
Appendix for: On Effective Scheduling of
Model-based Reinforcement Learning

A Proofs

Assumption A.1. (Discounted-average concentrability of future-state distributions) Given ρ, µ,m ≥
1, and an arbitrary sequence of stationary policies {πm}m≥1, assume that the future-state distribution
ρTπ1Tπ2 . . . Tπm is absolutely continuous w.r.t. µ. Assume that

c(m)
def
= sup

π1,...,πm

∥∥∥∥d (ρTπ1Tπ2 . . . Tπm)

dµ

∥∥∥∥
∞

satisfies

Cρ,µ
def
= (1− γ)2

∑
m≥1

mγm−1c(m) < +∞.

We call c(m) the m-step concentrability of a future-state distribution and call Cρ,µ the discounted-
average concentrability coefficient of the future-state distributions. The class of MDPs that satisfies
this concentrability assumption is quite large, which is further discussed in Munos and Szepesvári
[18].

Lemma A.1. (Pollard, 1984) Let F be a set of measurable functions f : X → [0,K] and let ε > 0,
N be arbitrary. If Xi, i = 1, . . . , N is an i.i.d. sequence taking values in the space X then

P

(
sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X1)]

∣∣∣∣∣ > ε

)
≤ 8E

[
N
(
ε/8,F

(
X1:N

))]
e−

Nε2

128K2 ,

where Nq
(
ε,F

(
X1:N

))
denotes the (ε,q)-covering number of the set F(x1:N) =

{(f (x1) , . . . , f (xN)) | f ∈ F}, i.e., the smallest integer m such that F(x1:N) can be covered
by m balls of the normed-space

(
RN , ‖ · ‖q

)
with centers in F(x1:N) and radius N1/qε. And when

q = 1,N is used instead ofN1. From the definition, one can esasily see thatNq
(
ε,F

(
X1:N

))
≤ N .

Lemma A.2. (Single Iteration Error Bound) Let Vk and Vk+1 be the value functions of iteration k and
k+1, and Vmax = rmax/(1−γ). For p ≥ 1 and a certain state distribution µ, let the inherent Bellman
error of the value function space F be defined by dp,µ(BF ,F) = supV ∈F inff∈F ‖f − BV ‖p,µ.
Assume the value functions are KV -Lipschitz continuous, i.e., for any k and states pair (si, sj),
it holds that |Vk(si) − Vk(sj)| ≤ KV ‖si − sj‖2. And assume the L2-norm model error between
the real next state s′ and the predicted ones ŝ′ obeys a half-normal distribution, i.e., the probability
density function f(‖ŝ′ − s′‖2) = 2√

2πσ
exp

(
−‖ŝ

′−s′‖22
2σ2

)
. Then for any ε0, δ0 > 0, the inequality

‖Vk+1 −BVk‖p,µ ≤ dp,µ(BF ,F) + ε0

holds w.p. at least 1− δ0 provided that

N > 128

(
8Vmax

ε0

)2p (
log(1/δ0) + log (32N)

)
(10)

and
σ <

ε0

4γKV Φ−1
(

1− δ0/
(
8N |A|(1− β)

)) . (11)

Proof. Let f∗ be the best fit to BVk in F : f∗ = ΠFBVk, and let µ̂ denotes the distribution of the N
sampled states {si}Ni=1. Define ‖ · ‖p,µ̂ as:

‖f‖pp,µ̂ =
1

N

N∑
i=1

|f (si)|p .

13

If the following inequalities hold simultaneously w.p. not smaller than 1− δ0, then the Lemma can
be proved by choosing ε′0 = ε0/4:

‖Vk+1 −BVk‖p,µ ≤ ‖Vk+1 −BVk‖p,µ̂ + ε′0 (12)

≤ ‖Vk+1 − V̂k‖p,µ̂ + 2ε′0 (13)

≤ ‖f∗ − V̂k‖p,µ̂ + 2ε′0 (14)

≤ ‖f∗ −BVk‖p,µ̂ + 3ε′0 (15)

≤ ‖f∗ −BVk‖p,µ + 4ε′0 (16)

