, since agents can do damage to each other or eat poisonous food.

Figure 4: Adaptation on Farmworld Locomotion Ablations. Randomly chosen episode visualizations
after latent optimization of Far Corner (left) and Wall Barrier (right). Chosen ADAP latents
yield agent policies that navigate to the food, without otherwise modifying network parameters.
Agents spawn in the dotted black outlines, and timesteps are stacked such that earlier ones are more
transparent. We show 60 and 40 timesteps for Far Corner and Wall Barrier respectively.

there were many degrees-of-freedom in the rules of survival, and by optimizing for diversity, we
found a policy space that filled these degrees-of-freedom while still yielding high reward. While these
ablations reflect some of the possible axes of diversity, there are certainly more. For example, an
agent’s direction of ‘preference’ does not have to be the bottom-right, as in the Far Corner ablation.
Indeed, as a sanity check, we tested placing food locations in various other spots on an enlarged
map, and found that for every cardinal location, there was a species of agent in G that could exploit
that new food location. What came as a surprise was that agents also used their health indicator to
diversify: since agents diversify conditional on state, species developed in which agents would prefer
to go upwards when their health is high, but downwards when their health is low. This particular

Vanilla (x)
Initial

Vanilla (x)
Fine Tuning - 2000 Episodes

ADAP (x)
Latent Optimization - 200 Episodes

Wall Barrier 40 40 47.5
Far Corner 60 60 74
Patience 28.5 55.2 158

Table 2: Latent Distribution Optimization Speed and Performance versus Fine Tuning. Notice that for
some of the difficult exploration problems, the Vanilla model ever even finds the ablated food location,
even with 10 times the amount of training data. On the other hand, ADAP’s diverse policy space
enables commited exploration via selecting species that have tendencies to move towards different
parts of the map.
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Figure 5: Adaptation on Farmworld Patience Ablation. We show episode rollouts arranged along a
timeline, using agent policies after latent optimization. Notice that the Vanilla agent does not ration
out the two towers. Meanwhile, the selected ADAP agent waits until its health is very low (visualized
by purple and pink speckles) before getting food and is able to survive past the next tower respawn.

Figure 6: Pre and Post Optimization Latent Distribution Samples per Ablation. For each ablation,
we run Algorithm 2 on a randomly chosen ADAP and Vanilla generator, Gϕ,Z . We refer to the
post-optimization latent distribution as Z ′. For visualization, we then sample z ∼ Z ′ for 50 times
for each ablation, and use PCA to reduce the dimensions of each method’s data. The RGB color
of each sample is directly proportional to the initial 3-dimensional sample. Notice how the for the
Vanilla generators, the post-optimization distributions match the initial distribution, indicating that no
regions of the latent space were found to be well-suited for any particular ablation. However, with
ADAP generators, we see that the resulting distribution Z ′ is vastly different in many cases to the
initial distribution Z. This analysis also reveals certain overlap between two ablations. Notice how
the Z ′ for the Wall Barrier ablation has samples that in some places overlap with Far Corner samples.
Intuitively, in Far Corner, agents that move right-and-then-down are successful, while in Wall Barrier,
agents that move up-then-right-then-down are successful.

agent species was the one that managed to thrive in the Wall Barrier ablation. Similarly, in the
Patience ablation, ADAP learned a certain species of agent that waited until its health was low
before farming a tower.

The Poison Chickens ablation was the one hold-out in which latent optimization on ADAP could
not find a profoundly successful species. It is possible that, there would have been too large of a
trade-off between diversity and potential reward in the training environment in order to learn a policy
that ignored half of its potential food sources. We come back to this ablation in the next experiment.

Finally, we should note that ADAP beat the Vanilla baseline in all ablations aside from Speed. We
hypothesize this ablation is the most in-distribution to the training environment. Since the Vanilla
baseline optimized for solely for expected rewards, it makes no diversity tradeoffs and performs well
in in-distribution environments. As visible from the plots, DIAYN* also did not learn to speciate in a
manner that was successful on the majority of ablations.

7 Measurement of Agent Individuality and Diversity in a Population

A good generative model of policies should be able to represent a multi-modal space of behaviors.
That is: different agent policies should be able to act with individuality. Our generative model uses a
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Lifetime I(T ;Z) H(T ) H(T |Z)

ADAP (x) 23.2 ± 0.5 0.89 1.0 0.10
Vanilla (+) 22.6 ± 0.3 0.30 0.99 0.69
Vanilla (x) 22.5 ± 0.4 0.32 0.99 0.67
ADAP (+) 21.9 ± 0.6 0.76 0.92 0.15
DIAYN* (x) 21.8 ± 1.3 0.58 0.95 0.37
DIAYN* (+) 21.6 ± 0.4 0.49 0.93 0.44

Table 3: Various Specialization and Diversity Metrics. We provide the average result across 10
random seeds, and ± indicates standard deviation. Standard deviation for I(T ;Z), H(T ), H(T |Z)
was less than or equal to 0.1 for all entries, and has been omitted to reduce verbosity. H(T ) is
computed with log base 2, and is maximal at 1.

shared parameter set across all agents, and naively using shared parameters could result in learning
just one ‘average’ agent – which is precisely what we wish to avoid.

