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Abstract

Associative memories in the brain receive and store patterns of activity registered
by the sensory neurons, and are able to retrieve them when necessary. Due to their
importance in human intelligence, computational models of associative memories
have been developed for several decades now. In this paper, we present a novel
neural model for realizing associative memories, which is based on a hierarchical
generative network that receives external stimuli via sensory neurons. It is trained
using predictive coding, an error-based learning algorithm inspired by information
processing in the cortex. To test the model’s capabilities, we perform multiple
retrieval experiments from both corrupted and incomplete data points. In an exten-
sive comparison, we show that this new model outperforms in retrieval accuracy
and robustness popular associative memory models, such as autoencoders trained
via backpropagation, and modern Hopfield networks. In particular, in completing
partial data points, our model achieves remarkable results on natural image datasets,
such as ImageNet, with a surprisingly high accuracy, even when only a tiny fraction
of pixels of the original images is presented. Our model provides a plausible
framework to study learning and retrieval of memories in the brain, as it closely
mimics the behavior of the hippocampus as a memory index and generative model.

1 Introduction

Throughout our lives, we learn a huge number of associations between concepts: the taste of a
particular food, the meaning of a gesture, or to stop when we see a red light. Every time we acquire
new information of this kind, it gets stored in our long-term memory, situated in distributed networks
of brain areas [1]. In particular, visual memories are stored in a hierarchical network of visual and
associative areas [2]. These regions learn progressively more abstract representations of visual stimuli,
so they participate in both perception and memory as each area memorizes relationships present in
their inputs [3]. Accordingly, early visual areas learn common regularities present in the stimuli [4],
while at the top of this hierarchy, associative areas (such as hippocampus, entorhinal cortex, and
perirhinal cortex) store the relationships between extracted features, which encode an entire stimulus
or episode [5]. The memory system of the brain is able to both recall complex memories [1, 6], and
use them to generate predictions to guide behavior [7]. Learning in these associative memories shapes
our understanding of the world around us and builds the foundations of human intelligence.

Building models that are able to store and retrieve information has been an important direction of
research in artificial intelligence. Particularly, such models include (auto)associative memories (AMs),
which allow for the storage of data points and their contents-based retrieval, i.e., for retrieving a stored
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Figure 1: Generative PCN with two layers.
Each line linking neurons denotes a pair of
connections (excitatory in the left direction,
and inhibitory in the right direction). At t = 0,
the value nodes of the output layer are fixed to
the vector representing the pixels of the figure.
Then, during the learning phase, both weight
parameters and value nodes are updated.

data point s from a corrupted or a partial variant of s. One way to realize AMs is to store data points
as attractors, so that they can be easily recovered via an energy minimization process when presenting
their corrupted variants [8, 9]. Existing AMs include Hopfield networks [8] and modern Hopfield
networks (MHNs) [10]. The latter are one-shot learners, which are able to store exponentially many
memories, and to perfectly retrieve them. However, the retrieval process often fails when dealing with
complex data, such as natural images. Recent works have shown that overparametrized autoencoders
(AEs) are excellent AMs as well. Particularly, when training an AE to generate a specific point s
when s itself is presented as an input, it gets stored as an attractor [11].

In this work, we present a novel AM model that is based on an energy-based generative approach.
This AM model differs from Hopfield networks, as it is trained using predictive coding (PC), which
is a biologically plausible learning algorithm inspired by learning in the visual cortex [4]. The idea
that PC may naturally be related to AMs is inspired by recent works showing that the generative
neural architecture that connects the hippocampus to the neocortex is based on an error-driven
learning algorithm, which can be interpreted with a PC framework [6, 12]. From a machine learning
perspective, predictive coding networks (PCNs) are able to perform both supervised and unsupervised
tasks with a high accuracy [4, 13], and are completely equivalent to backpropagation when trained
with a specific algorithm [14–16]. We show that the new AM model is not only interesting from a
neuroscience perspective, but it also outperforms popular AM models when it comes to the storage
and retrieval of complex data points. Our results can be briefly summarized as follows:

• We define generative PCNs and empirically show that they store training data points as attractors
of their dynamics by demonstrating that they can restore original data points from corrupted
versions. In an extensive comparison of the new AM model against standard AEs, the new model
considerably outperforms AEs (in storage capacity, retrieval accuracy, and robustness) when tested
on neural networks of the same size.