≤ dp,µ(BF ,F) + 4ε′0

Since Vk+1 is the best fit to V̂k in F , (14) holds w.p. 1. So we only need to prove that (12), (13),
(15), (16) hold w.p. at least 1− δ′0 where δ′0 = δ0/4. The proof of (12) and (16) is the same as that
in (Munos and Szepesvári [18], Lemma1), and we provide a quick proof here for completeness. Let

Q = max
(∣∣∣‖Vk+1 −BVk‖p,µ − ‖Vk+1 −BVk‖p,µ̂

∣∣∣ , ∣∣∣‖f∗ −BVk‖p,µ − ‖f∗ −BVk‖p,µ̂∣∣∣) .
So (12) and (16) will follow if

P (Q > ε′0) ≤ δ′0. (17)
And due to the inequality:

Q ≤ sup
f∈F

∣∣∣‖f −BVk‖p,µ − ‖f −BVk‖p,µ̂∣∣∣, (18)

we have:

P (Q > ε′0) ≤ P

(
sup
f∈F

∣∣∣‖f −BVk‖p,µ − ‖f −BVk‖p,µ̂∣∣∣ > ε′0

)
. (19)

For any event ω such that

sup
f∈F

∣∣∣‖f −BVk‖p,µ − ‖f −BVk‖p,µ̂∣∣∣ > ε′0, (20)

there exist a function f ′ ∈ F such that∣∣∣‖f ′ −BVk‖p,µ − ‖f ′ −BVk‖p,µ̂∣∣∣ > ε′0. (21)

First assume that ‖f ′ −BVk‖p,µ̂ ≤ ‖f ′ −BVk‖p,µ. Hence, ‖f ′ −BVk‖p,µ̂ + ε′0 ≤ ‖f ′ −BVk‖p,µ.
Since the elementary inequality xp + yp ≤ (x+ y)p holds for p ≤ 1 and any non-negative x, y, we
can get ‖f ′ −BVk‖pp,µ̂ + (ε′0)p ≤ (‖f ′ −BVk‖p,µ̂ + ε′0)p ≤ ‖f ′ −BVk‖pp,µ. And thus∣∣∣‖f ′ −BVk‖pp,µ − ‖f ′ −BVk‖pp,µ̂∣∣∣ > (ε′0)p. (22)

This inequality holds for an analogous reason when ‖f ′ −BVk‖p,µ̂ > ‖f ′ −BVk‖p,µ. And since

sup
f∈F

∣∣∣‖f −BVk‖pp,µ − ‖f −BVk‖pp,µ̂∣∣∣ ≥ ∣∣∣‖f ′ −BVk‖pp,µ − ‖f ′ −BVk‖pp,µ̂∣∣∣ , (23)

we can get

P

(
sup
f∈F

∣∣∣‖f−BVk‖p,µ−‖f−BVk‖p,µ̂∣∣∣>ε′0
)
≤P

(
sup
f∈F

∣∣∣‖f−BVk‖pp,µ−‖f−BVk‖pp,µ̂∣∣∣>(ε′0)
p

)
.

(24)
Observe that ‖f − BVk‖pp,µ = E [|(f (s1)−BVk (s1))|p], and ‖f − BVk‖pp,µ̂ is just the sample
average approximation of ‖f −BVk‖pp,µ. Using Lemma A.1, we can get

P

(
sup
f∈F

∣∣∣‖f−BVk‖pp,µ−‖f−BVk‖pp,µ̂∣∣∣>(ε′0)
p

)
≤8E

[
N
((ε′0)

p

8
,F
(
X1:N

))]
e
−N2

(
1
8

(
ε′0

2Vmax

)p)2

.

(25)

14

And since the covering number N satisfies N
(

(ε′0)
p
/8,F

(
X1:N

))
≤ N , we have

P

(
sup
f∈F

∣∣∣‖f −BVk‖pp,µ − ‖f −BVk‖pp,µ̂∣∣∣ > (ε′0)
p

)
≤ 8Ne

−N2

(
1
8

(
ε′0

2Vmax

)p)2

. (26)

Making the right-hand side upper bounded by δ′0 = δ0/4 yields a lower bound of N , displayed in
(10). Then (17) can be proved by combining (19), (24), and (26).