Niche Specialization Experiment To test the abilities of our policy generator, we set up the
Farmworld environment with a hidden rule specific to this experiment: when an agent spawns, it
is able harness resources from either towers or chickens. However, once it gets health from one
unit type, it becomes ‘locked-into’ that unit type, and cannot gain health from the other unit type.
Information about an agent’s ‘locked-into’ state is not provided as part of the agent observation, and
since agents have no memory, they would have to look to their latent z to determine their niche. Since
there are equal numbers of chickens and towers on our map, a reasonable generative model algorithm
should be able to map half the latent space to each of these two specializations, or niches.

Figure 7: Poison
Chickens Revisited.
We report min, max, and
average lifetime after
running Algorithm 2.

Results So we can see how well the entire latent space falls maps to
a niche, we report rewards and other metrics in Table 3 without running
latent space optimization on ADAP or baselines. In summary, ADAP
consistently learned a more multi-modal policy space than any of the other
baselines. Our results also indicate that using a multiplicative model can
yield a higher degree of policy space multi-modality, and therefore greater
success in this environment.

We can see in Table 3 that ADAP (x) is able to attain the highest aver-
age agent lifetime. This, however, is not necessarily the most interesting
point. ADAP, learns a policy generator with the highest mutual informa-
tion I(T |Z) between an agent "niche" T and the latent distribution Z.
Intuitively, this means that ADAP was able to learn a population of agents
that were composed of two clear species – on one hand: agents that focus
on chickens, and on the other: agents that focus on towers. Formally, let T
be a discrete random variable where pT (t) is the probability that an agent
attacks target t, for t ∈ {chicken, tower}. Then I(T ;Z) is high when
individual agents are specialized in a niche, and we see diverse niches
across our population. This is because I(T ;Z) = H(T )−H(T |Z) and
is maximized by both increasing H(T ) and decreasing H(T |Z). H(T )
measures the diversity of niches across all agents in the population, and
H(T |Z) measures how rigidly an agent falls into a single niche (i.e. specialization).

As an example, suppose agents were highly specialized but not diverse, e.g., all agents were chicken-
only attackers. Then H(T ) = H(T |Z) = I(T ;Z) = 0. On the other hand, suppose that all z ∼ Z
yield an agent policy that attacks chickens and towers with equal probability. Then in this case
H(T ) = H(T |Z) = 1 and I(T ;Z) = 0. Intuitively, this means half of the time agents are wasting
timesteps to attack a target that they are unable to even damage! Qualitatively, we have seen that the
latter case occurs with the Vanilla and (most seeds of) DIAYN* baselines: notice that their H(T |Z)
is significantly higher than that of ADAP.

For fun, we performed latent distribution optimization on generators trained using the Niche
Specialization environment to fit the Poison Chickens environment. One would expect al-
gorithms with high H(T |Z) to fare well, since Algorithm 2 can find optimized Z∗ such that
pT (chicken|z ∼ Z∗) = 0. Sure enough, we see this result in Figure 7: ADAP (x) is most suc-
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cessful at consistently producing a generative model that can produce policies that not only avoid
chickens, but also successfully attack only towers.

8 Adaptation and Self-Play in a Zero-Sum Two-Player Environment

Environment This experiment uses Markov Soccer, introduced in [5]. Two agents, A and B, play
on a gridworld and must ‘carry’ a ball into the opposing goal to score. Agents walk in cardinal
directions or stand in place. Possession is randomly initialized, and switches if one an agent bumps
into the other. Actions of A and B occur on the same timestep, execution order is randomized, and
each timestep ends in a draw with some ϵ probability.

Markov Soccer is an interesting environment, because the best policy for one agent depends on
the policy of the other agent. As described in [5], there exists a worse-case-optimal probabilistic
policy for Markov Soccer, which maximizes the minimum possible score against any adversary. This
strategy tends to be conservative, preferring to act towards a draw where a different policy could
have obtained a higher score. On the other hand, non-worse-case-optimal strategies may be less
conservative and may achieve very high scores against some opponents, but very low scores against
others. Analogous to real soccer, different players have varying abilities and play styles, and a given
player p1 may be optimal against p2, but not against p3.