• The reconstruction of incomplete data points is a challenging task for AMs. Our model naturally
solves the task of reconstructing complex and colored images with a surprisingly high accuracy.
We also test our model on ImageNet, perfectly reconstructing single pictures even after removing
all but 1/8 of the original image. We then show that, to increase the overall capacity and retrieval
robustness of the model, it suffices to add additional layers. We also compare our model against
MHNs, showing that it significantly outperforms them in the aforementioned tasks.

2 Generative predictive coding networks

We now briefly recall predictive coding networks (PCNs), and we introduce generative PCNs, which
are the underlying neural model for the novel AMs introduced in the subsequent section.

Deep neural networks have a multi-layer structure, where each layer is formed by a vector of
neurons [17]. While in standard deep learning the goal is to minimize the error on a specific layer,
PC defines an error in every layer of the network, minimized by gradient descent on a global energy
function [4]. Particularly, let M be a PCN with L−1 fully connected layers of dimension n, followed
by a fully connected layer of dimension d. We call the d-dimensional layer sensory layer (indexed as
layer 0), which biologically corresponds to sensory neurons (see Fig. 1). We call the most internal
layer (layer L) memory, which is equipped with an n-dimensional memory vector b. Every layer l
contains value nodes xl

i,t, and every pair of consecutive layers is connected via weight matrices θ̄l,
which represent the synaptic weights between neurons of different layers. The value nodes, the
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Algorithm 1: Learning to generate s̄ with IL
Require: x0 is fixed to s.

1: for t = 0 to T do
2: for each neuron i in each level l do
3: update xl

i,t to minimize Et via Eq.(3)
4: end for
5: end for;
6: update each θl+1

i,j and bi to minimize Et via Eqs. (4) and (5).

weight matrices, and the memory vector are all trainable parameters of the model. The signal passed
from layer l + 1 to layer l, called prediction µ̄l

t, is computed as follows:

µl
i,t =

{∑nl+1

j=1 θ
l+1

i,j f(xl+1

j,t ) if 0 ≤ l < L

b if l = L ,
(1)

where f is a non-linear activation function. To conclude, the difference between the value x̄lt and
their predictions µ̄l

t is the error εli,t = xl
i,t − µl

i,t. We now describe how PCNs are trained. To do
this, we explain one iteration of a training algorithm, called inference learning (IL), that is divided
into an inference phase and a weight update phase.

Inference: Only the value nodes of the network are updated, while both the weight parameters and the
memory vector are fixed. Particularly, the value nodes are modified via gradient descent to minimize
the global error of the network, expressed by the following energy function Et:

Et = 1
2

∑
i,l(ε

l
i,t)

2 . (2)

Assume that we train a generative PCN on a training point s̄ ∈ Rd. To do this, the value nodes of the
sensory layer are fixed to the training point s̄, and are never updated. Thus, the error on every neuron
of the sensory layer is equal to ε0i,t = si − µ0

i,t. The process of minimizing Et by modifying all xl
i,t

leads to the following changes in the value nodes:

∆xl
i,t =

{
γ · (−εli,t + f ′(xl

i,t)
∑nl−1

k=1 ε
l−1

k,t θ
l
k,i,t) if 0< l ≤ L

0 if l = 0 ,
(3)

where γ is the integration step, which is a constant determining by how much the activity changes
in each iteration. The computations in Eqs. (1) and (3) are biologically plausible, as they have a
neural implementation that can be realized in a network with value nodes xli,t and error nodes εli,t
[4], as shown in Fig. 1. The inference phase works as follows: starting from a given configuration of
the value nodes x̄0, inference continuously upates the value nodes according to Eq. (3) until it has
converged. We call the configuration of the value nodes at convergence x̄T , where T is the number of
steps needed to reach convergence (in practice, it is a fixed large number).