Now we turn to prove (13) and (15). For an arbitrary function f ∈ F , using the triangle inequality,
we have ∣∣∣‖f −BVk‖p,µ̂ − ‖f − V̂k‖p,µ̂∣∣∣ ≤ ‖BVk − V̂k‖p,µ̂. (27)

So if we show that ‖BVk − V̂k‖p,µ̂ ≤ ε′0 holds w.p. 1 − δ′0, then (13) and (15) can be proved by
choosing f = Vk+1 and f = f∗, respectively. To prove ‖BVk − V̂k‖p,µ̂ ≤ ε′0, Recall that the data
(s, a, ŝ′, r̂) used to calculate V̂k is sampled from real environment w.p. β (case 1), or from the learned
model w.p. 1− β (case 2).

For case 1, it satisfies that ŝ′ = s′ and r̂ = r. So we have

P
(
|r̂ + γVk(ŝ′)− r − γVk(s′)| > ε′0

)
= 0. (28)

And for case 2, like in previous literature [3, 17], assume the reward function is known, i.e., r̂ = r.
We have

P
(
|r̂ + γVk(ŝ′)− r − γVk(s′)| > ε′0

)
= P

(
γ|(Vk(ŝ′)− Vk(s′))| > ε′0

)
≤ P

(
γKV ‖(ŝ′ − s′)‖2 > ε′0

)
= P

(
‖ŝ′ − s′‖2 >

ε′0
γKV

)
. (29)

By using the model error assumption: f(‖ŝ′ − s′‖2) = 2√
2πσ

exp
(
−‖ŝ

′−s′‖22
2σ2

)
, we can write that:

P
(
|r̂ + γVk(ŝ′)− r − γVk(s′)| > ε′0

)
≤ P

(
‖ŝ′ − s′‖2 >

ε′0
γKV

)
= P

(
‖ŝ′ − s′‖

σ
>

ε′0
γKV σ

)

= 2
(

1− Φ(
ε′0

γKV σ
)
)
, (30)

where Φ is the Cumulative Distribution Function (CDF) of the standard normal distribution. Combine
these two cases, we can get

P
(∣∣∣r̂ + γVk(ŝ′)− r − γVk(s′)

∣∣∣ > ε′0

)
≤ 2(1− β)

(
1− Φ(

ε′0
γKV σ

)
)
. (31)

Making the right-hand side upper bounded by δ′0/(N |A|) yields an upper bound of σ, displayed in
(11). And for each sampled state si, since∣∣∣BVk (si)− V̂k (si)

∣∣∣ ≤ max
a∈A

∣∣∣r̂ + γVk(ŝ′)− r − γVk(s′)
∣∣∣,

by using a union bounding argument, we can get

P
(∣∣∣BVk (si)− V̂k (si)

∣∣∣ > ε′0

)
≤ δ′0/N. (32)

And by another union bounding argument, we have

P
(

max
i=1,...,N

∣∣∣BVk (si)− V̂k (si)
∣∣∣ > ε′0

)
≤ δ′0. (33)

15

And therefore,

P
(

1

N

∣∣∣BVk (si)− V̂k (si)
∣∣∣ > ε′0

)
≤ δ′0. (34)

Hence, we have proved that ‖BVk − V̂k‖p,µ̂ ≤ ε′0 holds w.p. at least 1 − δ′0. This completes the
whole proof.

