
Appendix

Table of Contents
A Related work 17

B Main results under heavy-tailed distributions 18

C Background on (non-private) robust mean estimation 19

D A new framework for private iterative filtering 19
D.1 Interactive version of the algorithm . 19
D.2 Centralized version of the algorithm . 20
D.3 The analysis of private iterative filtering (Algorithms 1 and 7) and a proof of

Theorem 5 . 21

E PRIME: efficient algorithm for private and robust mean estimation 27
E.1 PRIvate and robust Mean Estimation (PRIME) 28
E.2 Algorithm and analysis of DPTHRESHOLD . 29
E.3 Proof of Lemma E.1 . 29

F The analysis of PRIME and the proof of Theorem 6 32
F.1 Proof of part 1 of Theorem 6 on differential privacy 32
F.2 Proof of part 2 of Theorem 6 on accuracy . 33
F.3 Proof of Lemma F.3 . 36

G Technical lemmas 41
G.1 Lemmata for sub-Gaussian regularity from [36] 41
G.2 Auxiliary Lemmas on Laplace and Gaussian mechanism 42

G.3 Analysis of ‖M(S
(s)
t)− I‖2 shrinking . 42

H Exponential time DP robust mean estimation of sub-Gaussian and heavy tailed dis-
tributions (Algorithm 2) 43
H.1 Case of heavy-tailed distributions and a proof of Theorem 8 43
H.2 Case of sub-Gaussian distributions and a proof of Theorem 7 45

I Background on exponential time approaches for Gaussian distributions 46

J Proof of Theorem 12 on the accuracy of the exponential mechanism for Tukey median 47
J.1 Proof of Lemma J.1 . 48
J.2 Proof of Lemma J.2 . 49
J.3 Proof of Lemma J.3 . 50

K The algorithmic details and the analysis of PRIME-HT for covariance bounded dis-
tributions 51
K.1 Range estimation with qrange−ht . 51
K.2 Proof of Theorem 9 . 52

L Experiments 59

16

A Related work

Private statistical analysis. Traditional private data analyses require bounded support of the samples
to leverage the resulting bounded sensitivity. For example, each entry is constrained to have finite
`2 norm in standard private principal component analysis [18], which does not apply to Gaussian
samples. Fundamentally departing from these approaches, [58] first established an optimal mean
estimation of Gaussian samples with unbounded support. The breakthrough is in first adaptively
estimating the range of the data using a private histogram, thus bounding the support and the resulting
sensitivity. This spurred the design of private algorithms for high-dimensional mean and covariance
estimation [52, 12], heavy-tailed mean estimation [54], learning mixture of Gaussian [53], learning
Markov random fields [80], and statistical testing [16]. Under the Gaussian distribution with no
adversary, [3] achieves an accuracy of ‖µ̂ − µ‖2 ≤ α̃ with the best known sample complexity of
n = Õ((d/α̃2) + (d/α̃ε) + (1/ε) log(1/δ)) while guaranteeing (ε, δ)-differential privacy. This
nearly matches the known lower bounds of Ω(d/α̃2) for non-private finite sample complexity,
Ω̃((1/ε) log(1/δ)) for privately learning one-dimensional unit variance Gaussian [58], and Ω̃(d/α̃ε)
for multi-dimensional Gaussian estimation [52]. However, this does not generalize to sub-Gaussian
distributions and [3] does not provide a tractable algorithm. A polynomial time algorithm is proposed
in [52] that achieves a slightly worse sample complexity of Õ((d/α̃2) + (d log1/2(1/δ)/α̃ε)), which
can also seamlessly generalized to sub-Gaussian distributions.

[15] takes a different approach of deviating from standard definition of sub-Gaussianity to pro-
vide a larger lower bound on the sample complexity scaling as n = Ω(d

√
log(1/δ)/(αε)) for

mean estimation with a known covariance. Concretely, they consider distributions satisfying
Ex∼P [eλ〈x−µ,ek〉] ≤ eλ

2σ2

for all k ∈ [d] where ek is the k-th standard basis vector. Notice
that this condition only requires sub-Gaussianity when projected onto standard bases. Standard defi-
nition of high-dimensional sub-Gaussianity (which is assumed in this paper) requires sub-Gaussianity
in all directions. Therefore, their lower bound is not comparable with our achievable upper bounds.
Further, the example they construct to show the lower bound does not satisfy our sub-Gaussianity
assumptions.

In an attempt to design efficient algorithms for robust and private mean estimation, [26] proposed an
algorithm with a mis-calculated sensitivity, which can result in violating the privacy guarantee. This
can be corrected by pre-processing with our approach of checking the resilience (as in Algorithm 2),
but this requires a run-time exponential in the dimension.

For estimating the mean of a covariance bounded distributions up to an error of ‖µ̂−µ‖2 = O(α̃1/2),
[54] shows that Ω(d/(α̃ε)) samples are necessary and provides an efficient algorithm matching this
up to a factor of log1/2(1/δ). For a more general family of distributions with bounded k-moment,
[54] shows that an error of ‖µ̂− µ‖2 = O(α̃(k−1)/k) can be achieved with n = Õ((d/α̃2(k−1)/k) +

(d log1/2(1/δ)/(εα̃))) samples.

However, under α-corruption, [46] shows that achieving an error better than O(α1/2) under k-
th moment bound is as computationally hard as the small-set expansion problem, even without
requiring DP. Hence, under the assumption of P 6= NP, no polynomial-time algorithm exists that can
outperform our PRIME-HT even if we have stronger assumptions of k-th moment bound. On the
other hand, there exists an exponential time algorithm for non-private robust mean estimation that
achieves ‖µ− µ̂‖2 = O(α(k−1)/k) [81]. Combining it with the bound of [46], an interesting open
question is whether there is an (exponential time) algorithm that achieves ‖µ− µ̂‖2 = O(α(k−1)/k)

with sample complexity n = Õ((d/α2(k−1)/k) + (d log1/2(1/δ)/(εα))) under α-corruption and
(ε, δ)-DP.

Robust estimation. Designing robust estimators under the presence of outliers has been considered
by statistics community since 1960s [76, 6, 47]. Recently, [28, 62] give the first polynomial time
algorithm for mean and covariance estimation with no (or very weak) dependency on the dimen-
sionality in the estimation error. Since then, there has been a flurry of research on robust estimation
problems, including mean estimation [30, 36, 43, 44, 31], covariance estimation [21, 64], linear re-
gression and sparse regression [11, 10, 8, 42, 71, 59, 29, 65, 57, 23, 70, 35, 56], principal component
analysis [60, 48], mixture models [27, 49, 61, 45] and list-decodable learning [34, 72, 17, 7, 22].
See [32] for a survey of recent work.

17

One line of work that is particularly related to our algorithm PRIME is [20, 36, 24, 21, 22], which
leverage the ideas from matrix multiplicative weight and fast SDP solver to achieve faster, sometimes
nearly linear time, algorithms for mean and covariance estimation. In PRIME, we use a matrix
multiplicative weight approach similar to [36] to reduce the iteration complexity to logarithmic,
which enables us to achieve the d3/2 dependency in the sample complexity.

The concept of resilience is introduced in [73] as a sufficient condition such that learning in the
presence of adversarial corruption is information-theoretically possible. The idea of resilience is later
generalized in [81] for a wider range of adversarial corruption models. While there exists simple
exponential time robust estimation algorithm under resilience condition, it is challenging to achieve
differential privacy due to high sensitivity. We propose a novel approach to leverage the resilience
property in our exponential time algorithm for sub-gaussian and heavy-tailed distributions.

B Main results under heavy-tailed distributions

We consider distributions with bounded covariance as defined as follows.
Assumption 2. An uncorrupted dataset Sgood consists of n i.i.d. samples from a distribution with
mean µ ∈ Rd and covariance Σ � I. For some α ∈ (0, 1/2), we are given a corrupted dataset
S = {xi}ni=1 where an adversary adaptively inspects all samples in Sgood, removes αn of them and
replaces them with Sbad that are αn arbitrary points in Rd.

Under these assumptions, Algorithm 2 achieves near optimal guarantees but takes exponential time.
The dominant term in the sample complexity Ω̃(d/(εα)) cannot be improved as it matches that of the
optimal non-robust private estimation [54]. The accuracy O(

√
α) cannot be improved as it matches

that of the optimal non-private robust estimation [36]. We provide a proof in Appendix H.1.
Theorem 8 (Exponential time algorithm for covariance bounded distributions). Algorithm 2 is
(ε, δ)-differentially private. Under Assumption 2, if

n = Ω
(d log(d/α1.5) + d1/2 log(1/δ)

εα
+
d1/2 log3/2(1/δ)log(d/δ)

ε

)
,

this algorithm achieves ‖µ̂− µ‖2 = O(
√
α) with probability 0.9.

We propose an efficient algorithm PRIME-HT and show that it achieves the same optimal accuracy
but at the cost of increased sample complexity of O(d3/2 log(1/δ)/(εα)). In the first step, we need
increase the radius of the ball to O(

√
d/α) to include a 1− α fraction of the clean samples, where

qrange−ht returns B = O(1/
√
α) and B√dB/2(x̄) is a `2-ball of radius

√
dB/2 centered at x̄. This

is followed by a matrix multiplicative weight filter similar to DPMMWFILTERR but the parameter
choices are tailored for covariance bounded distributions. We provide a proof in Appendix K.2.
Theorem 9 (Efficient algorithm for covariance bounded distributions). PRIME-HT is (ε, δ)-
differentially private. Under Assumption 2 there exists a universal constant c ∈ (0, 0.1) such
that if α ≤ c, and n = Ω̃((d3/2/(εα)) log(1/δ)), then PRIME-HT achieves ‖µ̂− µ‖2 = O(α1/2)

with probability 0.9. The notation Ω̃(·) hides logarithmic terms in d, and 1/α.

Remark 1. To boost the success probability to 1− ζ for some small ζ > 0, we will randomly split
the data into O(log(1/ζ)) subsets of equal sizes, and run Algorithm 3 to obtain a mean estimation
from each of the subset. Then we can apply multivariate “mean-of-means” type estimator [68] to get
‖µ̂− µ‖2 = O(α1/2) with probability 1− ζ. This is efficient as we only have O(log 1/ζ) trials and
run-time of mean-of-means is dominated by the time it takes to find all pairwise distances, which
is only O(d (log(1/ζ))2). There are (log(1/ζ))2 pairs, and for each pair we compute the distance
between means in d operations.

18

Algorithm 3: PRIvate and robust Mean Estimation for covariance bounded distributions (PRIME-
HT)

Input: S = {xi ∈ Rd}ni=1, adversarial fraction α ∈ (0, 1/2), number of iterations
T1 = O(log(d/α)), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← qrange−ht(S, 0.01ε, 0.01δ) [Algorithm 14 in Appendix K]
2 Project the data onto the ball: x̃i ← PB√dB/2(x̄)(xi), for all i ∈ [n]

3 µ̂← DPMMWFILTER-HT({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 15 in Appendix K]
Output: µ̂

C Background on (non-private) robust mean estimation

The following tie-breaking rule is not essential for robust estimation, but is critical for proving
differential privacy, as shown later in Appendix F.1.
Definition C.1 (Subset of the largest α fraction). Given a set of scalar values {τi = 〈V, (xi −
µ)(xi−µ)>〉}i∈S′ for a subset S′ ⊆ [n], define the sorted list π of S′ such that τπ(i) ≥ τπ(i+1) for all
i ∈ [|S′| − 1]. When there is a tie such that τi = τj , it is broken by π−1(i) ≤ π−1(j)⇔ xi,1 ≥ xj,1.
Further ties are broken by comparing the remaining entries of xi and xj , in an increasing order of
the coordinate. If xi = xj ,then the tie is broken arbitrarily. We define Tα = {π(1), . . . , π(dnαe)}
to be the set of largest dnαe valued samples.

With this definition of α-tail, we can now provide a complete description of the robust mean estimation
that achieves the guarantee provided in Proposition 2.1.

Algorithm 4: Non-private robust mean estimation [63]
Input: S = {xi}ni=1, α ∈ (0, 1), S0 = [n]

1 for t = 1, . . . do
2 if ‖

∑
i∈St−1

(xi − µt−1)(xi − µt−1)> − I‖2 < Cα log(1/α) then
Output: µ̂ =

∑
i∈St−1

xi

3 else
4 µt ← (1/|St−1|)

∑
i∈St−1

xi
5 vt ← 1st principal direction of ({(xi − µt)}i∈St−1

)
6 Zt ← Unif([0, 1])

7 St ← St−1\ {i | i ∈ T2α for {τj = (v>t (xj − µt))2}j∈St−1 and
τi ≥ Zt maxj∈St−1

(v>t (xj − µt))2}, where T2α is defined in Definition C.1.

D A new framework for private iterative filtering

We provide complete descriptions of all algorithms used in private iterative filtering. We present the
interactive version first, followed by the centralized version.

D.1 Interactive version of the algorithm

Adaptive estimation of the range of the dataset is essential in computing private statistics of data.
We use the following algorithm proposed in [58]. It computes a private histogram of a set of 1-
dimensional points and select the largest bin as the one potentially containing the mean of the data.
Note that B does not need not be chosen adaptively to include all the uncorrupted data with a high
probability.

The following guarantee (and the algorithm description) is used in the analysis (and the implementa-
tion) of the query qrange.
Lemma D.1 (Histogram Learner, Lemma 2.3 in [58]). For every K ∈ N ∪∞, domain Ω, for every
collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε, δ ∈ (0, 1/n), β > 0 and α ∈ (0, 1)

19

Algorithm 5: Differentially private range estimation (qrange) [58, Algorithm 1]

Input: Dn = {xi}ni=1, ε, δ, σ = 1
1 for j ← 1 to d do
2 R

(j)
max ← maxi∈[n] x

(j)
i and R(j)

min ← mini∈[n] x
(j)
i where x(j)

i is the j-th coordinate of xi
3 Run the histogram learner of Lemma D.1 with privacy parameters(

min{ε, 0.9}/2
√

2d log(2/δ), δ/(2d)
)

and bins Bl = (2σ`, 2σ(`+ 1)] for all

` ∈ {dR(j)
min/2σe − 1, . . . , dR(j)

max/2σe} on input Dn to obtain noisy estimates

{h̃j,l}
dR(j)

max/2σe
l=dR(j)

min/2σe−1

4 x̄j ← 2σ · arg max
`∈{dR(j)

min/2σe−1,...,dR(j)
max/2σe}

h̃j,`

Output: (x̄, B = 8σ
√

log(dn/ζ))

there exists an (ε, δ)-differentially private algorithm M : Ωn → RK such that for any set of data
X1, . . . , Xn ∈ Ωn

1. p̂k = 1
n

∑
Xi∈Bk 1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}

then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

Proof. This is an intermediate result in the proof of Lemma 2.3 in [58]. Note that, conceptu-
ally, we are applying the private histogram algorithm to an infinite number of bins in the intervals
{· · · , (−4σ,−2σ], (−2σ, 0], (0, 2σ], (2σ, 4σ], (4σ, 6σ] · · · } each of length 2σ. This is possible be-
cause the algorithm only changes the bins that are occupied by at least on sample. Practically, we
only need to add noise to those bins that are occupied, and hence we limit the range from R

(j)
min to

R
(j)
max without loss of generality and without any changes to the privacy guarantee of the algorithm.

The rest of the queries (qsize, qmean, qPCA, and qnorm) are provided below. The most innovative part
is the repeated application of filtering that is run every time one of the queries is called. In the Filter
query below, because we choose (i) to use the sampling version of robust mean estimation as opposed
to weighting version which assigned a weight on each sample between zero and one measuring how
good (i.e., score one) or bad (i.e., score zero) each sample point is, and (ii) we switched the threshold
to be dB2Z`, we can show that this filtering with fixed parameters {µ`, v`, Z`}`∈[t−1] preserves
sensitivity in Lemma 2.2. This justifies the choice of noise in each output perturbation mechanism,
satisfying the desired level of (ε, δ)-DP. We provide the complete privacy analysis in Appendix D.3
and also the analysis of the utility of the algorithm as measure by the accuracy.