Weight Update: When the value nodes of the sensory layer are fixed to an input signal s̄, inference
may not be sufficient to reduce the total energy to zero. Hence, to further decrease the total error, a
single weight update is performed: both the weight matrices and the memory vector are updated by
gradient descent to minimize the same objective function Et, and behave according to the following
equations, where α is the learning rate. Particularly, the derived update rule is the following:

∆θl+1

i,j = −α · ∂ET /∂θ
l+1

i,j = α · εli,T f(xl+1

j,T ), (4)

∆bi = −α · ∂ET /∂bi = −αεLi,T . (5)

The phases of inference and weight update are iterated until the total energy Et reaches a minimum.
This algorithm learns a dataset by using only local computations, which minimize the same energy
function. Fig. 1 gives a graphical representation of generative PCNs, while the pseudocode is shown
in Alg. 1. Detailed derivations of Eqs. (3) and (5) are in the supplementary material (and in [13]).

3 Predictive coding for associative memories
So far, we have shown how PCNs can perform generative tasks. We now show how generative PCNs
can be used as associative memories, i.e., how the model stores the data points that it is trained on, and
how these data points can be retrieved when presenting corrupted versions to the network, returning
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Figure 2: Left: Representation of the function F , used to retrieve stored images. It can be decomposed
into three steps: (1) The value nodes of the sensory layer are fixed to the pixels of the corrupted
image Fm(c̄). (2) Inference runs for T operations (until convergence). (3) We set Fm+1(c̄) to the
prediction of the sensory layer µ̄0

T . Note that the weight parameters are never updated during the
above steps. We have omitted the error nodes for simplicity. Right: Representation of an AM, where
an image s̄ (photo of a dog) is stored as an attractor of the dynamics. A corrupted image that lies in a
specific neighborhood of s̄ converges to it when minimizing the total energy via running inference.

the most similar stored data point. Let s̄ be a training data point, and M be the PCN considered above,
already trained until convergence to generate s̄. Moreover, assume that M makes the total energy
converge to zero at iteration T . At this point, the energy function defined on the value nodes has a
local minimum x̄ in which the value nodes of the sensory layer are equal to the entries of s̄. Note
that x̄ is actually an attractor of the dynamics of Et: when given a configuration that is not a local
minimum, inference will update the value nodes until the total energy reaches a minimum. If this
configuration lies in a specific neighborhood of x̄, inference will converge to x̄. So, given a dataset,
we obtain an AM of the dataset if all the training points are stored in the above way as attractors.

The above can be used to retrieve stored data points s̄: given a corrupted version c̄ ∈ Rd of s̄, one can
retrieve s̄ as follows. First, we set the value nodes of the sensory layer to the corrupted points, i.e.,
x̄0t = c̄ for the whole process. Then, we run inference until convergence and save the prediction µ̄0

T
of the sensory layer. If the original data point was stored as an attractor, we expect the prediction
µ̄0
T to be a less corrupted version of it. Let F : Rd→Rd be the function that sends c̄ to µ̄0

T just
described, and summarized in Fig. 2. Many iterations of this function allow to retrieve the stored
data point. Hence, summarizing the above, training points are stored in the memory vector b̄T and
the weight parameters, and what the algorithm does to retrieve them is simply the inference phase of
PCNs. Since visual memories are stored in hierarchical networks of brain areas, PC could be a highly
plausible algorithm to better understand how memory and prediction work in the brain.

To experimentally show that generative PCNs are AMs, we trained a 2-layer network with ReLU
non-linearity on a subset of 100 images of Tiny ImageNet and CIFAR10. After training, we presented
the model with a corrupted variant (by adding Gaussian noise) of the training set. We then used
the PCNs to reconstruct the original images from the corrupted ones. The experimental results
confirm that the model is able to retrieve the original image, given a corrupted one. The obtained
reconstructions for the Tiny Imagenet dataset (the most complex one, as each data point consists of
3 × 64 × 64 pixels) are shown in Fig. 4. We now provide a more comprehensive analysis, which
studies the capacity of generative PCNs when changing the number of data points and parameters.