Lemma A.3. (Munos and Szepesvári [18], Theorem 2) Under the concentrability assumption
(Assumption A.1), let ρ be an arbitrary state distribution, and Cρ,µ be the discounted-average
concentrability coefficient. If each iteration error can be bounded as ‖Vk+1 −BVk‖p,µ ≤
dp,µ(BF ,F) + (1 − γ)2ε/(4γC

1/p
ρ,µ) w.p. at least 1 − δ/K for 0 ≤ k < K, then the loss due

to using πK instead of the optimal policy π∗ satisfies that w.p. at least 1− δ,

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ dp,µ(BF ,F) + ε, (35)

provided that

γK <

[
(1− γ)2

8γVmax
ε

]p
. (36)

Lemma A.3 shows that if the error in each iteration can be bounded with high probability, then the
return discrepancy between πK and π∗ can be bounded with high probability when the number of
iterations K is large enough. Moreover, we can set ρ to the distribution of the states we care about
more, e.g., the initial states we start to execute πK .
Theorem A.1. (β-mixture sampling-based FVI bound) Under the concentrability assumption (As-
sumption A.1) and the same assumptions of Lemma 4.1, let ρ be an arbitrary state distribution, Cρ,µ
be the discounted-average concentrability coefficient and πK be the greedy policy w.r.t. VK . Let
V πK and V ∗ be the expected return of executing πK and the optimal policy π∗ in real environment,
respectively. Define Nreal = N · |A| · β as the expected number of real samples. Then the following
bound holds w.p. at least 1− δ:

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ dp,µ(BF ,F) +O

((β|A|
Nreal

(
log(

Nreal

β|A|
) + log(

K

δ
)
)) 1

2p

)
+O

(
Φ−1

(
1− βδ

8KNreal(1− β)

)
σ
)

+O
(
γK/pVmax

)
.

(37)

Proof. Lemma A.3 implies that we can bound ‖V ∗ − V πK‖p,ρ w.p. at least 1− δ as

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2
C1/p
ρ,µ dp,µ(BF ,F) + ε, (38)

via bounding ‖Vk+1 −BVk‖p,µ w.p. at least 1− δ/K as

‖Vk+1 −BVk‖p,µ ≤ dp,µ(BF ,F) + (1− γ)2ε/(4γC1/p
ρ,µ). (39)

Using Lemma A.2 to bound (39) by setting ε0 = (1− γ)2ε/(4γC
1/p
ρ,µ) and δ0 = δ/K. We can get

the corresponding bounds of N and σ w.r.t. ε. Combined with (36), we can write ε as

ε = O

((1

N

(
log(N) + log(

K

δ
)
)) 1

2p

)
+O

(
Φ−1

(
1− δ

8KN |A|(1− β)

)
σ
)

+O
(
γK/pVmax

)
.

(40)
Plugging (40) into (38) and substituting N with Nreal/(β|A|) complete the proof.

B Model Error Assumption

In Lemma 4.1 and Theorem 4.1, we assume that the model error between the real next state s′
and the predicted ones ŝ′ obeys a half-normal distribution, i.e., the probability density function
f(‖ŝ′ − s′‖2) = 2√

2πσ
exp

(
−‖ŝ

′−s′‖22
2σ2

)
. In this section, we give an empirical analysis of this model

error assumption. To be more specific, we test the trained dynamics model in MBPO on newly
collected data (typically 10k transitions) and plot the frequency of different model error ranges in
Figure 5 to approximate the distribution. We can observe that the approximated distribution is close
to the half-normal distribution, i.e., the probability of small model error is higher than that of large
model error, which empirically shows the rationality of the assumption.

16

0.0 0.1 0.2 0.3 0.4 0.5
model error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fre
qu

en
cy

Hopper

0.0 0.1 0.2 0.3 0.4 0.5
model error

0.0

0.1

0.2

0.3

0.4

0.5

fre
qu

en
cy

HopperBullet

0.0 0.1 0.2 0.3 0.4 0.5
model error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fre
qu

en
cy

Walker2dBullet

Figure 5: Frequency distribution histogram of the model error ‖ŝ′ − s′‖2. The y-axis indicates the
frequency of the corresponding range.

C Algorithm Comparison

We compare the hyperparameters that can be scheduled in different Dyna-style MBRL algorithms
in Table 1. From the comparison, real ratio and rollout length can only be scheduled in MBPO and
MA-BDDPG since other algorithms merely use the imaginary data to train the policy and need to
generate model rollouts from the initial state to the end of the episode. Considering that MBPO is
much more effective than MA-BDDPG in continuous control benchmark tasks [12, 13], we finally
choose MBPO as a representative running case.