D.2 Centralized version of the algorithm

In practice, one should run the centralized version of the private iterative filtering, in order to avoid
multiple redundant computations of the interactive version. The main difference is that the redundant

20

Algorithm 6: Interactive private queries used in Algorithm 1

1 Filter ({(µ`, v`, Z`)}`∈[t−1], x̄, B):
2 S0 ← [n]
3 Clip the data points: xi ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]
4 for ` = 1, . . . , t− 1 do
5 S` ← S`−1\ {i ∈ S`−1 : i ∈ T2α for {τj = (v>` (xj − µ`))2}j∈S`−1

and τi ≥ dB2 Z`}

6 qmean({(µ`, v`, Z`)}`∈[t−1], ε, x̄, B):
7 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
8 return µt ← (1/|St−1|)

(∑
i∈St−1

xi
)

+ Lap(2B/(nε))

9 qPCA({(µ`, v`, Z`)}`∈[t−1], µt, ε, δ, x̄, B):
10 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
11 return vt ← top singular vector of Σt−1 =

12 (1/n)
∑
i∈St−1

(xi − µt)(xi − µt)> +N (0, (B2d
√

2 log(1.25/δ)/(nε))2Id2×d2)

13 qnorm({(µ`, v`, Z`)}`∈[t−1], µt, ε, x̄, B):
14 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
15 return λt ← ‖(1/n)

∑
i∈St−1

(xi − µt)(xi − µt)>‖2 + Lap(2B2d/(nε))

16 qsize({(µ`, v`, Z`)}`∈[t−1], ε, x̄, B):
17 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
18 return nt ← |St−1|+ Lap(1/ε)

filtering repeated every time a query is called in the interactive version is now merged into a single
run. The resulting estimation and the privacy loss are exactly the same.

Algorithm 7: Private iterative filtering (centralized version)

Input: S = {xi ∈ Rd}ni=1, adversarial fraction α ∈ (0, 1), target probability η ∈ (0, 1), number
of iterations T = Θ̃(d), target privacy (ε, δ)

1 (x̄, B)← qrange(S, 0.01ε, 0.01δ) [Algorithm 5]
2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]
3 µ̂← DPFILTER({x̃i}ni=1, α, T, 0.99ε, 0.99δ) [Algorithm 8]

Output: µ̂

First, qrange introduced in [58], returns a hypercube x̄+ [−B,B]d that is guaranteed to include all
uncorrupted samples, while preserving privacy. It is followed by a private filtering DPFILTER in
Algorithm 8.

D.3 The analysis of private iterative filtering (Algorithms 1 and 7) and a proof of Theorem 5

qrange, introduced in [58], returns a hypercube x̄ + [−B,B]d that is guaranteed to include all
uncorrupted samples, while preserving privacy. In the following lemma, we show that qrange is also
robust to adversarial corruption. Such adaptive bounding of the support is critical in privacy analysis
of the subsequent steps. We clip all data points by projecting all the points with Px̄+[−B/2,B/2]d(x) =
arg miny∈x̄+[−B/2,B/2]d ‖y−x‖2 to lie inside the hypercube and pass them to DPFILTER for filtering.
The algorithm and a proof are provided in §D.3.1.

Lemma D.2. qrange(S, ε, δ) (Algorithm 5) is (ε, δ)-differentially private. Under Assumption 1,

qrange(S, ε, δ) returns (x̄, B) such that if n = Ω
(

(
√
d log(1/δ) log(d/(ζδ))/ε)

)
and α < 0.1, then

all uncorrupted samples in S are in x̄+ [−B,B]d with probability 1− ζ.

In DPFILTER, we make only the mean µt and the top principal direction vt private to decrease sensi-
tivity. The analysis is now more challenging since (µt, vt) depends on all past iterates {(µj , vj)}t−1

j=1

and internal randomness {Zj}t−1
j=1. To decrease the sensitivity, we modify the filter in line 12 to

21

Algorithm 8: Differentially private filtering (DPFILTER)

Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2),
T = Õ(dB2 log(dB2/(α log(1/α)))), (ε, δ)

1 S0 ← [n], ε1 ← min{ε, 0.9}/(4
√

2T log(2/δ)), δ1 ← δ/(8T)
2 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
3 for t = 1, . . . , T do
4 nt ← |St−1|+ Lap(1/ε1)
5 if nt < 3n/4 then
6 Output: ∅
7 µt ← (1/|St−1|)

∑
i∈St−1

xi + Lap(2B/(n ε1))

8 λt ← ‖(1/n)
∑
i∈St−1

(xi − µt)(xi − µt)> − I‖2 + Lap(2B2d/(nε1))

9 if λt ≤ (C − 0.01)α log(1/α) then
Output: µt

10 vt ← top singular vector of Σt−1 ,
1
n

∑
i∈St−1

(xi − µt)(xi − µt)> +N (0, (B2d
√

2 log(1.25/δ)/(nε1))2Id2×d2)

11 Zt ← Unif([0, 1])

12 St ← St−1\ {i | i ∈ T2α for {τj = (v>t (xj − µt))2}j∈St−1
and τi ≥ dB2 Zt}, where T2α

is defined in Definition C.1.

use the maximum support dB2 (which is data independent) instead of the maximum contribution
maxi(v

>
t (xi − µt))2 (which is data dependent and sensitive). While one data point can significantly

change maxi(v
>
t (xi − µt))2 and the output of one step of the filter in Algorithm 4, the sensitivity

of the proposed filter is bounded conditioned on all past {(µj , vj)}t−1
j=1, as we show in the following

lemma. This follows from the fact that conditioned on (µj , vj), the proposed filter is a contraction.
We provide a proof in Appendix D.3.3 and Appendix D.3.4. Putting together Lemmas D.2 and D.3,
we get the desired result in Theorem 5.

Lemma D.3. DPFILTER(S, α, T, ε, δ) is (ε, δ)-differentially private. Under the hypotheses of Theo-
rem 5, DPFILTER(S, α, T = Θ̃(B2d), ε, δ) achieves ‖µ̂− µ‖2 = O(α

√
log(1/α)) with probability

0.9, if n = Ω̃(d/α2+B3d2 log(1/δ)/(εα)) andB is large enough such that the original uncorrupted
samples are inside the hypercube x̄+ [−B/2, B/2]d.

Differential privacy guarantee. To achieve (ε0, δ0) end-to-end target privacy guarantee, Algo-
rithm 7 separates the privacy budget into two. The (0.01ε0, 0.01δ0)-DP guarantee of qrange follows
from Lemma D.2. The (0.99ε0, 0.99δ0)-DP guarantee of DPFILTER follows from Lemma D.3.

Accuracy. From Lemma D.2 qrange is guaranteed to return a hypercube that includes all clean data
in the dataset. It follows from Lemma D.3 that when n = Ω̃(d/α2 + d2 log(1/δ)/(εα)), we have
‖µ− µ̂‖2 = O(α

√
log(1/α)).

D.3.1 Proof of Lemma D.2 and the analysis of qrange in Algorithm 5

Assuming the distribution is σ2 sub-Gaussian, we use P to denote the sub-Gaussian distribution.
Denote Il = [2σl, 2σ(l + 1)] as the interval of the l’th bin. Denote the population probability in the
l’th bin hj,l = Px∼P [xj ∈ Il], empirical probability in the l’th bin h̃j,l = 1

n

∑
xi∈D 1{xi,j ∈ Il},

and the noisy version ĥj,l computed by the histogram learner of Lemma D.1. Notice that Lemma D.1
with d compositions (Lemma G.13) immediately implies that our algorithm is (ε, δ)-differentially
private.

For the utility of the algorithm, we will first show that for all dimension j ∈ [d], the output
|x̄j − µj | = O(σ). Note that by the definition of σ2-subgaussian, it holds that for all i ∈ [d],
P[|xi − µi| ≥ z] ≤ 2 exp(−z2/σ2) where x is drawn from distribution P . This implies that
P[|xi − µi| ≥ 2σ] ≤ 2 exp(−4) ≤ 0.04. Suppose the k’th bin contains µj , namely µj ∈ Ik. Then

22

it is clear that [µj − 2σ, µj + 2σ] ⊂ (Ik−1 ∪ Ik ∪ Ik+1). This implies hj,k−1 + hj,k + hj,k+1 ≥
1− 0.04 = 0.96, hence min(hj,k−1, hj,k, hj,k+1) ≥ 0.32.

Recall that G is the set of clean data drawn from distribution P . By Dvoretzky-Kiefer-Wolfowitz
inequality and an union bound over j ∈ [d], we have that with probability 1 − ζ, maxj,l(|hj,l −
1
n

∑
x∈G xj |) ≤

√
log(d/ζ)

n . The deviation due to corruption is at most α on each bin, hence we have

maxj,l(|hj,l − ĥj,l) ≤
√

log(d/ζ)
n + α. Lemma D.1 and a union bound over j ∈ [d] implies that with

probability 1− ζ , maxj,l(|h̃j,l − ĥj,l|) ≤ β when n ≥ Ω

(√
d log(1/δ)

εβ log(d/ζδ)

)
.

Assuming that n = Ω

(√
d log(1/δ)

εβ log(d/ζδ)

)
, we have that with probability 1− ζ , maxj,l(|hj,l −

ĥj,l|) ≤ 0.01 + α. Using the assumption that α ≤ 0.1, since min(hj,k−1, hj,k, hj,k+1) − 0.11 ≥
0.31 ≥ 0.04 + 0.11 ≥ maxl 6=k−1,k,k+1 hj,l + 0.11. This implies that with probability 1 − ζ, the
algorithm choose the bin from k − 1, k, k + 1, which means the estimate |x̄j − µ| ≤ 4σ. By the tail
bound of sub-Gaussian distribution and a union bound over n, d, we have that with probability 1− ζ ,
for all xi ∈ D and j ∈ [d], xi,j ∈ [x̄j − 8σ

√
log(nd/ζ), x̄j + 8σ

√
log(nd/ζ)].

D.3.2 Proofs of the sensitivity of the filtering in Lemma 2.2 and Lemma F.1

Proof of Lemma 2.2. We only need to show that one step of the proposed filter is a contraction. To
this end, we only need to show contraction for two datasets at distance 1, i.e., d4(D,D′) = 1. For
fixed (µ, v) and Z, we apply filter to set of scalars (v>(D−µ))2 and (v>(D′−µ))2, whose distance
is also one. If the entries that are different (say a ∈ D and a′ ∈ D′) are both below the subset of the
top 2nα points (as in Definition C.1), then the same set of points will be removed for both and the
distance is preserved d4(S(D), S(D′)) = 1. If they are both above the top 2nα subset, then either
both are removed, one of them is removed, or both remain. The rest of the points that are removed
coincide in both sets. Hence, d4(S(D), S(D′)) ≤ 1. If a is below and a′ is above the top 2nα subset
of respective datasets, then either a′ is not removed (in which case d4(S(D), S(D′)) = 1) or a′ is
removed (in which case S(D) = S(D′) ∪ {a} and the distance remains one).

Note that when there are ties, it is critical to resolve them in a consistent manner in both datasets D
and D′. The tie breaking rule of Definition C.1 is critical in sorting those samples with the same
score τi’s in a consistent manner.

Proof of Lemma F.1. The analysis of contraction of the filtering step in DPMMWFILTER is
analogous to that of private iterative filtering in Lemma 2.2.

D.3.3 Proof of part 1 of Lemma D.3 on differential privacy of DPFILTER

We explicitly write out how many times we access the database and how much privacy is lost each
time in an interactive version of DPFILTER in Algorithm 1, which performs the same operations as
DPFILTER. In order to apply Lemma G.13, we cap ε at 0.9 in initializing ε1. We call qmean, qPCA,
qnorm and qsize T times, each with (ε1, δ1) guarantee. In total this accounts for (ε, δ) privacy loss,
using Lemma G.13 and our choice of ε1 and δ1.

This proof is analogous to the proof of DP for DPMMWFILTER in Appendix F.1, and we omit the
details here. We will assume for now that |Sr| ≥ n/2 for all r ∈ [t] and prove privacy. This happens
with probability larger than 1− δ1, hence ensuring the privacy guarantee. In all sub-routines, we run
Filter(·) in Algorithm 1 to simulate the filtering process so far and get the current set of samples St.
Lemma 2.2 allows us to prove privacy of all interactive mechanisms. This shows that the two data
datasets St and S′t are neighboring, if they are resulting from the identical filtering but starting from
two neighboring datasets Dn and D′n. As all four sub-routines are output perturbation mechanisms
with appropriately chosen sensitivities, they satisfy the desired (ε1, δ1)-DP guarantees. Further, the
probability that nt > 3/4n and |St| ≤ n/2 is less than δ1 for n = Ω̃((1/ε1) log(1/δ1)).

23

D.3.4 Proof of part 2 of Lemma D.3 on accuracy of DPFILTER

The following theorem analyzing DPFILTER implies the desired Lemma D.3 when the good set is
α-subgaussian good, which follows from G.3 and the assumption that n = Ω̃(d/α2).
Theorem 10 (Anlaysis of DPFILTER). Let S be an α-corrupted sub-Gaussian dataset under Assump-
tion 1, where α ≤ c for some universal constant c ∈ (0, 1/2). Let Sgood be α-subgaussian good with
respect to µ ∈ Rd. Suppose D = {xi ∈ x̄+ [−B/2, B/2]d}ni=1 be the projected dataset where all of
the uncorrupted samples are contained in x̄+ [−B/2, B/2]d. If n = Ω̃

(
d2B3 log(1/δ)/(εα)

)
, then

DPFILTER terminates after at most O
(
dB2

)
iterations and outputs St such that with probability 0.9,

we have |St ∩ Sgood| ≥ (1− 10α)n and

‖µ(St)− µ‖2 . α
√

log 1/α .

To prove this theorem, we use the following lemma to first show that we do not remove too many
uncorrupted samples. The upper bound on the accuracy follows immediately from Lemma G.7 and
the stopping criteria of the algorithm.

Lemma D.4. If n & B2d3/2

ε1α log 1/α log(1/δ), λt ≥ (C−0.01)·α log 1/α and |St∩Sgood| ≥ (1−10α)n,
then there exists constant C > 0 such that for each iteration t, with probability 1−O(1/d), we have
Eq. (4) holds. If this condition holds, we have

E |(St \ St+1) ∩ Sgood| ≤ E |St \ St+1 ∩ Sbad| .

We measure the progress by by summing the number of clean samples removed up to iteration t and
the number of remaining corrupted samples, defined as dt , |(Sgood ∩ S) \ St|+ |St \ (Sgood ∩ S)|.
Note that d1 = αn, and dt ≥ 0. At each iteration, we have

E[dt+1 − dt|d1, d2, · · · , dt] = E [|Sgood ∩ (St \ St+1)| − |Sbad ∩ (St \ St+1)|] ≤ 0,

from the Lemma D.4. Hence, dt is a non-negative super-martingale. By optional stopping theorem,
at stopping time, we have E[dt] ≤ d1 = αn. By Markov inequality, dt is less than 10αn with
probability 0.9, i.e. |St ∩ Sgood| ≥ (1 − 10α)n. The desired bound follows from induction and
Lemma G.7.

Now we bound the number of iterations under the conditions of Lemma D.5. Let Wt = |St \St−1|/n.
Since Eq. (5), we have

E[Wt] ≥
1

n

∑
i∈T2α

τi
dB2

≥ 0.7‖M(St−1)− I‖2
αdB2

≥ 0.7Cα log(1/α)

dB2
.

Let T be the stopping time. We know
∑T
t=1Wt ≤ 10α. By Wald’s equation, we have

E[

T∑
t=1

Wt] = E[

T∑
t=1

E[Wt]] ≥ E[T]
0.7Cα log(1/α)

dB2
.

This means E[T] ≤ (15dB2)/(C log(1/α)). By Markov inequality we know with probability 0.9,
we have T = O(dB2/ log(1/α)).

D.3.5 Proof of Lemma D.4

The expected number of removed good points and bad points are proportional to the
∑
i∈Sgood∩T2α

τi
and

∑
i∈Sbad∩T2α

τi. It suffices to show∑
i∈Sgood∩T2α

τi ≤
∑

i∈Sbad∩T2α

τi .

Assuming we have ‖M(St−1)− I‖2 ≥ Cα log 1/α for some C > 0 sufficiently large, it suffices to
show

1

n

∑
i∈Sbad∩T2α

τi ≥
1

1000
‖M(St−1)− I‖2 .

24

First of all, we have

1

n

∑
i∈St−1

τi − 1 = v>t M(St−1)vt − 1

= v>t (M(St−1)− I) vt

Lemma G.6 shows that the magnitude of the largest eigenvalue of M(St−1)− I is positive since the
magnitudes negative eigenvalues are all less than cα log 1/α. So we have

1

n

∑
i∈St−1

τi − 1 ≥ ‖M(St−1)− I‖2 −O(α log 1/α) (2)

≥ 0.9‖M(St−1)− I‖2 , (3)

where the first inequality follows from Lemma D.6, and the second inequality follows from our choice
of large constant C. The next lemma regularity conditions for τi’s for each iteration is satisfied.