If any single policy has its drawbacks, can we instead learn an entire space of diverse policies
Π := {π1, π2, ..., πinf}, where for any opponent, we can select a policy πi ∈ Π that achieves the
maximum score against that opponent? Ideally, this space includes the worse-case-optimal policy, as
well as other more aggressive policies. Then, just as a coach might swap out a soccer player, we can
mix and match our champion as suited.

Experiment Can we learn a population of individuals that is holistically strong against all types
of opponents? We evaluate adaptability to various adversaries using two methods. First, we test
baselines and our method against a set of hand-coded soccer bots. These bots are designed to represent
a wide gamut of strategies, some of which are more exploitable than others. Secondly, we evaluate
each G by playing ADAP (x), ADAP (+), Vanilla (x), and Vanilla (+) in a round-robin tournament
against each other. All scores is determined by wins minus losses over 1000 simulated games.

Against Hard-Coded Bots: Each bot always starts on the left side, and the learned policy starts on the
right side (although the environment is coded such that observations are side-invariant). Bot types
fall into three categories: offense (bots start with possession), defense (policy starts with possession),
and mixed (random starting possession). See Table 4 for more details.

Bot Bot Type Bot Policy
Straight Offense Always moves right, towards the goal.
Oscillate 0 Defense Oscillates in column 0, blocking both squares adjacent the goal.
Oscillate 1 Defense Oscillates in column 1, leaving a gap in front of the goal.
Stand Defense stands in one square adjacent the goal, leaving the other open.
Rule-Based Mixed Follows hand-coded heuristics.
Random Mixed Follows a random policy.

Table 4: Markov Soccer Bot Adversaries
Round-Robin Against Each Other: We also pit each generative model in a round robin tournament
against the other models. The manner in which we do this is described in the supplement.

Training and Baselines We use self-play to train both ADAP and baselines. We use the same
Vanilla baseline as described in Section 5, and we omit the DIAYN* baseline for brevity. Note that at
no point in the training process did any of our algorithms train against any bots, or against each other.

Results As in the Farmworld adaptability experiment, we see from Figure 8 that ADAP is able
to learn a G during the train phase that emergently contains members that are successful against a
variety of unexpected adversaries - including naive bots and other policies.

Compared to Vanilla, the ADAP policy space generalizes better against all adversaries. Going back
to the soccer team example, we were able to select individuals from the ADAP population that were
well suited for a specific strategies. For example, against the Oscillate 1 adversary, ADAP latent
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Figure 8: Results of round-robin and bot games. Score is over 1000 runs, some games prematurely
end in a draw. We report mean and standard deviation over five random seeds.

optimization found a member of the population that side-stepped the oscillating adversary simply by
moving to the top row, and then down to the goal. Additionally, against the Straight adversary,
successful ADAP individuals stole possession by deterministically standing in-front of the opponent
to block, and then moving around and into the goal. On the other hand in both of these situations,
Vanilla could not find individuals that exploited the naive deterministic nature of their opponents.

Using ADAP did not just allow us to optimize against naive opponents. ADAP learned the best G in
the round-robin tournament, and was the only method that was able to consistently beat our rule-based
bot. It is possible that by using ADAP during the self-play training, individuals encountered a wide
variety of strategies that bettered overall performance.

9 Limitations

Bad Apples When using ADAP, not every member of the policy space is going to be an optimal
policy. In fact, some generated policies might be bad apples: policies that were incentivized by the
diversity regularizer to take actions that were not rewarding. Naturally, some individuals might be
better or worse than others. These individuals can be removed by optimizing the latent distribution.
However, the bad apples may come with a plus side. Even though they do not perform well in the
current environment, they might happen to perform well in a future ablated environment!

Continuous-Action Space Environments The results presented so far focus entirely on environ-
ments with discrete categorical action spaces, in which we have observed that our diversity regularizer
in Equation 1 empirically performs well. However, not all environments in RL use discrete action
spaces - continuous action spaces are widely used in RL control tasks. While we believe that our
regularizer can work in these environments, we have not rigorously tested in these environments.

10 Conclusion

We have presented a framework to learn a generative model of policies. Rather than learning just
one policy, we aim to find as many high-performing and individually distinct policies as possible, all
compressed within the parameters of our generator.

Learning a space of policies pays off in an open-ended environment such as Farmworld, in which
there may be more than one path to success. We show in Section 6 that we can adapt to ablations by
quickly choosing ‘species’ from our learned policy space that are successful in the new environment.

We also learn a policy space in a competitive, two-player, zero-sum game in Section 8. Here, no
single deterministic policy is optimal against all adversaries. Instead, we show how to train a family
of policies that can be naturally adaptable to a wide array of both challenging and naive adversaries.

Overall, we hope to show how it can be beneficial in RL to optimize not just for reward, but also
for diversity of behavior. As environments continue to increase in complexity and open-endedness –
filled with branching paths to success – it makes sense to learn not just one, but many, solutions.
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