Table 1: Comparison of the hyperparameters that can be scheduled in different Dyna-style MBRL
algorithms.

Real Ratio Policy Training
Iteration

Model Training
Frequency Rollout Length

MBPO [12] X X X X
MA-BDDPG [13] X X X X

SLBO [17] × X X ×
ME-TRPO [14] × X X ×
MB-MPO [4] × X X ×

PAL/MAL [22] × X X ×

D More Experimental Results

D.1 Hyperparameter Importance

Due to the page limit, we only show the results of hyperparameter importance on three environments
in Section 6.3. For a more comprehensive analysis, we plot the results on all the six environments in
Figure 6. The conclusion is the same as discussed in Section 6.3, i.e., using the hyper-controller to
schedule the real ratio retains much of the advantage of AutoMBPO.

D.2 Controller Transfer

From the results in Figure 3, we observe that the hyperparameter schedules on the three PyBullet
environments are similar, especially for the real ratio β. Then we further conduct experiments to test
whether the hyper-controller trained on these three tasks can transfer to others without additional fine-
tuning. Results are shown in Figure 7. Though the performance of the transferred hyper-controller
is slightly worse than the original ones, they all surpass the MBPO baseline with a considerable
margin, which shows the potential of the hyper-controller to capture the commonality to generalize to
different tasks.

17

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

3500

av
er

ag
e

re
tu

rn

Hopper

0 30K 60K 90K 120K 150K
steps

0

1000

2000

3000

4000

5000

av
er

ag
e

re
tu

rn

Ant

0 60K 120K 180K 240K 300K
steps

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

re
tu

rn

Humanoid

MBPO AutoMBPO AutoMBPO-R AutoMBPO-M AutoMBPO-P AutoMBPO-L

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

3500

4000

av
er

ag
e

re
tu

rn

HopperBullet

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

Walker2dBullet

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

HalfCheetahBullet

Figure 6: Complete figures of the hyperparameter importance experiments in Section 6.3.

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

3500

4000

av
er

ag
e

re
tu

rn

HopperBullet

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

Walker2dBullet

MBPO HopperBullet Walker2dBullet HalfCheetahBullet HopperBullet

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

HalfCheetahBullet

Figure 7: The transfer results of the hyper-controller among PyBullet environments with A2
3 = 6

transferring cases in total. Each figure’s title represents the target task, and each specific line
indicates the source task. For example, the green line in the middle figure represents transferring the
hyper-controller learned on HopperBullet to Walker2dBullet.

D.3 Effectiveness of AutoMBPO

In Algorithm 1, we train the hyper-controller until it achieves acceptable performance. One concern
is whether the hyper-controller improves monotonically during training. We plot the performance
of the hyper-controller in different training phases in Figure 8. For example, suppose we train the
hyper-controller with 200 hyper-MDP episodes, i.e., 200 MBPO instances in total, then the purple
line (1%-20%) represents the average return of the 1-40th MBPO instances, and so on. Monotonic
improvement of hyper-controller can be observed during its training phase, which further demonstrates
the effectiveness of our algorithm.

Another concern may be the extensive computational requirements for AutoMBPO. According to the
computational time table in Appendix G, take Hopper as an example: our algorithm takes about 90
hours to train the hyper-controller, about 5-6 times the time to train a complete MBPO instance, i.e.,
equivalent to 5-6 trials of MBPO hyperparameters. It is almost impossible to manually find a suitable
configuration for these hyperparameters within such few trials.

D.4 Hyperparameter Study

Since AutoMBPO utilizes the hyper-controller to adjust the hyperparameters of MBPO dynamically,
e.g., ±1, the initial values of these hyperparameters become the hyperparameters of AutoMBPO.
We also want to investigate the effect of these initial values on the learning process. In the ex-
periments of Section 6, we initialize the real ratio to 0.05, the policy training iteration to 10, and
limit the policy training iteration to [1, 20] for computation efficiency. We denote the original one

18

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

Hopper

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Ant

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Humanoid

0 5k 10K 15K 20K 25K 30k
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

HopperBullet

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Walker2dBullet

MBPO 1%~20% 21%~40% 41%~60% 61%~80% 81%~100%

0 5K 10K 15K 20K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

HalfCheetahBullet

Figure 8: Performance of the hyper-controller in different training phases. Results are the average on
six trials of hyper-controller training over different random seeds.