Lemma D.5. If n & B2d3/2

ε1α log 1/α log(1/δ), then there exists a large constant C > 0 such that, with
probability 1−O(1/d), we have

1.
1

n

∑
i∈Sgood∩T2α∩St−1

τi ≤
1

1000
‖M(St−1)− I‖2 . (4)

2. For all i /∈ T2α,

ατi ≤
1

1000
‖M(St−1)− I‖2 .

3.
1

n

∑
i∈Sgood∩St−1

(τi − 1) ≤ 1

1000
‖M(St−1)− I‖2 .

Thus, by combining with Lemma D.5, we have

1

n

∑
i∈St−1∩Sbad

τi ≥ 0.8‖M(St−1)− I‖2 .

We now have
1

n

∑
i∈Sbad∩T2α

τi ≥ 0.8‖M(St−1)− I‖2 −
∑

i∈Sbad∩St−1\T2α

τi

≥ 0.8‖M(St−1)− I‖2 − max
i∈Sbad∩St−1\T2α

ατi

≥ 0.8‖M(St−1)− I‖2 −
1

1000
‖M(St−1)− I‖2 (5)

≥ 1

n

∑
i∈Sgood∩T2α

τi ,

which completes the proof.

D.3.6 Proof of Lemma D.5

By our choice of sample complexity n, with probability 1−O(1/dB2), we have ‖µ(St−1)−µt‖22 .
α log 1/α, v>t (M(St−1)− I) vt & ‖M(St−1)− I‖2 − α log 1/α (Lemma D.6), and ‖M(St−1)−
I‖2 ≥ Cα log 1/α simultaneously hold before stopping.

25

Lemma D.6. If

n &
d3/2B2

ηε1

√
2 ln

1.25

δ
log

1

ζ
,

then with probability 1− ζ, we have

v>t (M(St−1)− I) vt ≥ ‖M(St−1)− I‖2 − 2η − 2|St−1|
n
‖µt − µ(St−1)‖22

We first consider the upper bound of the good points.
1

n

∑
i∈Sgood∩T2α∩St−1

τi =
1

n

∑
i∈Sgood∩T2α∩St−1

〈xi − µt, vt〉2

(a)

≤ 2

n

∑
i∈Sgood∩T2α∩St−1

〈xi − µ, vt〉2 +
2

n
|Sgood ∩ T2α ∩ St−1| 〈µ− µt, vt〉2

≤ O(α log 1/α) + α (‖µ− µ(St−1)‖2 + ‖µt − µ(St−1)‖2)
2

(b)

≤ O(α log 1/α) + α
(
O(α

√
log 1/α) +

√
α (‖M(St−1)− I‖2 +O(α log 1/α)) +O(

√
α log 1/α)

)2

≤ O(α log 1/α) + α2‖M(St−1)− I‖2
(c)

≤ 1

1000
‖M(St−1)− I‖2

where the (a) is implied by the fact that for any vector x, y, z, we have (x − y)(x − y)> �
2(x− z)(x− z)> + 2(y − z)(y − z)>, (b) follows from Lemma G.7 and c follows from our choice
of large constant C.

Since |Sbad ∩ T2α| ≤ αn, we know |Sgood ∩ T2α| ≥ αn, so we have for i /∈ T2α,

ατi ≤
α

|Sgood ∩ T2α ∩ St−1|
∑

i∈Sgood∩T2α∩St−1

τi ≤
1

1000
‖M(St−1)− I‖2 .

Since |Sgood ∩ St−1| ≥ (1− 10α)n, we have
1

n

∑
i∈Sgood∩St−1

τi =
1

n

∑
i∈Sgood∩St−1

〈xi − µ(St−1), vt〉2 (6)

=
1

n

∑
i∈Sgood∩St−1

〈xi − µ(Sgood ∩ St−1), vt〉2 +
|Sgood ∩ St−1|

n
〈µ(Sgood ∩ St−1)− µ(St−1), vt〉2

(7)
(a)

≤ cα log 1/α+ 1 + ‖µ(Sgood ∩ St−1)− µ(St−1)‖22 (8)

≤ cα log 1/α+ 1 + (‖µ(Sgood ∩ St−1)− µ‖2 + ‖µ− µ(St−1)‖2)
2 (9)

(b)

≤ cα log 1/α+ 1 + α‖M(St−1)− I‖2 +O(α log 1/α) (10)
(c)

≤ 1

1000
‖M(St−1)− I‖2 , (11)

where (a) follows from Lemma G.6, and (b) follows from Lemma G.7, and (c) follows from our
choice of large constant C.

D.3.7 Proof of Lemma D.6

Proof. We have following identity.
1

n

∑
i∈St−1

(xi − µt)(xi − µt)>

=
1

n

∑
i∈St−1

(xi − µ(St−1))(xi − µ(St−1))> +
|St−1|
n

(µ(St−1)− µt)(µ(St−1)− µt)> .

26

So we have,

v>t (M(St−1)− I) vt

≥ v>t

 1

n

∑
i∈St−1

(xi − µt)(xi − µt)> − I

 vt −
|St−1|
n
‖µt − µ(St−1)‖22

≥ ‖M(St−1)− I‖2 − 2η − 2|St−1|
n
‖µt − µ(St−1)‖22

where the last inequality follows from Lemma G.6, which shows that the magnitude of the largest
eigenvalue of M(St−1)− I must be positive.

E PRIME: efficient algorithm for private and robust mean estimation

We provide our main algorithms, Algorithm 9 and Algorithm 10, in Appendix E.1 and the correspond-
ing proof in Appendix F. We provide our novel DPTHRESHOLD and its anlysis in Appendix E.2.

We define Sgood as the original set of n clean samples (as defined in Assumption 1 and 2) and
Sbad as the set of corrupted samples that replace αn of the clean samples. The (rescaled) covari-
ance is denoted by M(S(s)) , (1/n)

∑
i∈S(s)(xi − µ(S(s)))(xi − µ(S(s)))>, where µ(S(s)) ,

(1/|S(s)|)
∑
i∈S(s) xi denotes the mean.

27

E.1 PRIvate and robust Mean Estimation (PRIME)

Algorithm 9: PRIvate and robust Mean Estimation (PRIME)

Input: S = {xi ∈ Rd}ni=1, adversarial fraction α ∈ (0, 1/2), number of iterations
T1 = O(log d), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← qrange({xi}ni=1, 0.01ε, 0.01δ) [Algorithm 5 in Appendix D.3.1]
2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]
3 µ̂← DPMMWFILTER({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 10]

Output: µ̂

Algorithm 10: Differentially private filtering with matrix multiplicative weights (DPMMWFIL-
TER)

Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2), T1 = O(log(B
√
d)), T2 = O(log d),

privacy (ε, δ)

1 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4
√

10T1T2 log(4/δ)),
δ2 ← δ/(20T1T2), a large enough constant C > 0

2 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
3 for epoch s = 1, 2, . . . , T1 do
4 λ(s) ← ‖M(S(s))− I‖2 + Lap(2B2d/(nε1))

5 n(s) ← |S(s)|+ Lap(1/ε1)

6 if n(s) ≤ 3n/4 then Output: ∅
7 if λ(s) ≤ C α log(1/α) then

Output:
µ(s) ← (1/|S(s)|)

(∑
i∈S(s) xi

)
+N (0, (2B

√
2d log(1.25/δ1)/(n ε1))2Id×d)

8 α(s) ← 1/(100(0.1/C + 1.01)λ(s))

9 S
(s)
1 ← S(s)

10 for t = 1, 2, . . . , T2 do
11 λ

(s)
t ← ‖M(S

(s)
t)− I‖2 + Lap(2B2d/(nε2))

12 if λ(s)
t ≤ 0.5λ

(s)
0 then

13 terminate epoch
14 else
15 Σ

(s)
t ←M(S

(s)
t) +N (0, (4B2d

√
2 log(1.25/δ2)/(nε2))2Id2×d2)

16 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r − I)))) exp(α(s)

∑t
r=1(Σ

(s)
r − I))

17 ψ
(s)
t ←

〈
M(S

(s)
t)− I, Ut

(s)
〉

+ Lap(2B2d/(nε2))

18 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

19 S
(s)
t+1 ← S

(s)
t

20 else
21 Z

(s)
t ← Unif([0, 1])

22 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St xi
)

+N (0, (2B
√

2d log(1.25/δ2)/(n ε2)Id×d)
2)

23 ρ
(s)
t ← DPTHRESHOLD(µ

(s)
t , U

(s)
t , α, ε2, δ2, S

(s)
t) [Algorithm 11]

24 S
(s)
t+1 ← S

(s)
t \ {i | i ∈ T2α for {τj = (xj − µ(s)

t)>U
(s)
t (xj − µ(s)

t)}
j∈S(s)

t
and

τi ≥ ρ(s)
t Z

(s)
t }, where T2α is defined in Definition C.1.

25 S(s+1) ← S
(s)
t

Output: µ(T1)

28

E.2 Algorithm and analysis of DPTHRESHOLD

Algorithm 11: Differentially private estimation of the threshold (DPTHRESHOLD)

Input: µ, U , α ∈ (0, 1/2), target privacy (ε, δ), S = {xi ∈ x̄+ [−B/2, B/2]d}
1 Set τi ← (xi − µ)>U(xi − µ) for all i ∈ S
2 Set ψ̃ ← (1/n)

∑
i∈S(τi − 1) + Lap(2B2d/nε))

3 Compute a histogram over geometrically sized bins
I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B2d)−1, 2log(B2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j , 2−2+j)}| , for all j = 1, . . . , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (4
√

2 log(1.25/δ)/(nε))2), for all
j ∈ [2 + log(B2d)]

5 Set τ̃j ← 2−3+j , for all j ∈ [2 + log(B2d)]

6 Find the largest ` ∈ [2 + log(B2d)] satisfying
∑
j≥`(τ̃j − τ̃`) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃`

Lemma E.1 (DPTHRESHOLD: picking threshold privately). Algorithm
DPTHRESHOLD(µ,U, α, ε, δ, S) running on a dataset {τi = (xi − µ)>U(xi − µ)}i∈S is
(ε, δ)-DP. Define ψ , 1

n

∑
i∈S(τi − 1). If τi’s satisfy

1

n

∑
i∈Sgood∩T2α∩S

τi ≤ ψ/1000

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000 ,

and n ≥ Ω̃

(
B2d
√

log(1/δ)

εα

)
, then DPTHRESHOLD outputs a threshold ρ such that with probability

1−O(1/ log3 d),
1

n

∑
τi<ρ

(τi − 1) ≤ 0.75ψ and (12)

2(
∑

i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}) ≤
∑

i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} . (13)

E.3 Proof of Lemma E.1

1. Threshold ρ sufficiently reduces the total score.

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of the interval of
the bin that τi belongs to. It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥ 1

n

∑
τ̂i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(
B2d

εn
)

(c)

≥ 0.3ψ − Õ(
B2d

εn
) ,

29

where (a) holds due to the accuracy of the private histogram (Lemma G.12), (b) holds by the
definition of ρ in our algorithm, and (c) holds due to the accuracy of ψ̃. This implies if ρ < 1, then
1
n

∑
τi<ρ

(τi − 1) is negative and if ρ ≥ 1, then

1

n

∑
τi<ρ

(τi − 1) = ψ − 1

n

∑
τi≥ρ

(τi − 1) ≤ ψ − 1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

By Lemma E.2, it holds that

1

n

∑
i∈S\T2α

(τi − 1) = ψ − 1

n

∑
i∈Sgood∩T2α

(τi − 1)− 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ ψ − 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ (2/1000)ψ

And we conclude that

1

n

∑
τi<ρ or i/∈T2α

(τi − 1) ≤ 0.71ψ + Õ(B2d/εn) ≤ 0.75ψ

2. Threshold ρ removes more bad data points than good data points.

Define C2 to be the threshold such that 1
n

∑
τi>C2

(τi − C2) = (2/3)ψ. Suppose 2b ≤ C2 ≤ 2b+1,
1
n

∑
τ̂i≥2b−1(τ̂i − 2b−1) ≥ (1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1

2 (τi − C2). Trivially C2 ≥ 1

due to the fact that 1
n

∑
τi≥1 τi − 1 ≥ ψ. Then we have the threshold picked by the algorithm

ρ ≥ 2b−1, which implies ρ ≥ 1
4C2. Suppose ρ < C2, since ρ ≥ 1

4C2, we have

(
∑

i∈Sbad∩T2α,τi<ρ

τi +
∑

i∈Sbad∩T2α,τi≥ρ

ρ) ≥ 1

4
(

∑
i∈Sbad∩T2α,τi<C2

τi +
∑

i∈Sbad∩T2α,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<C2

τi +
∑

i∈Sgood∩T2α,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<ρ

τi +
∑

i∈Sgood∩T2α,τi>=ρ

ρ),

where (a) holds by Lemma E.3, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement of the
Lemma E.3 directly implies Equation (13).

Lemma E.2. [Conditions for τi’s] Suppose

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000

then, we have

ατ2αn ≤ ψ/1000

1

n

∑
i∈Sbad∩T2α

(τi − 1) ≥ (998/1000)ψ

Proof. Since |Sgood ∩ T2α| ≥ αn, it holds

ατ2αn ≤ ψ/1000.

30

1

n

∑
i∈Sbad∩T2α

(τi − 1) =
1

n

∑
i∈Sbad∩S

(τi − 1)− 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − (1/1000)ψ

= (998/1000)ψ

Lemma E.3. Assuming that the conditions in Lemma E.2 holds, and for any C such that

1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1) ≥ (1/3)ψ ,

we have∑
i∈Sbad∩T2α,τi<C

τi +
∑

i∈Sbad∩T2α,τi≥C

C ≥ 10(
∑

i∈Sgood∩T2α,τi<C

τi +
∑

i∈Sgood∩T2α,τi≥C

C)

Proof. First we show an upper bound on Sgood ∩ T2α:

1

n

∑
i∈Sgood∩T2α,τi<C

τi +
1

n

∑
i∈Sgood∩T2α,τi≥C

C ≤ 1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000.

Then we show an lower bound on Sbad ∩ T2α:

1

n

∑
i∈Sbad∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

=
1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1)

−(
1

n

∑
i∈Sgood∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sgood∩S,τi≥C

(C − 1))

≥ (1/3− 1/1000)ψ .

We have
1

n

∑
i∈Sbad∩T2α,τi<C

τi +
1

n

∑
i∈Sbad∩T2α,τi>C

C ≥ 1

n

∑
i∈Sbad∩T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩T2α,τi>C

(C − 1)

=
1

n

∑
i∈Sbad∩S,τi<ρ

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

−

 1

n

∑
i∈Sbad∩S\T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S\T2α,τi>C

(C − 1)

≥ (1/3− 1/1000)ψ − ατ2αn
≥ (1/3− 2/1000)ψ

Combing the lower bound and the upper bound yields the desired statement

31

F The analysis of PRIME and the proof of Theorem 6

F.1 Proof of part 1 of Theorem 6 on differential privacy

Let (ε0, δ0) be the end-to-end target privacy guarantee. The (0.01ε0, 0.01δ0)-DP guarantee of qrange

follows from Lemma D.2. We are left to show that DPMMWFILTER in Algorithm 10 satisfy
(0.99ε0, 0.99δ0)-DP. To this end, we explicitly write out how many times we access the database and
how much privacy is lost each time in an interactive version of DPMMWFILTER in Algorithm 13,
which performs the same operations as DPMMWFILTER.

In order to apply Lemma G.13, we cap ε at 0.9 in initializing ε2. We call qspectral and qsize T1 times,
each with (ε1, δ1) guarantee. In total this accounts for (0.5ε, 0.5δ) privacy loss. The rest of the mech-
anisms are called 5T1T2 times (qspectral(·) and qMMW(·) each call two DP mechanisms internally),
each with (ε2, δ2) guarantee. In total this accounts for (0.5ε, 0.5δ) privacy loss. Altogether, this is
within the privacy budget of (ε = 0.99ε0, δ = 0.99δ0).

We are left to show privacy of qspectral, qMMW, and q1Dfilter, and qsize in Algorithm 12. We will
assume for now that |S(`)

r | ≥ n/2 for all ` ∈ [T1] and r ∈ [T2] and prove privacy. We show in the
end that this happens with probability larger than 1 − δ1. In all sub-routines, we run Filter(·) in
Algorithm 12 to simulate the filtering process so far and get the current set of samples S(s)

ts . The
following main technical lemma allows us to prove privacy of all interactive mechanisms. This is a
counterpart of Lemma 2.2 used for DPFILTER. We provide a proof in Appendix D.3.2.