Experiments: We trained 2-layer PCNs with ReLU non-linearity and hidden dimension n ∈ {512,
1024, 2048} on subsets of the aforementioned datasets of cardinality N = {100, 250, 500, 1000}.
Every model is trained until convergence, and all the images are retrieved as described in Section 3.
To provide a numerical evaluation, an image is considered recovered when the mean squared error
between the original image and the recovered image is less than 0.005.

To compare our results against a standard baseline, we also trained 3-layer autoencoders (AEs) with
the same hidden dimension on the same task, and compared the results. Note that the number of
parameters of a 2-layer PCN is smaller than the one of a 3-layer AE with the same hidden dimension.
This follows, as the additional layer (input layer, not needed in generative PCNs) almost doubles the
number of parameters in some cases. Further details about the experiments and used hyperparameters
are given in the supplementary material.
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CIFAR10 Tiny Imagenet

Figure 3: Percentage of correctly retrieved images by 2-layer generative PCNs (PC) and 3-layer
autoencoders (AE) with hidden-layer dimensions of 512, 1024, and 2048, when presented with a
corrupted image with Gaussian noise of variance 0.2 of CIFAR10 and of Tiny ImageNet.

Figure 4: Reconstructions of 64 × 64 Tiny ImageNet images with noise levels 0.2, 0.7, and 0.9,
respectively (original, noisy, and reconstructed image in first, second, and third row, respectively).

Results: The analysis shows that our model is able to store and retrieve data points even when the
network is not overparametrized (see Fig. 3). AEs trained with BP did not perform well: AEs with
less than 1024 hidden neurons always failed to restore even a single data point on the Tiny Imagenet
dataset, and very few on other ones. The performance of AEs with 2048 hidden neurons were always
worse than PCNs with 512 hidden neurons. This shows that overparametrization is essential for AEs
to perform AM tasks, and that our proposed method offers a much more network-efficient alternative.

In terms of capacity, 2-layer PCNs with 512 hidden neurons correctly store datasets of 250 images of
both CIFAR10 and Tiny ImageNet, and networks with 2048 hidden neurons always store and retrieve
all the presented datasets. As typical for AMs, small models trained on large datasets fail to store
data points, as the space of parameters is not large enough to store each data point as an independent
attractor. Our model is no different: PCNs with 512 hidden units are able to store almost 500 Tiny
ImageNet images when trained on datasets of that size, but fail to store more than 200 when trained
on larger ones.

4 Retrieval from partial data points

So far, we have shown how the proposed generative model can be used to retrieve stored data points
when presented with corrupted variants. We now tackle the different task of retrieving data points
when presented with partial ones. Let s̄ be the stored data point, and assume that a fraction of pixels
of s̄ are accessible, and the goal is to retrieve the remaining ones. Let s̄′ be the vector of the same
dimension of s̄, where a fraction of pixels are equal to the ones of the stored data point, and assume
that the position of the pixels that are equal to the ones of s̄ is known. We now show how to retrieve
the complete data point by using the same network M , trained as already shown in Section 3.

Let M be a PCN trained to generate s̄. Then, given the partial version of the original data point s̄′, it
is possible to retrieve the full data point using M as follows: first, we only fix the value nodes of the
sensory layer x̄0t to the entries of the partial data point s̄′ that we know are equal to the ones of the
stored data point, leaving the rest free to be updated. Then, we run inference on the whole network
until convergence. At this point, we expect the value nodes x̄0T to have converged to the entries of
the original data point, stored as an attractor. A graphical representation of the above mechanism is
described in Fig. 5. To show the capabilities of this network, we have performed multiple experiments
on the Tiny ImageNet and ImageNet datasets, and compared against existing models in the literature.
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Inference Figure 5: Algorithm used to retrieve a stored
data point from a fraction of it: (1) The value
nodes of the sensory layer that correspond
to the available entries of s̄ are fixed to the
respective values. (2) Inference runs for T
operations (until convergence). (3) We set our
prediction to be equal to the value nodes of
the sensory layer x̄0T . The weight parameters
are never updated during the above steps. The
error nodes are omitted for simplicity.