0 5k 10K 15K 20K 25K 30k
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

HopperBullet

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Walker2dBullet

MBPO AutoMBPO(0.05,10,20) AutoMBPO(0.5,10,20) AutoMBPO(0.05,20,40)

0 5K 10K 15K 20K
steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

HalfCheetahBullet

0 5k 10K 15K 20K 25K 30k
steps

0

0.2

0.4

0.6

0.8

1.0

re
al

 ra
tio

0 10K 20K 30K 40K 50K
steps

0

0.2

0.4

0.6

0.8

1.0

re
al

 ra
tio

0 5K 10K 15K 20K
steps

0

0.2

0.4

0.6

0.8

1.0

re
al

 ra
tio

0 5k 10K 15K 20K 25K 30k
steps

0

10

20

30

40

po
lic

y
tra

in
in

g
ite

ra
tio

n

0 10K 20K 30K 40K 50K
steps

0

10

20

30

40

po
lic

y
tra

in
in

g
ite

ra
tio

n

0 5K 10K 15K 20K
steps

0

10

20

30

40

po
lic

y
tra

in
in

g
ite

ra
tio

n

Figure 9: Top: Performance comparison of AutoMBPO(0.5, 10, 20), AutoMBPO(0.05, 20, 40) and
the original AutoMBPO(0.05, 10, 20). Middle and bottom: the corresponding schedule of real ratio
and policy training iteration.

as AutoMBPO(0.05, 10, 20). In this section, we further conduct experiments of AutoMBPO(0.5,
10, 20) and AutoMBPO(0.05, 20, 40) on three PyBullet environments. The performance and the
hyperparameter schedules are shown in Figure 9.

From the comparison, we can find that changing the initial value of real ratio or policy training
iteration does not influence the final performance much, which shows the robustness of AutoMBPO
to the hyperparameter initialization. Notice that the policy training iteration of AutoMBPO(0.05, 20,
40) is much larger than that of AutoMBPO(0.05, 10, 20), while the performance does not improve

19

much. This finding is consistent with our conclusion in Section 6.2, i.e., increasing the policy training
iteration is not always a good choice.

D.5 State Feature Ablation

In section 5.1, inspired by Theorem 4.1, we include the number of real samples Nreal and the model
loss LT̂ into the state formulation of hyper-MDP. In this section, we ablate these two features and only
use other features as the state to train the controller, denoted as AutoMBPO-SA. Results are shown in
Figure 10. We find that ablating these two features degrades the performance, which highlights the
importance of elaborate state design for hyper-controller learning.

0 20K 40K 60K 80K 100K
steps

0

500

1000

1500

2000

2500

3000

3500

av
er

ag
e

re
tu

rn

Hopper

0 10K 20K 30K 40K 50K
steps

0

500

1000

1500

2000

2500

3000

av
er

ag
e

re
tu

rn

HalfCheetahBullet
MBPO
AutoMBPO
AutoMBPO-SA

Figure 10: Results of the state feature ablation experiment. AutoMBPO-SA denotes the AutoMBPO
variant of excluding real samples number and model loss from the hyper-MDP state.

D.6 Statistical Significance

Since the shaded areas in Figure 2 overlap, we further add a t-test to the results of the original MBPO
and AutoMBPO. We use the average return to perform t-test and list the p-values in Table 2. From
the result, the p-values are all less than 0.05, confirming the statistical significance of the results.

Table 2: t-test to the average returns of the original MBPO and AutoMBPO.

Hopper Ant Humanoid Hopper
Bullet

Walker2d
Bullet

HalfCheetah
Bullet

p-value 0.0078 0.0031 6e-5 0.0052 9e-5 0.0276

E Baseline Implementation Details

PBT. The implementation of PBT mainly follows Zhang et al. [32]. Specifically, we train 10 MBPO
instances in parallel, each with randomly initialized hyperparameters. After each episode, 20% of
the MBPO instances with low returns are replaced by the top 20% (both hyperparameters, network
parameters, and data buffer) or re-initialized (only hyperparameters) with a certain probability.