Lemma F.1. Let S(Dn) ⊆ Dn denote the output of the simulated filtering process Filter(·) on Dn
for a given set of parameters ({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s]) in Algorithm 12. Then we have
d4(S(Dn), S(D′)n) ≤ d4(Dn,D′n), where d4(D,D′) , max{|D \ D′|, |D′ \ D|}.

This is a powerful tool for designing private mechanisms, as it guarantees that we can safely
simulate the filtering process with privatized parameters and preserve the neighborhood of the
dataset; if Dn ∼ D′n are neighboring (i.e., d∆(Dn,D′n) ≤ 1) then so are the filtered pair S(Dn)
and S(D′n) (i.e., d∆(S(Dn), S(D′n)) ≤ 1). Note that in all the interactive mechanisms in Algo-
rithm 12, the noise we need to add is proportional to the set sensitivity of Filter(·) defined as
∆set , maxDn∼D′n d∆(S(Dn), S(D′n)). If the repeated application of the Filter(·) is not a contrac-
tion in d∆(·, ·), this results in a sensitivity blow-up. Fortunately, the above lemma ensures contraction
of the filtering, proving that ∆set = 1. Hence, it is sufficient for us to prove privacy for two neighbor-
ing filtered sets S ∼ S′ (as opposed to proving privacy for two neighboring original datasets before
filtering Dn ∼ D′n).

In qspectral, λ satisfy (ε, 0)-DP as the L1 sensitivity is ∆1 = (1/n)B2d (Definition 1.2) and we
add Lap(∆1/ε). The release of µ also satisfy (ε, δ)-DP as the L2 sensitivity is ∆2 = 2B

√
d/n,

assuming |S| ≥ n/2 as ensured by the stopping criteria, and we add N (0,∆2(2 log(1.25/δ))/ε)2I).
Note that in the outer loop call of qspectral, we only release µ once in the end, and hence we count
qspectral as one access. On the other hand, in the inner loop, we use both µ and λ from qspectral so
we count it as two accesses.

In qsize, the returned set size (ε, 0)-DP as the L1 sensitivity is ∆1 = 1 and we add Lap(∆1/ε).
One caveat is that we need to ensure that the stopping criteria of checking n(s) > 3n/4 ensures
that |S(s)

t | > n/2 with probability at least 1 − δ1. This guarantees that the rest of the private
mechanisms can assume |S(s)

t | > n/2 in analyzing the sensitivity. Since Laplace distribution follows
f(z) = (ε/2)e−ε|z|, we have P(n(s) > 3n/4 and |S(s)

t | < n/2) ≤ (1/2)e−nε/4. Hence, the desired
privacy is ensured for (1/2)e−nε/4 ≤ δ1 (i.e., n ≥ (4/ε1) log(1/(2δ1))).

In qMMW, Σ is (ε, δ)-DP as the L2 sensitivity is ∆2 = B2d/n, and we add
N (0,∆2(2 log(1.25/δ))/ε)2I). ψ is (ε, 0)-DP as the L1 sensitivity is ∆1 = 2B2d/n and we
add Lap(∆1/ε). This is made formal in the following theorem with a proof. in Appendix F.1.1. This
algorithm is identical to the MOD-SULQ algorithm introduced in [13] and analyzed in [18, Theorem
5], up to the choice of the noise variance. But a tighter analysis improves over the MOD-SULQ
analysis from [18] by a factor of d in the variance of added Gaussian noise as noted in [39].

32

Lemma F.2 (Differentially Private PCA). Consider a dataset {xi ∈ Rd}ni=1. If ‖xi‖2 ≤ 1 for all
i ∈ [n], the following privatized second moment matrix satisfies (ε, δ)-differential privacy:

1

n

n∑
i=1

xix
>
i + Z ,

with Zi,j ∼ N (0, ((1/(nε))
√

2 log(1.25/δ))2) for i ≥ j and Zi,j = Zj,i for i < j.

In q1Dfilter, the (ε, δ) differential privacy follows from that of DPTHRESHOLD proved in Lemma E.1.

F.1.1 Proof of Lemma F.2

Consider neighboring two databases D = {xi}ni=1 and D̃ = D ∪ {x̃n} \ {xn}, and let A =

(1/n)
∑
xi∈D xix

>
i and Ã = (1/n)

∑
xi∈D̃ xix

>
i . Let B and B̃ be the Gaussian noise matrix with

β2 as variance. Let G = A+B and G̃ = Ã+ B̃. At point H , we have

`D,D̃ = log
fG(H)

fG̃(H)
=

∑
1≤i≤j≤d

(
− 1

2β2
(Hij −Aij)2

+
1

2β2

(
Hij − Âij

)2
)

=
1

2β2

∑
1≤i≤j≤d

(
2

n
(Hij −Aij) (xn,ixn,j − x̂n,ix̂n,j) +

1

n2
(x̂n,ix̂n,j − xn,ixn,j)2

)
.

Since ‖xn‖2 ≤ 1 and ‖x̃n‖2 ≤ 1, we have
∑

1≤i≤j≤d (x̂n,ix̂n,j − xn,ixn,j)2
= 1/2‖x̃nx̃>n −

xnx
>
n ‖2F ≤ 2.

Now we bound the first term,

2
∑

1≤i≤j≤d

(Hij −Aij) (xn,ixn,j − x̂n,ix̂n,j) =
〈
H −A, xnx>n − x̃nx̃>n

〉
= x>nBxn − x̃>nBx̃n
≤ 2‖B‖2 .

So we have |`D,D̃| ≤ ε whenever ‖B‖2 ≤ nεβ2 − 1/n.

For any fixed unit vector ‖v‖2 = 1, we have

v>Bv = 2
∑

1≤i≤j≤d

Bijvivj ∼ N (0, 2
∑

1≤i≤j≤d

v2
i v

2
j) = N (0, 1) .

Then we have

P
(
|`D,D̃| ≥ ε

)
≤ P

(
‖B‖2 ≥ nεβ2 − 1/n

)
= P

(
N (0, 1) ≥ nεβ2 − 1

n

)
= Φ

(
1

n
− nεβ2

)
,

where Φ is CDF of standard Gaussian. According to Gaussian mechanism, if β =

(1/(nε))
√

2 log(1.25/δ), we have Φ
(

1
n − nεβ

2
)
≤ δ.

F.2 Proof of part 2 of Theorem 6 on accuracy

The accuracy of PRIME follows from the fact that qrange returns a hypercube that contains all
the clean data with high probability (Lemma D.2) and that DPMMWFILTER achieves the desired
accuracy (Theorem 11) if the original uncorrupted dataset Sgood is α-subgaussian good. Sgood is
α-subgaussian good if we have n = Ω̃(d/α2) as shown in Lemma G.3. We present the proof of
Theorem 11 below.

33

Algorithm 12: Interactive differentially private mechanisms for DPMMWFILTER

1 qspectral({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ):

2 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

3 µ← (1/|S|)
(∑

i∈S xi
)

+N (0, (2B
√

2d log(1.25/δ)/(nε))2I)

4 λ← ‖M(S)− I‖2 + Lap(2B2d/(nε))
5 return (µ, λ)

6 qsize({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ):

7 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

8 return |S|+ Lap(1/ε)

9 qMMW({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], α

(s), µ
(s)
t , ε, δ):

10 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

11 Σ
(s)
ts+1 ←M(S) +N (0, (4B2d

√
2 log(1.25/δ)/(nε))2I)

12 U ← (1/Tr(exp(α(s)
∑ts+1
r=1 (Σ

(s)
r − I)))) exp(α(s)

∑ts+1
r=1 (Σ

(s)
r − I))

13 ψ ← 〈M(S)− I, U〉+ Lap(2B2d/(nε))

14 return (Σ
(s)
ts+1, U, ψ)

15 q1Dfilter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], µ, U, α, ε, δ):

16 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

17 return ρ← DPTHRESHOLD(µ,U, α, ε, δ, S)

18 Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s]):

19 S(1) ← [n]
20 for epoch ` = 1, . . . , s do
21 α(`) ← 1/(100(0.1/C + 1.01)λ(`))

22 S
(`)
1 ← S(`)

23 for r = 1, . . . , ts do
24 S

(`)
r+1 ← S

(`)
r \ {i | i ∈ T2α for {τj = (xj − µ(`)

r)>U
(`)
r (xj − µ(`)

r)}
j∈S(`)

r
and

τi ≥ ρ(`)
r Z

(`)
r }, where T2α is defined in Definition C.1.

Output: S(s)
ts

Theorem 11 (Analysis of accuracy of DPMMWFILTER). Let S be an α-corrupted sub-Gaussian
dataset, where α ≤ c for some universal constant c ∈ (0, 1/2). Let Sgood be α-subgaussian good
with respect to µ ∈ Rd. Suppose D = {xi ∈ x̄ + [−B/2, B/2]d}ni=1 be the projected dataset. If

n ≥ Ω̃
(
d3/2B2 log(2/δ)
εα log 1/α

)
, then DPMMWFILTER terminates after at most O(log dB2) epochs and

outputs S(s) such that with probability 0.9, we have |S(s)
t ∩ Sgood| ≥ (1− 10α)n and

‖µ(S(s))− µ‖2 . α
√

log 1/α .

Moreover, each epoch runs for at most O(log d) iterations.

Proof. In s = O(log0.98((Cα log(1/α))/‖M(S(1))− I‖2)) epochs, following Lemma F.3 guaran-
tees that we find a candidate set S(s) of samples with ‖M(S(s) − I‖2 ≤ Cα log(1/α). We provide
proof of Lemma F.3 in the Appendix F.3.

Lemma F.3. Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. For an epoch
s ∈ [T1] and an iteration t ∈ [T2], under the hypotheses of Lemma F.4, if Sgood is α-subgaussian
good with respect to µ ∈ Rd as in Definition G.2, n = Ω̃(d3/2 log(1/δ)/(εα)), and |S(s)

t ∩Sgood| ≥
(1− 10α)n then with probability 1−O(1/ log3 d) the conditions in Eqs. (14) and (15) hold. When
these two conditions hold, more corrupted samples are removed in expectation than the uncorrupted

34

Algorithm 13: Interactive version of DPMMWFILTER

Input: α ∈ (0, 1), T1, T2, ε1 = ε/(4T1) , δ1 = δ/(4T1),
ε2 = min{0.9, ε}/(4

√
10T1T2 log(4/δ)), δ2 = δ/(20T1T2)

1 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
2 for epoch s = 1, 2, . . . , T1 do
3 (µ(s), λ(s))← qspectral({{Ψ(`)

r }r∈[t`]}`∈[s−1], {(µ(`), λ(`))}`∈[s−1], ε1, δ1)

4 n(s) ← qsize({{Ψ(`)
r }r∈[t`]}`∈[s−1], {(µ(`), λ(`))}`∈[s−1], ε1, δ1)

5 if n(s) ≤ 3n/4 then terminate
6 if λ(s) ≤ Cα log(1/α) then

Output: µ(s)

7 α(s) ← 1/(100(0.1/C + 1.01)λ(s))
8 ts ← 0
9

10 for t = 1, 2, . . . , T2 do
11 (µ

(s)
t , λ

(s)
t)← qspectral({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε2, δ2)

12 if λ(s)
t ≤ 0.5λ(s) then

13 terminate epoch
14 else
15 (Σ

(s)
t , U

(s)
t , ψ

(s)
t)←

qPMMW({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], α

(s), µ
(s)
t , ε2, δ2)

16 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

17 α
(s)
t ← 0

18 else
19 Z

(s)
t ← Unif([0, 1])

20 ρ
(s)
t ← q1Dfilter({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], µ
(s)
t , U

(s)
t , α, ε2, δ2)

21 α
(s)
t ← α

22 Ψ
(s)
t ← (µ

(s)
t , λ

(s)
t ,Σ

(s)
t , U

(s)
t , ψ

(s)
t , Z

(s)
t , ρ

(s)
t , α

(s)
t)

23 ts ← t

Output: µ(T1)
tT1

samples, i.e., E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1]

there exists a constant C > 0 such that if ‖M(S(s)) − I‖2 ≥ C α log(1/α), then with probability
1−O(1/ log2 d), the s-th epoch terminates after O(log d) iterations and outputs S(s+1) such that
‖M(S(s+1))− I‖2 ≤ 0.98‖M(S(s))− I‖2.

Lemma G.7 ensures that we get the desired bound of ‖µ(S(s))− µ‖2 = O(α
√

log(1/α)) as long
as S(s) has enough clean data, i.e., |S(s) ∩ Sgood| ≥ n(1 − α). Since Lemma F.3 gets invoked
at most O((log d)2) times, we can take a union bound, and the following argument conditions on
the good events in Lemma F.3 holding, which happens with probability at least 0.99. To turn the
average case guarantee of Lemma F.3 into a constant probability guarantee, we apply the optional
stopping theorem. Recall that the s-th epoch starts with a set S(s) and outputs a filtered set S(s)

t
at the t-th inner iteration. We measure the progress by by summing the number of clean samples
removed up to epoch s and iteration t and the number of remaining corrupted samples, defined as
d

(s)
t , |(Sgood ∩S(1)) \S(s)

t |+ |S
(s)
t \ (Sgood ∩S(1))|. Note that d(1)

1 = αn, and d(s)
t ≥ 0. At each

epoch and iteration, we have

E[d
(s)
t+1 − d

(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)

t] = E
[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

35

from part 1 of Lemma F.3. Hence, d(s)
t is a non-negative super-martingale. By the optional stopping

theorem, at stopping time, we have E[d
(s)
t] ≤ d(1)

1 = αn. By the Markov inequality, d(s)
t is less than

10αn with probability 0.9, i.e., |S(s)
t ∩ Sgood| ≥ (1 − 10α)n. The desired bound in Theorem 11

follows from Lemma G.7.

F.3 Proof of Lemma F.3

Lemma F.3 is a combination of Lemma F.4 and Lemma F.5. We state the technical lemmas and
subsequently provide the proofs.

Lemma F.4. For an epoch s and an iteration t such that λ(s) > Cα log(1/α), λ(s)
t > 0.5λ

(s)
0 , and

n(s) > 3n/4, if n & B2(logB)d3/2 log(1/δ)
εα and |S(s)

t ∩ Sgood| ≥ (1 − 10α)n then with probability
1 − O(1/ log3 d), the conditions in Eqs. (14) and (15) hold. When these two conditions hold

we have E|S(s)
t \ S(s)

t+1 ∩ Sgood| ≤ E|S(s)
t \ S(s)

t+1 ∩ Sbad|. If n & B2(logB)d3/2 log(1/δ)
εα , ψ(s)

t >
1

5.5λ
(s)
t , and n(s) > 3n/4, then we have with probability 1−O(1/ log3 d),

〈
M(S

(s)
t+1)− I, U

(s)
t

〉
≤

0.76
〈
M(S

(s)
t)− I, U

(s)
t

〉
.

Lemma F.5. For an epoch s and for all t = 0, 1, · · · , T2 = O(log d) if Lemma F.4 holds, n(s) >

3n/4, and n & B2(logB)d3/2 log(1/δ)
εα , then we have ‖M(S(s+1))− I‖2 ≤ 0.98‖M(S(s))− I‖2 with

probability 1−O(1/ log2 d).

F.3.1 Proof of Lemma F.4

Proof of Lemma F.4. To prove that we make progress for each iteration, we first show our dataset
satisfies regularity conditions in Eqs. (14) and (15) that we need for DPTHRESHOLD. Following
Lemma F.6 implies with probability 1 − 1/(log3 d), our scores satisfies the regularity conditions
needed in Lemma E.1.

Lemma F.6. For each epoch s and iteration t, under the hypotheses of Lemma F.4, with probability
1−O(1/ log3 d), we have

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000 (14)

1

n

∑
i∈Sgood∩S(s)

t

(τi − 1) ≤ ψ/1000 , (15)

where ψ , 1
n

∑
i∈S(s)

t
(τi − 1).

Then by Lemma E.1 our DPTHRESHOLD gives us a threshold ρ such that∑
i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} ≤
∑

i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

Conditioned on the hypotheses and the claims of Lemma E.1, according to our filter rule from
Algorithm 10, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}

and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

36

This implies E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|. At the same time, Lemma E.1

gives us a ρ such that with probability 1−O(log3 d)

1

n

∑
i∈S(s)

t+1

(τi − 1)− 2α ≤ 1

n

∑
τi≤ρ

(τi − 1) ≤ 3

4
· 1

n

∑
i∈S(s)

t

(τi − 1) .