Algorithm 2: Retrieving s̄ given a non-corrupted fraction s̄′

Require: if s′i a correct entry of the original memory, then x0i,t is fixed to s′i.
1: for t = 1 to T do
2: for each neuron i in each level l do
3: update xl

i,t to minimize Et

4: end for
5: end for;
6: return x̄0T .

We now start by providing visual evidence on the effectiveness of this method. Note that the geometry
of the mask does not influence the final performance, as our model simply memorizes single pixels.

Experiments: We trained two networks with hidden dimensions of 1024 and 2048, to generate 50
images of the first class of Tiny ImageNet (corresponding to goldfishes), and a network of 8192
hidden neurons to reconstruct 25 ImageNet images. Then, we used inference as explained to retrieve
the original images. We considered an image to be correctly reconstructed when the error between the
original and the retrieved image was smaller than 0.001. Furthermore, we plotted the partial images
together with their reconstructions, for a visual check. Note that we used the thresholds that provided
the fairest comparison: the denoising experiments fail to have a perfect retrieval, despite the fact that
most of the images look visually good. Hence, we determined the threshold to be equal to 0.005.
Then, with the same threshold for the retrieval of partial images, our method always successfully
retrieved all the images, and so we opted for a smaller threshold, which was more informative.

Results: On Tiny ImageNet, a generative PCN with 1024 hidden neurons managed to reconstruct
all the images when presented with 1/8 of the original image, and more than half for the smallest
fraction considered, 1/16. The network with 2048 neurons also failed to reconstruct all the images
when presented with 1/16 of the original image. However, even when presented with a portion as
small as 1/16 of the original image, the reconstruction was clear, although not perfect and hence now
aove our threshold. This result is shown in Fig. 6 (left).

Surprisingly, generative PCNs trained on ImageNet correctly stored all the presented training images,
and correctly reconstructed them with no visible error. This shows that PCNs can be used to store
high-dimensional and high-quality images in practical setups, which can be retrieved using only a
low-dimensional key, formed by a fraction of the original image. Particularly, Fig. 6 (right) shows
the perfect reconstruction obtained on ImageNet when the network is presented with only 1/8 of the
original image. Further experiments on ImageNet are shown in the supplementary material, where
we present multiple high-quality reconstructions.

5 More training data points and/or deeper PCNs

In the above experiments, a shallow architecture is able to store 100 natural images from Tiny
ImageNet, and to reconstruct them with no visible error when provided with 1/8 of the original images.
We now study how this changes when either the cardinality of the dataset is increased, or the number
of provided pixels during reconstruction is updated. To study this, we have trained two models with
n = {1024, 2048} hidden units on subsets of Tiny ImageNet of cardinality N = {50, 100, 250, 500},
and reconstructed images with only p = {1/2, 1/4, 1/8, 1/16} of the original images. According to
our visualization experiments, we have noted that an image has no visible reconstruction noise when
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Figure 6: Partial images and their reconstructions (from top to bottom: partial image, reconstructed
image, original image, and reconstruction error (difference between original and reconstruction)).
Left: 64 × 64 Tiny ImageNet images presented with 1/4, 1/8, and 1/16 of the original image,
respectively, using a network of 1024 hidden neurons. Right: 224× 224 ImageNet images presented
with 1/8 of the original image, using a network with 8196 hidden neurons.