RoR. For RoR, we utilize the same Hyper-MDP definition as AutoMBPO since the original Hyper-
MDP definition in Dong et al. [8] is not suitable for MBPO. Moreover, we run RoR 6 times, each
using the same amount of data as our method. In the result of Figure 2, we compare to the best
performing RoR for a fair comparison.

F Experimental Settings

We first provide the details of the experimental environments in Table 3. Among them, Hopper, Ant,
and Humanoid are the same version used in Janner et al. [12]. For the remaining three PyBullet
environments, we modify the reward function to be similar to that of Mujoco to facilitate training
since we found that the default reward setting is too complicated for MBPO to solve in preliminary
experiments. Then, we present the experimental settings in different environments in Table 4.

20

Table 3: Environment settings in our experiments. θt denotes the joint angle, xt denotes the position
in x-direction, at denotes the action control input, and zt denotes the height.

State
Dimension

Action
Dimension Reward Function Termination States

Condition

Hopper 11 3 ẋt − 0.001 ‖at‖22 + 1 zt ≤ 0.7 or θt ≥ 0.2

Ant 27 8 ẋt − 0.5 ‖at‖22 + 1 zt ≤ 0.2 or zt ≥ 1.0

Humanoid 45 17 0.25ẋt − 0.1 ‖at‖22 + 5 zt ≤ 1.0 or zt ≥ 2.0

Hopper
Bullet 15 3 5ẋt − 0.001 ‖at‖22 + 1 zt ≤ 0.8 or |θt| ≥ 1.0

Walker2d
Bullet 22 6 5ẋt − 0.001 ‖at‖22 + 1 zt ≤ 0.8 or |θt| ≥ 1.0

HalfCheetah
Bullet 26 6 5ẋt − 0.001 ‖at‖22 None

Table 4: Experimental settings in different environments. Specifically, a hyper-MDP episode consists
of m target-MDP episodes, i.e., the whole training process of an MBPO instance, and a target-MDP
episode consists of H timesteps in the environments.

Hopper Ant Humanoid Hopper
Bullet

Walker2d
Bullet

HalfCheetah
Bullet

hyper-MDP episodes 100 100 200 200 200 100

m
target-MDP epi-
sodes for training 50 50 100 30 50 20

M
target-MDP epi-

sodes for evaluation 100 150 300 100 100 50

H
timesteps per

target-MDP episode 1000

G Computing Infrastructure

We present the computing infrastructure and the corresponding computational time used to train the
hyper-controller in Table 5.

Table 5: Computing infrastructure and the corresponding computational time.

Hopper Ant Humanoid Hopper
Bullet

Walker2d
Bullet

HalfCheetah
Bullet

CPU 32 cores 16 cores

GPU RTX2080TI×2 V100 ×2

computation
time in hours 90.92 95.05 245.33 56.91 149.88 30.48

H Hyperparameters

Table 6 lists the hyperparameters used in training the hyper-controller. Other hyperparameters of
MBPO not scheduled by the hyper-controller are the same as the original one [12]. Note that the
hyperparameter τ in Humanoid varies from that in other environments since the original MBPO

21

configuration of Humanoid is different. The original MBPO trains the model per 1000 real timesteps
in Humanoid but per 250 real timesteps in other environments. So we set τ to half of the original
interval to keep the maximum model training frequency two times of the original configuration.

Table 6: Hyperparameter settings for hyper-controller.

Hopper Ant Humanoid Hopper
Bullet

Walker2d
Bullet

HalfCheetah
Bullet

τ
real timesteps

interval per action 125 500 125

policy network
architecture MLP with one hidden layer of size 256

learning rate 3 · 10−4

batch size 64

policy updates per
hyper-MDP episode 30

initial value
of real ratio 0.05

initial value of poli-
cy training iteration 10

initial value of
rollout length 1

ε
PPO clip
constant 0.2

c
real ratio

change constant 1.2

penalty for each
model training 0.1

22