Hence, we have〈
M(S

(s)
t)− I, U

(s)
t

〉
−
〈
M(S

(s)
t+1)− I, U

(s)
t

〉
=

1

n

∑
i∈S(s)

t \S
(s)
t+1

(τi − 1)

≥ 1

4n

∑
i∈S(s)

t

(τi − 1)− 2α

(a)

≥ 1

4
· 998

1000

〈
M(S

(s)
t)− I, U

(s)
t

〉
,

where (a) follows from our assumption on λt and stopping criteria. Rearranging the terms completes
the proof.

F.3.2 Proof of Lemma F.6

Proof of Lemma F.6. First of all, Lemma G.9, Lemma G.10 and Lemma G.11 gives us following
Lemma F.7, which basically shows with enough samples, we can make sure the noises added for
privacy guarantees are small enough with probability 1−O(1/ log3 d).

Lemma F.7. For α ∈ (0, 0.5), if n & B2(logB)d3/2 log(1/δ)
εα and n(s) > 3n/4 then we have with

probability 1−O(1/ log3 d), following conditions simultaneously hold:

1. ‖µ(s)
t − µ(S

(s)
t)‖22 ≤ 0.001α log 1/α

2. |ψ(s)
t −

〈
M(S

(s)
t)− I, U

(s)
t

〉
| ≤ 0.001α log 1/α

3.
∣∣∣λ(s)
t − ‖M(S

(s)
t)− I‖2

∣∣∣ ≤ 0.001α log 1/α

4.
∣∣λ(s) − ‖M(S(s))− I‖2

∣∣ ≤ 0.001α log 1/α

5.
∥∥∥M(S

(s)
t+1)− Σ

(s)
t

∥∥∥
2
≤ 0.001α log 1/α

6. ‖µ(s) − µ(S(s))‖22 ≤ 0.001α log 1/α

Now under above conditions, since λ(s)
1 > Cα log 1/α, we have ‖M(S

(s)
t) − I‖2 > 0.5(C −

0.002)α log 1/α. Using the fact that µ(S
(s)
t) = (1/n)

∑
i∈S(s)

t
xi, we also have

1

n

∑
i∈S(s)

t

(τi − 1)

=
1

n

∑
i∈S(s)

t

〈(
xi − µ(s)

t

)(
xi − µ(s)

t

)>
− I, U

(s)
t

〉

=
1

n

∑
i∈S(s)

t

〈(
xi − µ(S

(s)
t)
)(

xi − µ(S
(s)
t)
)>
− I, U

(s)
t

〉

+
|S(s)
t |
n

〈(
µ(S

(s)
t)− µ(s)

t

)(
µ(S

(s)
t)− µ(s)

t

)>
, U

(s)
t

〉
=

〈
M(S

(s)
t)− I, U

(s)
t

〉
+
|S(s)
t |
n

〈(
µ(S

(s)
t)− µ(s)

t

)(
µ(S

(s)
t)− µ(s)

t

)>
, U

(s)
t

〉
.

37

Thus, from the first and the second claims in Lemma F.7, we have

|ψ − ψ(s)
t | ≤ 0.002 α log 1/α . (16)

For an epoch s and an iteration t, since αn ≤ Sgood ∩ T2α ∩ S(s)
t ≤ 2αn, we have

1

n

∑
i∈Sgood∩T2α∩S(s)

t

τi =
1

n

∑
i∈Sgood∩T2α∩S(s)

t

〈
(xi − µ(s)

t)(xi − µ(s)
t)>, U

(s)
t

〉
(a)

≤ 2

n

∑
i∈Sgood∩T2α∩S(s)

t

〈
(xi − µ)(xi − µ)>, U

(s)
t

〉
+

2|Sgood ∩ T2α ∩ S(s)
t |

n

〈
(µ− µ(s)

t)(µ− µ(s)
t)>, U

(s)
t

〉
(b)

≤ O(α log 1/α) + 4α
〈

(µ− µ(s)
t)(µ− µ(s)

t)>, U
(s)
t

〉
≤ O(α log 1/α) + 4α‖µ(s)

t − µ‖22

≤ O(α log 1/α) + 4α
(
‖µ− µ(S

(s)
t)‖2 + ‖µ(S

(s)
t)− µ(s)

t ‖2
)2

(c)

≤ O (α log 1/α) + 4α

(
O
(
α
√

log 1/α
)

+

√
α
(
O (α log 1/α) + ‖M(S

(s)
t)− I‖2

)
+ ‖µ(S

(s)
t)− µ(s)

t ‖2

)2

≤ O(α log 1/α) + 8α2
(
‖M(S

(s)
t)− I‖2 +O (α log 1/α)

)
+O(8α3 log 1/α) + 8α2 log 1/α

(d)

≤ 1

1000

(
‖M(S

(s)
t)− I‖2 − 0.001 α log 1/α

5.5
− 0.002 α log 1/α

)

≤ ψ
(s)
t − 0.002 α log 1/α

1000

≤ ψ

1000
,

where (a) follows from the fact that for any vector x, y, z, we have (x− y)(x− y)> � 2(x− z)(x−
z)> + 2(y − z)(y − z)>, (b) follows from Lemma G.4, (c) follows from Lemma G.7, (d) follows
from our choice of large constant C, and in the last inequality we used Eq. (16).

38

Similarly we have

1

n

∑
i∈Sgood∩S(s)

t

(τi − 1)

=
1

n

∑
i∈Sgood∩S(s)

t

〈
(xi − µ(s)

t)(xi − µ(s)
t)> − I, U

(s)
t

〉

=
1

n

∑
i∈Sgood∩S(s)

t

〈(
xi − µ(Sgood ∩ S(s)

t)
)(

xi − µ(Sgood ∩ S(s)
t)
)>
− I, U

(s)
t

〉

+
|Sgood ∩ S(s)

t |
n

〈(
µ(Sgood ∩ S(s)

t)− µ(s)
t

)(
µ(Sgood ∩ S(s)

t)− µ(s)
t

)>
, U

(s)
t

〉
(a)

≤ O (α log 1/α) +
∥∥∥µ(Sgood ∩ S(s)

t)− µ(s)
t

∥∥∥2

2

≤ O (α log 1/α) +
(∥∥∥µ(Sgood ∩ S(s)

t)− µ
∥∥∥

2
+
∥∥∥µ− µ(S

(s)
t)
∥∥∥

2

)2

+ 0.001 α log 1/α

(b)

≤ O (α log 1/α) +

(
O(α

√
log 1/α) +

√
α(‖M(S

(s)
t)− I‖2 +O(α log 1/α))

)2

+ 0.001 α log 1/α

≤ O (α log 1/α) + α
(
‖M(S

(s)
t)− I‖2 +O (α log 1/α)

)
+O(α2 log 1/α) + +0.001 α log 1/α

(c)

≤ 1

1000

(
‖M(S

(s)
t)− I‖2 − 0.001 α log 1/α

5.5
− 0.002 α log 1/α

)

≤ ψ
(s)
t − 0.002 α log 1/α

1000

≤ ψ

1000
,

where (a) follows from Lemma G.4, (b) follows from Lemma G.5 and Lemma G.7 and (c) follows
from our choice of large constant C.

F.3.3 Proof of Lemma F.5

Proof of Lemma F.5. Under the conditions of Lemma F.7, we have picked n large enough such that
with probability 1−O(1/ log3 d), we have

‖Σ(s)
t+1 − I‖2 ≈0.01 ‖M(S

(s)
t+1)− I‖2 .

By Lemma F.4, we now have〈
M(S

(s)
t+1)− I, U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t)− I, U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
1)− I, U

(s)
t

〉
≤ 0.76‖M(S

(s)
1)− I‖2 . (17)

Since λ(s)
1 > Cα log 1/α, we have ‖M(S

(s)
t+1) − I‖2 > 0.5(C − 0.002)α log 1/α. Combining the

above inequality and the fifth claim of Lemma F.7 together, we have〈
Σ

(s)
t+1 − I, U

(s)
t

〉
≤
〈
M(S

(s)
t+1)− I, U

(s)
t

〉
+ ‖Σ(s)

t+1 −M(S
(s)
t+1)‖2 ≤ 0.77‖M(S

(s)
1)− I‖2 .

39

By Lemma G.1, we have M(S
(s)
t+1) − I � M(S

(s)
1) − I. By our choice of α(s), we have

α(s)
(
M(S

(s)
t+1)− I

)
� 1

100I and α(s)
(

Σ
(s)
t+1 − I

)
� 1

100I. Therefore, by Lemma G.14, we have∥∥∥∥∥
T2∑
t=1

Σ
(s)
t+1 − I

∥∥∥∥∥
2

≤
T2∑
t=1

〈
Σ

(s)
t+1 − I, U

(s)
t

〉
+ α(s)

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t+1 − I

∣∣∣〉 ‖Σ(s)
t+1 − I‖2 +

log(d)

α(s)

(a)

≤
T2∑
t=1

〈
Σ

(s)
t+1 − I, U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t+1 − I

∣∣∣〉+ 200 log(d)‖M(S
(s)
1)− I‖2

where (a) follows from our choice of α(s) and C. By Lemma G.6, M(S
(s)
t+1)− I � −c1α log 1/α · I

for t = 1, 2, · · · , T2, we have

|M(S
(s)
t+1)− I| �M(S

(s)
t+1)− I + 2c1α log 1/α I,

and hence 〈
U

(s)
t ,

∣∣∣M(S
(s)
t+1)− I

∣∣∣〉 ≤ 〈U (s)
t ,M(S

(s)
t+1)− I

〉
+ 2c1α log 1/α

Meanwhile, we have

M(S
(s)
t+1)− I− ‖Σ(s)

t+1 −M(S
(s)
t+1)‖2 I � Σ

(s)
t+1 − I �M(S

(s)
t+1)− I + ‖Σ(s)

t+1 −M(S
(s)
t+1)‖2 I .

Hence,

|Σ(s)
t+1 − I| �M(S

(s)
t+1)− I + (3‖Σ(s)

t+1 −M(S
(s)
t+1)‖2 + 2c1α log 1/α) I

Together with Eq. (17), we have〈
U

(s)
t ,

∣∣∣Σ(s)
t+1 − I

∣∣∣〉
≤

〈
U

(s)
t ,M(S

(s)
t+1)− I

〉
+ 3‖Σ(s)

t+1 −M(S
(s)
t+1)‖2 + 2c1α log 1/α

≤ 0.79
∥∥∥M(S

(s)
1)− I

∥∥∥
2

+ 2c1α log 1/α .

By Lemma G.6, we have M(S
(s)
t+1) − I � −c1α log 1/α I. Also, we know M(S

(s)
t+1) − I �

M(S
(s)
1)− I. Then we have

∥∥∥M(S
(s)
T2+1)− I

∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

M(S
(s)
t+1)− I

∥∥∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

Σ
(s)
t+1 − I

∥∥∥∥∥
2

+ 0.001 α log 1/α

≤ 1

T2

(
T2∑
t=1

〈
Σ

(s)
t+1 − I, U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t+1 − I

∣∣∣〉+ 200 log(d)‖M(S
(s)
1)− I‖2

)
+ 0.001 α log 1/α

≤ 0.79‖M(S
(s)
1)− I‖2 + 2c1α log 1/α+

200 log(d)

T2
‖M(S

(s)
1)− I‖2 + 0.001 α log 1/α

≤ 0.98 ‖M(S
(s)
1)− I‖2 ,

where the last inequality follows from our assumption that λ(s)
0 > Cα log 1/α, and conditions of

Lemma F.7 hold and we have ‖M(S
(s)
t+1)− I‖2 > 0.5(C − 0.002)α log 1/α.

40

G Technical lemmas

G.1 Lemmata for sub-Gaussian regularity from [36]

Lemma G.1 ([36, Lemma 3.4]). If S′ ⊂ S, then M(S′) �M(S).

Definition G.2 ([36, Definition 4.1]). Let D be a distribution with mean µ ∈ Rd and covariance I.
For 0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-subgaussian good with respect
to µ ∈ Rd if following inequalities are satisfied:

• ‖µ(S) − µ‖2 . α
√

log 1/α and
∥∥∥ 1
|S|
∑
i∈S (Xi − µ(S)) (Xi − µ(S))

> − I
∥∥∥

2
.

α log 1/α.

• for any subset T ⊂ S so that |T | = 2α|S|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

Xi − µ

∥∥∥∥∥
2

.
√

log 1/α and

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ(S)) (Xi − µ(S))
> − I

∥∥∥∥∥
2

. log 1/α .

Lemma G.3 ([36, Lemma 4.1]). A set of i.i.d. samples from an identity covariance sub-Gaussian
distribution of size n = Ω

(
d+log 1/δ
α2 log 1/α

)
is α-subgaussian good with respect to µ with probability

1− δ.
Lemma G.4 ([36, Fact 4.2]). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. If
Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T | ≤ 2α|S|, we
have for any unit vector v ∈ Rd

1

|S|
∑
Xi∈T

〈(Xi − µ) , v〉2 . α log 1/α .

For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ)(xi − µ)> − I

∥∥∥∥∥
2

. α log 1/α and ,∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ(T))(xi − µ(T))> − I

∥∥∥∥∥
2

. α log 1/α

Lemma G.5 ([36, Corollary 4.3]). Let S be an α-corrupted sub-Gaussian dataset under Assump-
tion 1. If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that
|T | ≤ 2α|S|, we have ∥∥∥∥∥ 1

|S|
∑
Xi∈T

(Xi − µ)

∥∥∥∥∥
2

. α
√

log 1/α .

For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have

‖µ(T)− µ‖2 . α
√

log 1/α .

Lemma G.6 ([36, Lemma 4.5]). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1.
If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T ∩ Sgood| ≥
(1− 2α)|S|, then there is some universal constant c1 such that

1

|S|
∑
i∈T

(xi − µ(T)) (xi − µ(T))
> � (1− c1α log 1/α)I .

Lemma G.7 ([36] Lemma 4.6). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1.
If Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T ∩ Sgood| ≥
(1− 2α)|S|, we have

‖µ(T)− µ‖2 ≤
1

1− α
·
(√

α (‖M(T)− I‖2 +O (α log 1/α)) +O
(
α
√

log 1/α
))

.

41

G.2 Auxiliary Lemmas on Laplace and Gaussian mechanism

Lemma G.8 (Theorem A.1 in [38]). Let ε ∈ (0, 1) be arbitrary. For c2 ≥ 2 ln(1.25/δ), the Gaussian
Mechanism with parameter σ2 ≥ c2∆2f/ε is (ε, δ)-differentially private.

Lemma G.9. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.

Lemma G.10 (Tail bound of χ-square distribution [77]). Let xi ∼ N (0, σ2) for i = 1, 2, · · · , d.
Then for all ζ ∈ (0, 1), we have P(‖X‖2 ≥ σ

√
d log(1/ζ)) ≤ ζ.

Lemma G.11 ([75, Corollary 2.3.6]). Let Z ∈ Rd×d be a matrix such that Zi,j ∼ N (0, σ2)
for i ≥ j and Zi,j = Zj,i for i < j. For ∀ζ ∈ (0, 1), then with probability 1 − ζ we have
‖Z‖2 ≤ σ

√
d log(1/ζ).

Lemma G.12 (Accuracy of the histogram using Gaussian Mechanism). Let f : Xn → RS be
a histogram over K bins. For any dataset D ∈ Xn and ε, Gaussian Mechanism is an (ε, δ)-
differentially private algorithm M(D) such that given

with probability 1− ζ we have

‖M(D)− f(D)‖∞ ≤ O(

√
log(K/ζ) log(1/δ)

εn
) .

Proof. First notice that the `2 sensitivity of histogram function f is
√

2/n. Thus, by Lemma G.8,

by adding noise N (0, (
2
√

2 log(1.25/δ)

nε)2) to each entry of f , we have a (ε, δ) differentially private
algorithm. Since Gaussian tail bound implies that Px∼N (0,σ2)[x ≥ Ω(

√
log(K/η)σ)] ≤ η/K, we

have that with probability 1−η, the `∞ norm of the added noise is bounded byO(

√
log(1/δ) log(K/η)

nε).
This concludes the proof.

Lemma G.13 (Composition theorem of [51, Theorem 3.4]). For ε ≤ 0.9, an end-to-end guar-
antee of (ε, δ)-differential privacy is satisfied if a dataset is accessed k times, each with a
(ε/2

√
2k log(2/δ), δ/2k)-differential private mechanism.