Figure 7: Percentage of perfectly retrieved images given different fractions of the original images for
PCNs with 512, 1024, 2048, and 4096 hidden neurons trained on datasets of different sizes. Note
that here we count as retrieved only images with non-visible errors. Most of the images that are not
considered retrieved in this plot, were correctly retrieved, but only slightly noisy.

the error between the original image and the reconstruction is less than 0.001. Hence, we consider an
image to be correctly retrieved if the reconstruction error is below this threshold.

Results: Every network with 50 stored memories was able to perfectly reconstruct the original image
when provided with 1/4 of it, and about half when provided with only 1/8. However, this changes
when increasing the training set, as no network trained on more than 50 images was able to correctly
reconstruct an image when provided with 1/16 of it, besides a few cases. In terms of capacity, the
more images we train on, the harder the reconstruction becomes: no training image was correctly
retrieved when training on N = 500 images when provided with a fraction smaller than 1/2 of the
original image, regardless of the width of the network. A summary of these results is given in Fig. 7.

These experiments show the limits of shallow generative PCNs on both reconstruction capabilities and
capacity. As expected and common in standard AM experiments, increasing the number of training
points and reducing the number of available information for reconstruction hurts the performance.
We now show how increasing the number of layers solves this capacity problem.

Deep generative PCNs. We now test how increasing the depth of generative PCNs increases their
capacity. We then compare the results against overparametrized AEs. Particularly, we trained
generative PCNs with n = {1024, 2048} hidden neurons, depth L = {3, 5, 7, 10} on N = 500
images of Tiny ImageNet. Furthermore, we reconstructed the stored images using a fraction of
p = {1/2, 1/4} of the original images. To further compare against state-of-the-art AEs, we trained
equivalent AEs, which is the best-performing one according to [11]. Also, all the hyperparameters
used for training are the ones reported by the authors. To make the comparison completely fair,
we also assume that the correct pixels of the incomplete images are known when testing the AE.
Particularly, we fixed these pixels at every iteration of the reconstruction process of the AEs. As
above, we consider an image to be correctly retrieved if the reconstruction error is less than 0.001.
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Figure 8: Percentage of correctly retrieved images as a function of the number of hidden layers, for
both AEs and generative PCNs, on a dataset of 500 images. We used networks with n = {1024, 2048}
hidden neurons, and the images are taken from Tiny ImageNet.

N = 2

N = 3

N = 5

N = 10

Original

Generative PCN Classical Hopfield Network Generative PCN Modern Hopfield Network

Figure 9: Left: Recovery of 2, 3, 5, and 10 MNIST images using a generative PCN and classical
Hopfield networks [8] when presented with 1/2 of the original image as a key. As shown, Hopfield
networks only recovered the original images when N = 2, but otherwise always failed to retrieve
them when trained on more than two images. Right: Reconstruction of 100 Tiny ImageNet images
when provided with 1/2 of the original image, using a generative PCN and a MHN with β= 2.

Results: The results confirm the hypothesis: the deeper the network, the higher the capacity. Particu-
larly, a 10-layer network was able to reconstruct more than 98% (against the 72% of the AE) of the
images when providing half of the original pixels, and 74% (against the 48% of the AE) of the images
when providing 1/4 of the pixels. This shows that our model clearly outperforms state-of-the-art AEs
in image reconstruction, even in the overparametrized regime. Fig. 8 summarizes these results.

6 Comparison with Hopfield networks

N p = 1/2 p = 1/4 η = 0.2

50 5 4 4
100 4 3 3
250 1 1 9
500 1 1 3

Table 1: Number of correctly retrieved
images on different tasks by a MHN
trained on fractions of CIFAR10.

In this section, we compare against the most popular AM
models, namely, classical and modern Hopfield networks
(MHNs) [8, 10]. Despite their popularity, both types of
Hopfield networks fail to retrieve complex data such as
natural images. We now show that the retrieval process of
our model is significantly better, as it always converges to a
plausible solution, even when provided with a tiny amount
of information, or a large amount of corruption.

Classical Hopfield networks. We now compare against
classical Hopfield networks [8]. We have trained a Hopfield
network onN = {2, 3, 5, 10} images of the MNIST dataset,
and converted every grey-scale pixel to either 0 or 1, as
Hopfield networks only work on binary data. However, this model was able to retrieve the original
images when presented with 1/2 only when N = 2. To test generative PCNs on the same task, we
used a small network with one hidden layer and 32 hidden neurons. Our model was always able to
retrieve the original images. Visual results of this experiments are shown in Fig. 9 (left).

Modern Hopfield networks. We trained an MHN to memorize 50/100/250/500 CIFAR10 images,
and then performed three different experiments. In the first two, we tried to reconstruct the original
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 Corrupted    Recovered      Original            Error  Corrupted    Recovered      Original            Error  Corrupted    Recovered      Original            Error

Figure 10: Left: Our reconstruction on 25 ImageNet 224×224 images and a network with 8192
hidden neurons. Centre: Our reconstruction using a generative PCN with 1024 hidden neurons on
CIFAR10 32×32 images. Right: Reconstruction of a DANN on the same dataset (taken from [18]).

memories when providing 1/2 and 1/4 of the original image as a key. Then, we corrupted the original
images by adding Gaussian noise. Despite the high capacity, MHNs do not perform well in image
retrieval. Particularly, they were able to retrieve at most 9 images when presented with a corrupted
image, and at most 5 when presented with an incomplete one. The results of the experiment are
given in Table 1. In Fig. 9 (right), we provide a visual comparison between our method and MHNs,
showing that they are only able to retrieve one image when trained on complex images taken from the
Tiny Imagenet dataset. Further details about the experiments are given in the supplementary material.

Deep associative neural networks. To improve their performance, MHNs have been augmented
with a convolutional multilayer structure for unsupervised feature detection [18]. The resulting
architecture, called deep associative neural network (DANN), is able to perform both AM and
classification tasks. We now compare the image reconstruction experiments performed in [18] with
the ones performed by our generative PCN. We replicate the experiment proposed, which consists in
presenting the network an partial image of the CIFAR10 dataset, where a squared patch covers the
centre of each image. Note that this is not a completely fair comparison, as (1) DANNs merge AM
with convolutions and unsupervised feature detection layers, and (2) it is trained on the whole dataset.
Hence, comparing it against a pure AM model such as ours may be unfair. However, we believe that
presenting comparisons against models that perform AM tasks such as DANNs is still interesting in
understanding how our model compares against existing ones in the literature.

We first ran the same experiment on CIFAR10 as in [18]. Particularly, we used 250 images. The
comparison is given in Fig. 10. Unlike the image in [18], our reconstruction shows no visible error.
Furthermore, we replicated the experiment using 50 images of ImageNet, and showed that our model
is again able to provide perfect reconstructions of the original images.

7 Biological relevance
The model described in this paper is closely related with theories of functioning of the memory system
in the brain. It is typically assumed that memories are stored in a network of cortical areas organized
hierarchically, where sensory information is processed and encoded by several neo-cortical regions,
and then it is integrated across modalities in the hippocampus [2, 5]. It has been recently proposed
that this hippocampo-neocortical system can be viewed as a PCN [6] similar to the one in this paper.
In particular, Barron et al. [6] proposed that the hippocampus could be viewed as a top layer in the
hierarchical PCN (which would correspond to the memory layer L in our model), while neo-cortical
areas would correspond to lower layers in the network. A contribution of our paper is to implement
this idea and demonstrate in simulations that PCNs, which were only theoretically proposed to act as
a memory system [6], can actually work and effectively store and retrieve memories.