G.3 Analysis of ‖M(S
(s)
t)− I‖2 shrinking

For any symmetric matrix A =
∑d
i=1 λiviv

>
i , we let |A| denote |A| =

∑d
i=1 |λi|viv>i .

Lemma G.14 (Regret bound, Special case of [4, Theorem 3.1]). Let

Ut =
exp(α

∑t−1
k=1(Σk − I))

Tr(exp(α
∑t−1
k=1(Σk − I)))

,

and α satisfies α(Σt+1 − I) � I for all k ∈ [T], then for all U � 0, Tr(U) = 1, it holds that

T∑
t=1

〈(Σt+1 − I), U − Ut〉 ≤ α
T∑
t=1

〈|(Σt+1 − I), Ut|〉 · ‖(Σt+1 − I)‖2 +
log d

α
.

Rearranging terms, and taking a supremum over U , we obtain that

‖
T∑
t=1

(Σt+1 − I)‖2 ≤
T∑
t=1

〈Ut, (Σt+1 − I)〉+ α

T∑
t=1

〈|(Σt+1 − I), Ut|〉 · ‖(Σt+1 − I)‖2 +
log d

α
.

42

H Exponential time DP robust mean estimation of sub-Gaussian and heavy
tailed distributions (Algorithm 2)

In this section, we give a self-contained proof of the privacy and utility of our exponential time robust
mean estimation algorithm for sub-Gaussian and heavy tailed distributions. The proof relies on the
resilience property of the uncorrupted data as shown in the following lemmas.

Lemma H.1 (Lemma 10 in [73]). If a set of points {xi}i∈S lying in Rd is (σ, α)-resilient around a
point µ, then

‖ 1

|T ′|
∑
i∈T ′

(xi − µ)‖2 ≤
2− α
α

σ.

for all sets T ′ of size at least α|S|.
Lemma H.2 (Finite sample resilience of sub-Gaussian distributions [81, Theorem G.1]). Let Sgood

be a set of i.i.d. points from a sub-Gaussian distribution D with a parameter Id. Given that
|Sgood| = Ω((d+ log(1/ζ))/(α2 log 1/α)), Sgood is (α

√
log(1/α), α)-resilient around its mean µ

with probability 1− ζ.

Lemma H.3 (Finite sample resilience of heavy-tailed distributions [81, Theorem G.2]). Let Sgood be
a set of i.i.d. samples drawn from distribution D whose mean and covariance are µ,Σ respectively,
and that Σ � I . Given that |S| = Ω(d/(ζα)), there exists a constant cζ that only depends on ζ such
that Sgood is (cζ

√
α, α)-resilient around µ with probability 1− ζ.

H.1 Case of heavy-tailed distributions and a proof of Theorem 8

Lemma K.1 ensures that qrange−ht returns samples in a bounded support of Euclidean distance√
dB/2 with B = 50/

√
α where (1− 2α)n samples are uncorrupted (αn is corrupted by adversary

and αn can be corrupted by the pre-processing step). For a (cζ
√

3α, 3α)-resilient dataset, we first
show that R(S) is robust against corruption.

Lemma H.4 (α-corrupted data has small R(S)). Let S be the set of 2α-corrupted data. Given that
n = Ω(d/(ζα)), with probability 1− ζ, R(S) ≤ cζ

√
3α.

This follows immediately by selecting S′ to be the uncorrupted (1− 2α) fraction of the dataset and
applying (cζ

√
3α, 3α)-resilience. After pre-processing, we have that ‖xi − x̄‖2 ≤ B

√
d/2, and then

clearly R(·) has sensitivity ∆R ≤ B
√
d/n.

Lemma H.5 (Sensitivity and Privacy of R̂(S)). Given that R̂(S) = R(S) + Lap(3B
√
d

nε), R̂(S) is

(ε/3, 0)-differentially private. Further, with probability 1− δ/3, |R̂(S)−R(S)| ≤ 3B
√
d log(3/δ)
nε .

In the algorithm, we first compute R̂(S). If R̂(S) ≥ 2cζ
√
α, we stop and output ∅. Otherwise, we

use exponential mechanism with score function d(µ̂, S) to find an estimate µ̂. We prove the privacy
guarantee of our algorithm as follows.

Lemma H.6 (Privacy). Algorithm 2 is (ε, δ)-differentially private if n ≥ 6B
√
d log(3/δ)/(cζε

√
α).

Proof. We consider neighboring datasets S, S′ under the following two scenario

1. R(S) > 3cζ
√
α

In this case, given that n ≥ 6B
√
d log(3/δ)
cζ
√
αε

, we have R̂(S) > 2cζ
√
α and the output of the

algorithm A(S) = ∅ with probability at least 1− δ/3, and A(S′) = ∅ with probability at
least 1− δ/3. Thus, for any set Q, P[A(S) ∈ Q] ≤ P[A(S′) ∈ Q] + δ/3.

2. R(S) ≤ 3cζ
√
α

Lemma H.7 (Sensitivity of d(µ̂, S)). Given that R(S) ≤ 3cζ
√
α, for any neighboring

dataset S′, |d(µ̂, S)− d(µ̂, S′)| ≤ 12cζ/(n
√
α).

43

In this case, the privacy guarantee of R̂(S) yields that P[R̂(S) ∈ Q] ≤ exp(ε/3)·P[R̂(S′) ∈
Q]. Lemma H.7 yields that P[µ̂(S) ∈ Q] ≤ exp(ε) · P[µ̂(S′) ∈ Q]. A simple composition
of the privacy guarantee with qrange−ht(·) and the exponential mechanism gives that

P[(R̂(S), µ̂(S)) ∈ Q] ≤ exp(ε) · P[(R̂(S′), µ̂(S′)) ∈ Q] + δ/3

This implies that P[A(S) ∈ Q] ≤ exp(ε) · P[A(S′) ∈ Q] + δ/3.

Lemma H.8 (Utility of the algorithm). For an 2α-corrupted dataset S, Algorithm 2 achieves
‖µ̂− µ∗‖2 ≤ cζ

√
α with probability 1− ζ, if n = Ω(d/(αζ) + (d log(d/α1.5) + log(1/ζ)/(εα)).

Proof of Lemma H.8. We use the following lemma showing that d(µ̂, S) is a good approximation of
‖µ̂− µ∗‖2.

Lemma H.9 (d(µ, S) approximates ‖µ− µ∗‖). Let S be the set of 2α-corrupted data. Given that
n = Ω(d/(ζα)), with probability 1− ζ,∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2

∣∣ ≤ 7cζ
√
α .

This implies that the exponential mechanism achieves the following bounds.

P(‖µ̂− µ∗‖ ≤ cζ
√
α) ≥ 1

A
e−

εαn
3 Vol(cζ

√
α, d), and

P(‖µ̂− µ∗‖ ≥ 22cζ
√
α) ≤ 1

A
e−

5εαn
8 Bd ,

where A denotes the normalizing factor for the exponential mechanism and Vol(r, d) is the volume
of a ball of radius r in d dimensions. It follows that

log
(P(‖µ̂− µ∗‖2 ≤ cζ

√
α)

P(‖µ̂− µ∗‖2 ≥ 22cζ
√
α)

)
≥ 7

24
εαn− C d log(dB/α)

≥ log(1/ζ) ,

for n = Ω((d log(d/α1.5) + log(1/ζ))/(εα)).

H.1.1 Proof of Lemma H.7

Since R(S) ≤ 3cζ
√
α, define Sgood as the minimizing subset in Definition 4.2 such that

R(S) = max
T⊂Sgood,|T |=(1−α)|Sgood|

‖µ(T)− µ(Sgood)‖2 .

By this definition of Sgood and Lemma H.1,

|v>(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ
√

1/α, and

|v>(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ
√

1/α.

Therefore,

min
i∈Sgood∩T v

|v>(xi − µ(Sgood))| ≤ |v>(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ
√

1/α,

and similarly

min
i∈Sgood∩Bv

|v>(xi − µ(Sgood))| ≤ |v>(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ
√

1/α

This implies

min
i∈Sgood∩T v

v>xi − max
i∈Sgood∩Bv

v>xi ≤ 12cζ
√

1/α . (18)

44

This implies that distribution of one-dimensional points S(v) = {v>xi} is dense at the boundary of
top and bottom α quantiles, and hence cannot be changed much by changing one entry. Formally,
consider a neighboring dataset S′ (and the corresponding S′(v)) where one point xi inM(v)(S) is
replaced by another point x̃i. If v>x̃i ∈ [maxi∈Sgood∩Bv v

>xi , mini∈Sgood∩T v v
>xi], then Eq. (18)

implies that this only changes the mean by 6cζ/(
√
αn). Otherwise,Mv(S′) will have xi replaced

by either arg mini∈Sgood∩T v v
>xi or arg maxi∈Sgood∩Bv v

>xi. In both cases, Eq. (18) implies that
this only changes the mean by 12cζ/(

√
αn). The other case of when the replaced sample xi ∈ S is

not inMv(S) follows similarly. From this, we upper bounds the maximum difference between S
and S′ when projected on v, that is∣∣v> (µ(Mv(S))− µ(Mv(S′)))

∣∣ ≤ 12cζ√
αn

.

This implies the sensitivity of d(µ, S) is bounded by 6cζ/(
√
αn):

|d(µ, S)− d(µ, S′)| =
∣∣∣ max
v∈Sd−1

v>µ(Mv(S)) − max
ṽ∈Sd−1

ṽ>µ(Mv(S′))
∣∣∣

≤ max
v∈Sd−1

∣∣ v>(µ(Mv(S)) − µ(Mv(S′)))
∣∣ ≤ 12cζ√

αn

H.1.2 Proof of Lemma H.9

First we show |v> (µ(Mv)− µ∗) | ≤ 7cζ
√
α. Notice that |Sgood∩T v| ≤ 3α|S|, and |Sgood∩Bv| ≤

3α|S|. By the (cζ
√

3α, 3α)-resilience property, we have |v>(µ(Sgood ∩ T v) − µ∗)| ≤ cζ
√

3/α,
and |v>(µ(Sgood ∩ Bv) − µ∗)| ≤ cζ

√
3/α. Since |Sgood ∩ Mv| ≥ (1 − 8α)|Sgood|, by the

(cζ
√

8α, 8α)-resilience property,

|v>(µ(Sgood ∩Mv)− µ∗)| ≤ cζ
√

8α .

Since T v , Bv are the largest and smallest 3αn points respectively and |Sbad| ≤ 2αn, we get

|v>(µ(Sbad ∩Mv)− µ∗)| ≤ 2cζ
√

3/α.

Combining Sgood ∩Mv and Sbad ∩Mv we get

|v>(µ(Mv)− µ∗)|

≤ |Sbad ∩M
v|

|Mv|
|v>(µ(Sbad ∩Mv)− µ∗)|+ |µ(Sgood ∩Mv|

|Mv|
|v>(µ(Sgood ∩Mv)− µ∗)|

≤ 7cζ
√
α.

Finally we get that∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2
∣∣ (a)

=

∣∣∣∣ max
v∈Sd−1

∣∣∣v> (µ(M(v))− µ̂
)∣∣∣− max

v∈Sd−1
|v>(µ̂− µ∗)|

∣∣∣∣
(b)

≤ max
v∈Sd−1

∣∣∣v> (µ(M(v))− µ∗
)∣∣∣

≤ 7cζ
√
α,

where (a) holds by the definition of the distance :

‖µ− µ∗‖2 = max
v∈Sd−1

|v>(µ− µ∗)|,

and (b) holds by triangle inequality.

H.2 Case of sub-Gaussian distributions and a proof of Theorem 7

Th proof is analogous to the previous section, we only state the lemmas that differ. qrange returns a
hypercube x̄+ [−B/2, B/2]d that includes all uncorrupted data points with a high probability.

45

Lemma H.10 (α-corrupted data has small R(S)). Let S be the set of α-corrupted data. Given that
n = Ω(d+log(1/ζ)

α2 log 1/α), with probability 1− ζ, R(S) ≤ 3α
√

log(1/3α).

Lemma H.11 (Privacy). Algorithm 2 is (ε, δ)-differentially private if n ≥
3B
√
d log(3/δ)/(εα

√
log(1/α)).

This follows from the following lemma.

Lemma H.12 (Sensitivity of d(µ̂, S)). Given that R(S) ≤ 3α
√

log(1/α), for any neighboring
dataset S′, |d(µ̂, S)− d(µ̂, S′)| ≤ 12

√
log 1/α/n.

Lemma H.13 (d(µ̂, S) approximates ‖µ̂− µ∗‖). Let S be the set of α-corrupted data. Given that
n = Ω(d+log(1/ζ)

α2 log 1/α), with probability 1− ζ,∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2
∣∣ ≤ 14α

√
log 1/α .

This implies the following utility bound.
Lemma H.14 (Utility of the algorithm). For an α-corrupted dataset S, Algorithm 2 achieves
‖µ̂ − µ∗‖2 ≤ α

√
log 1/α with probability 1 − ζ, if n = Ω((d + log(1/ζ))/(α2 log(1/α)) +

(d log(d
√

log(dn/ζ)/α) + log(1/ζ)/(εα)).

I Background on exponential time approaches for Gaussian distributions

In this section, we provide a background on exponential time algorithms that achieve optimal
guarantees but only applies to and heavily relies on the assumption that samples are drawn from
a Gaussian distribution. In §4, we introduce a novel exponential time approach that seamlessly
generalizes to both sub-Gaussian and covariance-bounded distributions.

We introduce Algorithm 1, achieving the optimal sample complexity of Õ(d/min{αε, α2}) (The-
orem 12). The main idea is to find an approximate Tukey median (which is known to be a robust
estimate of the mean [82]), using the exponential mechanism of [69] to preserve privacy.

Tukey median set. For any set of points S = {xi ∈ Rd}ni=1 and µ̂ ∈ Rd, the Tukey depth is defined
as the minimal empirical probability density on one side of a hyperplane that includes µ̂:

DTukey(S, µ̂) = inf
v∈Rd

Px∼p̂n(v>(x− µ̂) ≥ 0) ,

where p̂n is the empirical distribution of S. The Tukey median set is defined as the set of points
achieving the maximum Tukey depth, which might not be unique. Tukey median reduces to median
for d = 1, and is a natural generalization of the median for d > 1. Inheriting robustness of one-
dimensional median, Tukey median is known to be a robust estimator of the multi-dimensional
mean under an adversarial perturbation. In particular, under our model, it achieves the optimal
sample complexity and accuracy. This optimality follows from the well-known fact that the sample
complexity of O((1/α2)(d+ log(1/ζ))) cannot be improved upon even if we have no corruption,
and the fact that the accuracy of O(α) cannot be improved upon even if we have infinite samples [82].
However, finding a Tukey median takes exponential time scaling as Õ(nd) [67].
Corollary I.1 (Corollary of [82, Theorem 3]). For a dataset of n i.i.d. samples from a d-dimensional
Gaussian distribution N (µ, Id), an adversary corrupts an α ∈ (0, 1/4) fraction of the samples as
defined in Assumption 1. Then, any µ̂ in the Tukey median set of a corrupted dataset S satisfies
‖µ̂− µ‖2 = O(α) with probability at least 1− ζ if n = Ω((1/α2)(d+ log(1/ζ))).

Exponential mechanism. The exponential mechanism was introduced in [69] to elicit approximate
truthfulness and remains one of the most popular private mechanisms due to its broad applicability. It
can seamlessly handle queries with non-numeric outputs, such as routing a flow or finding a graph.
Consider a utility function u(S, µ̂) ∈ R on a dataset S and a variable µ̂, where higher utility is
preferred. Instead of truthfully outputting arg maxµ̂ u(S, µ̂), the exponential mechanism outputs a
randomized approximate maximizer sampled from the following distribution:

rS(µ̂) =
1

ZS
e

ε
2 ∆u

u(S,µ̂) , (19)

46

where ∆u = maxµ̂,S∼S′ |u(S, µ̂) − u(S′, µ̂)| is the sensitivity of u (from Definition 1.2)
and ZS ensures normalization to one. This mechanism is (ε, 0)-differentially private, since
e

ε
2∆u
|u(S,µ̂)−u(S′,µ̂)| ≤ eε/2 and e−ε/2 ≤ ZS/ZS′ ≤ eε/2.

Proposition I.2 ([69, Theorem 6]). The sampled µ̂ from the distribution (19) is (ε, 0)-differentially
private.

This naturally leads to the following algorithm. The privacy guarantee follows immediately since
the Tukey depth has sensitivity 1/n, i.e., |DTukey(Sn, µ̂)−DTukey(S′n, µ̂) | ≤ 1/n for all µ̂ ∈ Rd
and two neighboring databases Sn ∼ S′n of size n. In this section, for the analysis of private Tukey
median, we assume the mean is from a known bounded set of the form [−R,R]d for some known
R > 0.

Algorithm 1 Private Tukey median

Output a random data point µ̂ ∈ [−2R, 2R]d sampled from a density r(µ̂) ∝ e(1/2)εnDTukey(S,µ̂) .

The private Tukey median achieves the following near optimal guarantee, whose proof is provided
in §J. The accuracy of O(α) and sample complexity of n = Ω((1/α2)(d + log(1/ζ))) cannot be
improved even without privacy (cf. Corollary I.1), and n = Ω̃(d/(αε)) is necessary even without any
corruption [52, Theorem 6.5].
Theorem 12. Under the hypotheses of Corollary I.1, there exists a universal constant c > 0 such that
if µ ∈ [−R,R]d, α ≤ min{c,R} and n = Ω((1/α2)(d+ log(1/ζ)) + (1/αε)d log(dR/ζα)), then
Algorithm 1 is (ε, 0)-differentially private and achieves ‖µ̂− µ‖2 = O(α) with probability 1− ζ.

The private Tukey median, however, is a conceptual algorithm since we cannot sample from r(µ̂). The
AFindTukey algorithm from [9] approximately finds the Tukey median privately. This achieves O(α)

accuracy with n = Ω̃(d3/2 log(1/δ)/(αε) + (1/α2)(d+ log(1/ζ))), but it still requires a runtime of
O(npoly(d)). Alternatively, we can sample from an α-cover of [−2R, 2R]d, which has O((dR/α)d)
points. However, evaluating the Tukey depth of a point is an NP-hard problem [5], requiring a
runtime of Õ(nd−1) [66]. The runtime of the discretized private Tukey median is Õ(n−1(dnR/α)d).
Similarly, [14] introduced an exponential mechanism over the α-cover with a novel utility function
achieving the same guarantee as Theorem 12, but this requires a runtime of O(n(dR/α)2d).

J Proof of Theorem 12 on the accuracy of the exponential mechanism for
Tukey median

First, the (ε, 0)-differential privacy guarantee of private Tukey median follows as a corollary of
Proposition I.2, by noting that sensitivity of nDTukey(Dn, x) is one, where Dn is a dataset of size n.
This follows from the fact that for any fixed x and v, |{z ∈ Dn : (v>(x− z)) ≥ 0}| is the number of
samples on one side of the hyperplane, which can change at most by one if we change one sample in
D.

Next, given n i.i.d samplesX1, X2, . . . Xn from distribution p, denote p̂n as the empirical distribution
defined by the samples X1, X2, . . . Xn. Denote p̃n as the distribution that is corrupted from p̂n. We
slightly overload the definition of Tukey depth to denote DTukey(p, x) as the Tukey depth of point
x ∈ Rd under distribution p, which is defined as

DTukey(p, x) = inf
v∈Rd

Pz∼p(v>(x− z) ≥ 0).

Note that this is the standard definition of Tukey depth. First we show that for n large enough, the
Tueky depth for the empirical distribution is close to that of the true distribution. We provide proofs
of the following lemmas later in this section.
Lemma J.1. With probability 1− δ, for any p and x ∈ Rd,

|DTukey(p, x)−DTukey(p̂n, x)| ≤ C ·
√
d+ 1 + log(1/δ)

n
.

The proof of Lemma J.1can be found in §J.1. This allows us to use the known Tukey depths of a
Gaussian distribution to bound the Tukey depths of the corrupted empirical one. We use this to show

47

that there is a strict separation between the Tueky depth of a point in S1 = {x : ‖x− µ‖ ≤ α} and a
point in S2 = {x : ‖x− µ‖ ≥ 10α}. The proof of Lemma J.2 can be found in §J.2.

Lemma J.2. Define p = N (µ, I), and assume α < 0.01. Given that n = Ω(α−2(d + log(1/δ))),
with probability 1− δ,

1. For any point x ∈ Rd, ‖x− µ‖ ≤ α, it holds that

DTukey(p̃n, x) ≥ 1

2
− 2α

2. For any point x ∈ Rd, ‖x− µ‖ ≥ 10α, it holds that

DTukey(p̃n, x) ≤ 1

2
− 5α.

This implies that most of the probability mass of the exponential mechanism is concentrated inside a
ball of radius O(α) around the true mean µ. Hence, with high probability, the exponential mechanism
outputs an approximate mean that is O(α) close to the true one. The following lemma finishes the
proof the the desired claim, whose proof can be found in §J.3.

Lemma J.3 (Utility). Denote p̃n as the distribution that is corrupted from p̂n. Suppose x is
sampled from [−2R, 2R]d with density r(x) ∝ exp(−(1/2)εnDTukey(p̃n, x)), then given n =
Ω((d/(αε)) log(dR/ηα) + (1/α2)(d+ log(1/η))) and µ ∈ [−R,R]d, and R ≥ α,

P(‖x− µ‖ ≤ 5α) ≥ 1− η .

J.1 Proof of Lemma J.1

From the VC inequality ([25], Chap 2, Chapter 4.3) and the fact that the family of sets {{z|v>z ≥
t}|‖v‖ = 1, t ∈ R, v ∈ Rd} has VC dimension d+ 1, there exists some universal constant C such
that with probability at least 1− δ

sup
t∈R,v∈Rd,‖v‖=1

|Pz∼p(v>z ≥ t)− Pz∼p̂n(v>z ≥ t)| ≤ C ·
√
d+ 1 + log(1/δ)

n
,

which implies, for any x ∈ Rd,

sup
v∈Rd

|Pz∼p(v>(x− z) ≥ 0)− Pz∼p̂n(v>(x− z) ≥ 0)| ≤ C ·
√
d+ 1 + log(1/δ)

n
,

by letting t = v>x. We conclude the proof since

|DTukey(p, x)−DTukey(p̂n, x)|
= | inf

v∈Rd
Pz∼p(v>(x− z) ≥ 0)− inf

v∈Rd
Pz∼p̂n(v>(x− z) ≥ 0)|

≤ sup
v∈Rd

|Pz∼p(v>(x− z) ≥ 0)− Pp̂n(v>(x− z) ≥ 0)|

≤ C ·
√
d+ 1 + log(1/δ)

n
.

48

J.2 Proof of Lemma J.2

For the first claim, we first prove a lower bound on DTukey(p, x). Since p = N (µ, I), for any v ∈ Rd
such that ‖v‖2 = 1,

Pz∼p(v>(z − x) ≥ 0)

= Pz∼N(0,1)(z ≥ v>(x− µ))

=

∫ ∞
v>(x−µ)

1√
2π

exp(−z2/2)dz

≥ 1

2
− 1√

2π
v>(x− µ)

≥ 1

2
− 1√

2π
‖x− µ‖2

≥ 1

2
− 1√

2π
α

Thus,
DTukey(p, x)

= inf
v∈Rd

Pz∼p(v>(x− z) ≥ 0)

≥ 1

2
− 1√

2π
α

Then Lemma J.1 implies that with probability 1− δ

DTukey(p̂n, x) ≥ 1

2
− 1√

2π
α− C ·

√
d+ 1 + log(1/δ)

n
.

Since the corruption can change at most α probability mass, it holds that |DTukey(p̃n, x) −
DTukey(p̂n, x)| ≤ α. Setting n = Ω(α−2(d+ log(1/δ))) yields

DTukey(p̃n, x) ≥ 1

2
− 1√

2π
‖x− µ‖2 − C ·

√
d+ 1 + log(1/δ)

n
− α

≥ 1

2
− 2α.

For the second claim, note that
DTukey(p, x)

≤
∫ ∞
v>(x−µ)

1√
2π

exp(−z2/2)dz

(a)

≤ 1

2
− 1√

2π
exp(−(20α)2/2) · 20α

(b)

≤ 1

2
− 7α

where (a) holds since ‖x−µ‖ ≥ 20α, and it is easy to verify that (b) holds for α ≤ 0.01. The second
claim holds since

DTukey(p̃n, x)

≤ DTukey(p̂n, x) + α

≤ DTukey(p, x) + α+ C ·
√
d+ 1 + log(1/δ)

n
(a)

≤ DTukey(p, x) + 2α

≤ 1

2
− 5α,

where (a) holds by setting n = Ω(α−2(d+ log(1/δ))).

49

J.3 Proof of Lemma J.3

Let r(x) = 1
A exp(−εnDTukey(p̃n, x)) where A is the normalization factor. Then

P(‖x− µ‖ ≤ α) ≥ 1

A
exp(εn(

1

2
− 2α)) · πd/2

Γ(d/2 + 1)
αd,

using the fact that µ ∈ [−R,R]d and that R ≥ α, and

P(‖x− µ‖ ≥ 5α) ≤ 1

A
exp(εn(

1

2
− 10α)) · (4R)

d
.

Hence

log(
P(‖x− µ‖ ≤ α)

P(‖x− µ‖ ≥ 5α)
) ≥ εn(3α)− C · d log(dR/α),

where C is an absolute constant. If we set n = Ω(d log(dB/δα)
αε), we get that

P(‖x− µ‖ ≤ α)

P(‖x− µ‖ ≥ 5α)
≥ 10

δ
,

which implies that with probability at least 1− δ, ‖x− µ‖ ≤ 5α.

50

K The algorithmic details and the analysis of PRIME-HT for covariance
bounded distributions

We provide the algorithm and the analysis for the range estimation query qrange−ht, and then prove
the result on analyzing PRIME-HT.

K.1 Range estimation with qrange−ht

Algorithm 14: Differentially private range estimation for covariance bounded distributions
(qrange−ht) [54, Algorithm 2]

Input: S = {xi}ni=1, ε, δ, ζ
1 Randomly partition the dataset S = ∪`∈[m]S

(`) with m = 200 log(2/ζ)

2 x̄(`) ← qrange(S(`), ε/m, δ/m, σ = 40) for all ` ∈ [m]

3 x̂j ← median({x̄(`)
j }`∈[m]) for all j ∈ [d]

Output: (x̂, B = 50/
√
α)

Lemma K.1. qrange−ht is (ε, δ)-differentially private. Under Assumption 2 and for α ∈ (0, 0.01), if
n = Ω((1/α) log(1/ζ) + (

√
d log(1/δ) log(1/ζ) log(d/δ)/ε)), qrange−ht returns a ball B√dB/2(x̄)

of radius
√
dB/2 centered at x̄ that includes (1− 2α)n uncorrupted samples where B = 50/

√
α

with probability 1− ζ.

We first show that applying the private histogram to each coordinate provides a robust estimate of the
range, but with a constant probability 0.9.

Lemma K.2 (Robustness of a single private histogram). Under the α-corruption model of Assump-
tion 2, if n = Ω(

√
d log(1/δ) log(d/δ)/ε), for α ∈ (0, 0.01), qrange in Algorithm 5 with a choice of

σ = 40 and B = 120 returns intervals {Ij}dj=1 of size |Ij | = 240 such that µj ∈ Ij with probability
0.9 for each j ∈ [d].

Proof of Lemma K.2. The proof is analogous to Appendix D.1 and we only highlight the differences
here. By Lemma D.1 we know that |p̃k − p̂k| ≤ 0.01 with the assumption on n. The corruption can
change the normalized count in each bin by α ≤ 0.01 by assumption. It follows from Chebyshev
inequality that P(|xi,j − µj |2 > σ2) ≤ 1/σ2. It follows from (e.g. [54, Lemma A.3]) that P(|{i :
xi,j /∈ [µ−σ, µ+σ]}| > (100/σ2)n) < 0.05. Hence the maximum bin has p̃k ≥ 0.5(1−100/σ2)−
0.02 and the true mean is in the maximum bin or in an adjacent bin. The largest non-adjacent bucket
is at most 100/σ2 + 0.02. Hence, the choice of σ = 40 ensures that we find the µ within 3σ = 120.

Following [54, Algorithm 2], we partition the dataset into m = 200 log(2/ζ) subsets of an equal size
n/m and apply the median-of-means approach. Applying Lemma K.2, it is ensured (e.g., by [54,
Lemma A.4]) that more than half of the partitions satisfy that the center of the interval is within 240
away from µ, with probability 1− ζ . Therefore the median of those m centers is within 240 from the
true mean in each coordinate. This requires the total sample size larger only by a factor of log(d/ζ).

To choose a radius
√
dB/2 ball around this estimated mean that includes 1− α fraction of the points,

we choose B = 25/
√
α. Since ‖µ̂− µ‖2 ≤ 120

√
d �

√
dB/2 for α ≤ 0.01, this implies that we

can choose
√
dB/2-ball around the estimated mean with B = 50/

√
α.

Let zi = I(‖xi − µ‖2 >
√
dB/2). We know that E[zi] = P[(‖xi − µ‖2 >

√
dB/2)] ≤ E[‖xi −

µ‖22(2/dB2)] = (1/1250)α. Applying multiplicative Chernoff bound (e.g., in [54, Lemma A.3]), we
get |{i : ‖xi−µ‖2 ≤

√
dB/2}| ≥ 1− (3/2500)α with probability 1− ζ , if n = Ω((1/α) log(1/ζ)).

This ensures that with high probability, (1−α) fraction of the original uncorrupted points are included
in the ball. Since the adversary can corrupt αn samples, at least (1− 2α)n of the remaining good
points will be inside the ball.

51

K.2 Proof of Theorem 9

The proof of the privacy guarantee of Algorithm 15 follows analogously from the proof of the privacy
of PRIME and is omitted here. The accuracy guarantee follows form the following theorem and
Lemma K.1.
Theorem 13 (Analysis of accuracy of DPMMWFILTER-HT). Let S be an α-corrupted covariance
bounded dataset under Assumption 2, where α ≤ c for some universal constant c ∈ (0, 1/2). Let
Sgood be α-good with respect to µ ∈ Rd. Suppose D = {xi ∈ B√dB/2(x̄)}ni=1 be the projected

dataset. If n ≥ Ω̃
(
d3/2B2 log(1/δ)

ε

)
, then DPMMWFILTER-HT terminates after at most O(log dB2)

epochs and outputs S(s) such that with probability 0.9, we have |S(s)
t ∩ Sgood| ≥ (1− 10α)n and

‖µ(S(s))− µ‖2 .
√
α .

Moreover, each epoch runs for at most O(log d) iterations.

K.2.1 Analysis of DPMMWFILTER-HT and a proof of Theorem 13

Algorithm 15 is a similar matrix multiplicative weights based filter algorithm for distributions with
bounded covariance. Similarly, we first state following Lemma K.3 and prove Theorem 13 given
Lemma K.3
Lemma K.3. Let S be an α-corrupted bounded covariance dataset under Assumption 2. For
an epoch s and an iteration t such that λ(s) > C, λ(s)

t > 2/3λ
(s)
0 , and n(s) > 3n/4, if n &

B2(logB)d3/2 log(1/δ)
ε and |S(s)

t ∩ Sgood| ≥ (1 − 10α)n, then with probability 1 − O(1/ log(d)3),
we have the condition in Eq. (20) holds. When this condition holds, we have more corrupted
samples are removed in expectation than the uncorrupted samples, i.e., E|(S(s)

t \ S
(s)
t+1) ∩ Sgood| ≤

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1] there exists a constant C > 0 such that if

‖M(S(s))‖2 ≥ C, then with probability 1−O(1/ log2 d), the s-th epoch terminates after O(log d)
iterations and outputs S(s+1) such that ‖M(S(s+1))‖2 ≤ 0.98‖M(S(s))‖2.

Now we define d(s)
t , |(Sgood ∩ S(1)) \ S(s)

t |+ |S
(s)
t \ (Sgood ∩ S(1))|. Note that d(1)

1 = αn, and
d

(s)
t ≥ 0. At each epoch and iteration, we have

E[d
(s)
t+1 − d

(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)

t] = E
[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from the part 1 of Lemma K.3. Hence, d(s)
t is a non-negative super-martingale. By optional stopping

theorem, at stopping time, we have E[d
(s)
t] ≤ d

(1)
1 = αn. By Markov inequality, d(s)

t is less than
10αn with probability 0.9, i.e. |S(s)

t ∩ Sgood| ≥ (1 − 10α)n. The desired bound in Theorem 13
follows from Lemma K.11.

K.2.2 Proof of Lemma K.3

Lemma K.3 is a combination of Lemma K.4, Lemma K.5 and Lemma K.6. We state the technical
lemmas and subsequently provide the proofs.
Lemma K.4. For each epoch s and iteration t, under the hypotheses of Lemma K.3 then with
probability 1−O(1/ log3 d), we have

1

n

∑
i∈Sgood∩S(s)

t

τi ≤ ψ/1000 , (20)

where ψ , 1
n

∑
i∈S(s)

t
τi.