The mechanisms of learning and retrieval proposed in the PC account of the brain memory system
in [6] closely resemble those occurring in our model. Barron et al. proposed that during learning,
the generative model of the hippocampus is updated until the hippocampal predictions correct the
prediction errors by suppressing neo-cortical activity [6]. The training phase of our generative model
closely resembles this framework, as it also accumulates prediction errors from the sensory neurons to
the hidden layers and memory vector, while a continuous update of the value nodes corrects the errors
in the sensory neurons. Then, the parameters of our generative model are updated until its predictions
reach low/zero error in the sensory neurons. Learning in PCNs relies on local Hebbian rules, i.e., the
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weights between co-active neurons are increased, and such form of synaptic plasticity has been first
demonstrated experimentally in the hippocampus [19]. It has been further suggested that during the
reconstructions of past memories, the hippocampus sends descending input to the neocortical neurons
to reinstate activity patterns that recapitulate previous sensory experience [6]. In the reconstruction
phase of our generative model, the memory vector provides descending inputs to the sensory neurons,
to generate patterns that recall previous sensory experience, e.g., stored data points.

Our model captures certain high-level features of the brain memory system, but many details of the
model will have to be refined to describe biological memory networks. Barron et al. [6] reviewed
in detail how the architecture of a PC model could be related to the known anatomy of neo-cortical
memory areas, and how different populations of neurons and connections in the model could be
mapped on known groups of neurons and projections in the neo-cortex. Interesting future work is to
extend the top layer of our memory network to include key features of the hippocampus, i.e., recurrent
connections, known to exist in the subfield CA3, as well as an additional population of neurons in
dentate gyrus and CA1, which have been proposed to play specific roles in learning new memories
[20]. It is also interesting to investigate if our model can reproduce experimental data on how the
hippocampus drives the reinstantiation of stored patterns in the neo-cortex during retrieval [21, 22].

8 Related work

Predictive coding [4] and AM models [8, 23] have rarely been related in the literature to date.
However, they share multiple similarities, the main of which is that both are energy-based models
that update their parameters using local information.

Associative memories (AMs). In computer science, AMs date back to 1961, with the introduction of
the learn matrix [24], a hardware implementation of hetero-associative memories using ferromagnetic
properties. However, the milestones of the field are Hopfield networks, presented in the early eighties
in their discrete [8] and continuous [23] version. Recently, AMs have increasingly gained popularity.
Particularly, a 2-layer version of Hopfield networks with polynomial activations has been shown to
have a surprisingly high capacity [10], which can be increased even more with exponential activations
[25, 26]. The recent focus of the machine learning community on AM models, however, does not
lie in applying them directly to solve practical hetero-associative memory tasks. On the contrary, it
has been shown that modern architectures are implicitly AMs. Examples of these are standard deep
neural networks [27, 11] and transformers [28]. Hence, there is a growing belief that understanding
AM models will help the understanding and improvements of deep learning [29, 27, 30, 31]. In fact,
different classification models perform well when augmented with AM capabilities. DANNs [18],
e.g., use deep belief networks to filter information, while [32] improves over standard convolutional
models by adding an external memory that memorizes associations among images.

Predictive coding (PC). This framework includes both a biologically plausible neural architecture
and a learning algorithm [4] developed to emulate learning in the visual cortex. Particularly, PC
allows to describe multiple phenomena happening in the brain, using a single framework, such as
free-energy minimization with local computations [33–36]. From the more practical point of view,
PC can be used to train high-performing neural architectures [13, 37, 38], as it has been shown that it
can exactly replicate the weight update of BP [14–16].

9 Conclusion

In this paper, we have shown that predictive coding (which was originally designed to simulate
learning in the visual cortex) naturally implements associative memories that have a high capacity
and a high retrieval accuracy and robustness, and that can be expressed using small and simple fully
connected neural architectures. We have shown this empirically in a large number of experiments.
Particularly, we have performed denoising and image reconstruction tasks, comparing against standard
autoencoders. Furthermore, we have shown that this model is able to reconstruct with no visible error
natural high-resolution images of the ImageNet dataset, when provided with a tiny fraction of them.
Overall, this work strengthens the connection between the machine learning and the neuroscience
community. It underlines the importance of predictive coding in both areas, both as a highly plausible
algorithm to better understand how memory and prediction work in the brain, and as an approach to
solve corresponding problems in machine learning and artificial intelligence.
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