Lemma K.5. For each epoch s and iteration t, under the hypotheses of Lemma K.3, if condition
Eq. (20) holds, then we have E|S(s)

t \ S
(s)
t+1 ∩ Sgood| ≤ E|S(s)

t \ S
(s)
t+1 ∩ Sbad| and with probability

1−O(1/ log3 d), and
〈
M(S

(s)
t+1), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t), U

(s)
t

〉
.

52

Algorithm 15: Differentially private filtering with matrix multiplicative weights
(DPMMWFILTER-HT) for distributions with bounded covariance

Input: S = {xi ∈ B√dB/2(x̄)}ni=1, α ∈ (0, 1), T1 = O(logB
√
d), T2 = O(log d), B ∈ R+,

(ε, δ)
1 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
2 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4

√
10T1T2 log(4/δ)),

δ2 ← δ/(20T1T2), a large enough constant C > 0
3 for epoch s = 1, 2, . . . , T1 do
4 λ(s) ← ‖M(S(s))‖2 + Lap(2B2d/(nε1))

5 n(s) ← |S(s)|+ Lap(1/ε1)

6 if n(s) ≤ 3n/4 then terminate
7 if λ(s) ≤ C then

Output:
µ(s) ← (1/|S(s)|)

(∑
i∈S(s) xi

)
+N (0, (2B

√
2d log(1.25/δ1)/(n ε1))2Id×d)

8 α(s) ← 1/(100(0.1/C + 1.05)λ(s))

9 S
(s)
1 ← S(s)

10 for t = 1, 2, . . . , T2 do
11 λ

(s)
t ← ‖M(S

(s)
t)‖2 + Lap(2B2d/(nε2))

12 if λ(s)
t ≤ 2/3λ

(s)
0 then

13 terminate epoch
14 else
15 Σ

(s)
t ←M(S

(s)
t) +N (0, (4B2d

√
2 log(1.25/δ2)/(nε2))2Id2×d2)

16 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r)))) exp(α(s)

∑t
r=1(Σ

(s)
r))

17 ψ
(s)
t ←

〈
M(S

(s)
t), Ut

(s)
〉

+ Lap(2B2d/(nε2))

18 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

19 S
(s)
t+1 ← S

(s)
t

20 else
21 Z

(s)
t ← Unif([0, 1])

22 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St xi
)

+N (0, (2B
√

2d log(1.25/δ2)/(n ε2)Id×d)
2)

23 ρ
(s)
t ← DPTHRESHOLD-HT(µ

(s)
t , U

(s)
t , α, ε2, δ2, S

(s)
t) [Algorithm 16]

24 S
(s)
t+1 ← S

(s)
t \ {i | {τj = (xj − µ(s)

t)>U
(s)
t (xj − µ(s)

t)}
j∈S(s)

t
and

τi ≥ ρ(s)
t Z

(s)
t }.

25 S(s+1) ← S
(s)
t

Output: µ(T1)

Lemma K.6. For epoch s, suppose for t = 0, 1, · · · , T2 where T2 = O(log d), if Lemma K.5 holds,

n & B2(logB)d3/2 log(1/δ)
εα , and n(s) > 3n/4, then we have ‖M(S(s+1))‖2 ≤ 0.98‖M(S(s))‖2 with

probability 1−O(1/ log2 d).

K.2.3 Proof of Lemma K.4

Proof. By Lemma G.9, Lemma G.10 and Lemma G.11, we can pick n = Ω̃
(
B2d3/2 log

ε

)
such that

with probability 1−O(1/ log3 d), following conditions simultaneously hold:

1. ‖µ(s)
t − µ(S

(s)
t)‖22 ≤ 0.001

2. |ψ(s)
t −

〈
M(S

(s)
t), U

(s)
t

〉
| ≤ 0.001

53

Algorithm 16: Differentially private estimation of the threshold for bounded covariance
DPTHRESHOLD-HT

Input: µ, U , α ∈ (0, 1), target privacy (ε, δ), S = {xi ∈ BB√d/2(x̄)}
1 Set τi ← (xi − µ)>U(xi − µ) for all i ∈ S
2 Set ψ̃ ← (1/n)

∑
i∈S τi + Lap(2B2d/nε))

3 Compute a histogram over geometrically sized bins
I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B2d)−1, 2log(B2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j , 2−2+j)}| , for all j = 1, · · · , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (4
√

2d log(1.25/δ)/(nε))2), for all
j ∈ [2 + log(B2d)]

5 Set τ̃j ← 2−3+j , for all j ∈ [2 + log(B2d)]

6 Find the largest ` ∈ [2 + log(B2d)] satisfying
∑
j≥`(τ̃j − τ̃`) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃`

3.
∣∣∣λ(s)
t − ‖M(S

(s)
t)‖2

∣∣∣ ≤ 0.001

4.
∣∣λ(s) − ‖M(S(s))‖2

∣∣ ≤ 0.001

5.
∥∥∥M(S

(s)
t+1)− Σ

(s)
t

∥∥∥
2
≤ 0.001

6. ‖µ(s) − µ(S(s))‖22 ≤ 0.001 .

Then we have

1

n

∑
i∈Sgood∩S(s)

t

τi =
1

n

∑
i∈Sgood∩S(s)

t

〈
(xi − µ(s)

t)(xi − µ(s)
t)>, U

(s)
t

〉
(a)

≤ 2

n

∑
i∈Sgood∩S(s)

t

〈
(xi − µ(Sgood ∩ S(s)

t))(xi − µ(Sgood ∩ S(s)
t))>, U

(s)
t

〉

+
2|Sgood ∩ S(s)

t |
n

〈
(µ(Sgood ∩ S(s)

t)− µ(s)
t)(µ(Sgood ∩ S(s)

t)− µ(s)
t)>, U

(s)
t

〉
≤ 2

〈
M((Sgood ∩ S(s)

t), U
(s)
t

〉
+ 2‖µ(s)

t − µ(Sgood ∩ S(s)
t)‖22

(b)

≤ 2 + 2
(
‖µ(s)

t − µ‖2 + ‖µ(Sgood ∩ S(s)
t)− µ‖2

)2

(c)

≤ 2 + 2

(
0.01 + 2

√
α‖M(S

(s)
t)‖2 + 3

√
α

)2

≤ 3 + 8α‖M(S
(s)
t)‖2 + 32α

(d)

≤ ψ
(s)
t − 0.002

1000

≤ ψ

1000
,

where (a) follows from the fact that for any vector x, y, z, we have (x− y)(x− y)> � 2(x− z)(x−
z)> + 2(y − z)(y − z)>, (b) follows from α-goodness of Sgood, (c) follows from Lemma K.11 and
(d) follows from our choice of large constant C and sample complexity n.

54

K.2.4 Proof of Lemma K.5

Proof. Lemma K.4 implies with probability 1−O(1/ log3 d), our scores satisfies the condition in
Eq. (20). Then by Lemma K.7 our DPTHRESHOLD-HT gives us a threshold ρ such that∑

i∈Sgood∩S(s)
t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} ≤
∑

i∈Sbad∩S(s)
t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

According to our filter rule from Algorithm 16, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩S(s)

t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}

and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩S(s)

t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

This implies E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|.

At the same time, Lemma K.7 gives us a ρ such that with probability 1−O(log3 d), we have

1

n

∑
i∈S(s)

t+1

τi ≤
1

n

∑
τi≤ρ,i∈S(s)

t

τi ≤
3

4
· 1

n

∑
i∈S(s)

t

τi .

Hence, we have〈
M(S

(s)
t+1), U

(s)
t

〉
=

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S
(s)
t+1))(xi − µ(S

(s)
t+1))>, U

(s)
t

〉

≤

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S
(s)
t))(xi − µ(S

(s)
t))>, U

(s)
t

〉

≤ 1

n

∑
i∈S(s)

t+1

τi + ‖µ(s)
t − µ(S

(s)
t)‖22

≤ 3

4n

∑
i∈S(s)

t

τi + 0.01

(a)

≤ 0.76
〈
M(S

(s)
t), U

(s)
t

〉
,

where (a) follows from our assumption that ψ(s)
t > 1

5.5λ
(s)
t > 2

16.5C.

K.2.5 Proof of Lemma K.6

Proof. If Lemma K.5 holds, we have〈
M(S

(s)
t), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t−1), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
1), U

(s)
t

〉
≤ 0.76‖M(S

(s)
1)‖2

We pick n large enough such that with probability 1−O(log3 d),

‖Σ(s)
t ‖2 ≈0.05 ‖M(S

(s)
t)‖2 .

55

Thus, we have 〈
Σ

(s)
t , U

(s)
t

〉
≤ 0.81‖M(S

(s)
1)‖2 .

By Lemma G.1, we haveM(S
(s)
t) �M(S

(s)
1). by our choice of α(s), we have α(s)M(S

(s)
t+1) � 1

100I

and α(s)Σ
(s)
t � 1

100I. Therefore, by Lemma G.14 we have∥∥∥∥∥
T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+ α(s)

T2∑
t=0

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉 ‖Σ(s)
t ‖2 +

log(d)

α(s)

(a)

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉+ 200 log(d)‖M(S
(s)
1)‖2

where (a) follows from our choice of α(s), C, and n.

Meanwhile, we have

|Σ(s)
t | �M(S

(s)
t) + 0.15 I .

Thus we have 〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉 ≤ 0.91
∥∥∥M(S

(s)
1)
∥∥∥

2

Then we have∥∥∥M(S
(s)
T2

)
∥∥∥

2
≤ 1

T2

∥∥∥∥∥
T2∑
i=1

M(S
(s)
t)

∥∥∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

+ 0.05 ‖M(S
(s)
1)‖2

≤ 1

T2

(
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉+ 200 log(d)‖M(S
(s)
1)‖2

)
+ 0.05 ‖M(S

(s)
1)‖2

≤ 0.91‖M(S
(s)
1)‖2 +

200 log(d)

T2
‖M(S

(s)
1)‖2 + 0.05 ‖M(S

(s)
1)‖2

≤ 0.98 ‖M(S
(s)
1)‖2

K.2.6 Proof of DPTHRESHOLD-HT for distributions with bounded covariance

Lemma K.7 (DPTHRESHOLD-HT: picking threshold privately for distributions with bounded covari-
ance). Algorithm DPTHRESHOLD-HT(µ,U, α, ε, δ, S) running on a dataset {τi = (xi− µ)>U(xi−
µ)}i∈S is (ε, δ)-DP. Define ψ , 1

n

∑
i∈S τi. If τi’s satisfy

1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000 ,

and n ≥ Ω̃
(
B2d
ε

)
then DPTHRESHOLD-HT outputs a threshold ρ such that

2(
∑

i∈Sgood∩S
1{τi ≤ ρ}

τi
ρ

+ 1{τi > ρ}) ≤
∑

i∈Sbad∩S
1{τi ≤ ρ}

τi
ρ

+ 1{τi > ρ} , (21)

and with probability 1−O(1/ log3 d),
1

n

∑
τi<ρ

τi ≤ 0.75ψ .

56

Proof. 1. ρ cuts enough

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of the interval of
the bin that τi belongs to. It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥ 1

n

∑
τ̃i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(
B2d

εn
)

(c)

≥ 0.3ψ − Õ(
B2d

εn
) ,

where (a) holds due to the accuracy of the private histogram (Lemma G.12), (b) holds by the
definition of ρ in our algorithm, and (c) holds due to the accuracy of ψ̃. This implies

1

n

∑
τi<ρ

τi ≤ ψ −
1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

2. ρ doesn’t cut too much

Define C2 to be the threshold such that 1
n

∑
τi>C2

(τi − C2) = (2/3)ψ. Suppose 2b ≤ C2 ≤ 2b+1,
we have

∑
τ̂i≥2b−1(τ̂i − 2b−1) ≥ (1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1

2 (τi − C2). Then
the threshold picked by the algorithm ρ ≥ 2b−1, which implies ρ ≥ 1

4C2. Suppose ρ < C2, since
ρ ≥ 1

4C2 ∑
i∈Sbad∩S,τi<ρ

τi +
∑

i∈Sbad∩S,τi≥ρ

ρ ≥ 1

4
(

∑
i∈Sbad∩S,τi<C2

τi +
∑

i∈Sbad∩S,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩S,τi<C2

τi +
∑

i∈Sgood∩S,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩S,τi<ρ

τi +
∑

i∈Sgood∩S,τi≥ρ

ρ),

where (a) holds by Lemma K.8, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement of the
Lemma K.8 directly implies Equation (21).

Lemma K.8. Assuming that the condition in Eq.(20) holds, then for any C such that

1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C ≥ (1/3)ψ ,

we have ∑
i∈Sbad∩S,τi<C

τi +
∑

i∈Sbad∩S,τi≥C

C ≥ 10(
∑

i∈Sgood∩S,τi<C
τi +

∑
i∈Sgood∩S,τi≥C

C)

Proof. First we show an upper bound on Sgood:

1

n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C ≤ 1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000.

57

Then we show an lower bound on Sbad:

1

n

∑
i∈Sbad∩S,τi<C

τi +
1

n

∑
i∈Sbad∩S,τi>C

C

=
1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C

−(
1

n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C)

≥ (1/3− 1/1000)ψ .

Combing the lower bound and the upper bound yields the desired statement

K.2.7 Regularity lemmas for distributions with bounded covariance

Definition K.9 ([36, Definition 3.1]). Let D be a distribution with mean µ ∈ Rd and covariance
Σ � I. For 0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-good with respect to
µ ∈ Rd if following inequalities are satisfied:

• ‖µ(S)− µ‖2 ≤
√
α

•
∥∥∥ 1
|S|
∑
i∈S (Xi − µ(S)) (Xi − µ(S))

>
∥∥∥

2
≤ 1.

Lemma K.10 ([36, Lemma 3.1]). Let D be a distribution with mean µ ∈ Rd and covariance
Σ � I. Let S = {X1, X2, · · · , Xn} be a set of i.i.d. samples of D. If n = Ω(d log(d)/α), then with
probability 1−O(1), there exists a set Sgood ⊆ S such that Sgood is α-good with respect to µ and
|Sgood| ≥ (1− α)n.

Lemma K.11 ([36, Lemma 3.2]). Let S be an α-corrupted bounded covariance dataset under
Assumption 2. If Sgood is α-good with respect to µ, then for any T ⊂ S such that |T ∩ Sgood| ≥
(1− α)|S|, we have

‖µ(T)− µ‖2 ≤
1

1− 2α
·
(

2
√
α ‖M(T)‖2 + 3

√
α

)
.

58

L Experiments

We evaluate PRIME and compare with a DP mean estimator of [52] on synthetic dataset in Figure 1
and Figure 2, which consists of samples from (1 − α)N (0, I) + αN (µbad, I). The main focus of
this evaluation is to compare the estimation error and demonstrate the robustness of PRIME under
differential privacy guarantees. Our choice of experimental settings and hyper parameters are as
follows: 1 ≤ d ≤ 100, µbad = (1.5, 1.5, · · · , 1.5)d, 0.001 ≤ ε ≤ 100, 0.01 ≤ α ≤ 0.1 , C = 1.

Figure 2 shows additional experiments including the regime where we do not have enough number of
samples. When n ≤ cd1.5/αε, the utility guarantee (Theorem 5) does not hold. The noise we add on
the final output becomes large as n decreases and dominates the estimation error. The DP Mean [52]
has lower error compared to PRIME when n is small because PRIME spends some privacy budget
to perform operations other than those in DP Mean in the Algorithm 10. In practice, we can check
whether there are enough number of samples based on known parameters (ε, δ, n, α), and choose to
use DP Mean (or adjust how the privacy budget is distributed in PRIME).

102 103 104 105 106 107

number of samples n
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 e
rro

r |
| 2

DP Mean
PRIME

Figure 2: Estimation error achieved by PRIME significantly improves upon that of DP Mean in
the large sample regime where our theoretical guarantees apply. In the small sample regime, the
noise from the DP mechanisms dominate the error, which increases with decreasing n. We choose
(α, ε, δ, d) = (0.1, 100, 0.01, 50). Each data point is repeated 50 runs and standard error is shown in
the error bar.

Our implementation is based on Python with basic Numpy library. We run on a 2018 Mac-
book Pro machine. For each choice of d in our settings, it takes less than 2 minutes and
PRIME stops after at most 3 epochs. We have attached our code as supplementary materi-
als.

59

