
Supplementary Material for "Neural Auto-Curricula in
Two-player Zero-sum Games"

Table of Contents
A Meta-solver Architecture 15

A.1 MLP-based Meta-Solver . 15
A.2 Conv1D-based Meta-Solver . 15
A.3 GRU-based Meta-Solver . 16

B Proof of Remark 3.1 16
B.1 Gradient-Descent Best-Response with direct Meta-gradient 17
B.2 Gradient-Descent Best-Response with Implicit Gradient based Meta-gradient . . 17
B.3 Reinforcement Learning Best-response Oracle with Direct Meta-gradient 18

C Pseudo-Codes of the Proposed Algorithms 21
C.1 Gradient-Descent Best-Response Oracles . 21
C.2 Reinforcement Learning Best-Response Oracles 22
C.3 Optimising the Meta-Solver through Evolution Strategies 23

D Additional Experimental Results 25
D.1 Kuhn Poker Experiments . 25
D.2 Visualisation of the Learned Curricula . 26
D.3 Meta-Game Generalisation Results . 28
D.4 Meta-solver trained with Reinforcement Learning 29

E Additional Implementation Details 30
E.1 Environment Description . 30
E.2 Implementation Details . 31
E.3 Meta-testing . 32
E.4 Computing Infrastructure . 32

F Hyperparameter Details 32
F.1 Games of Skill - Alg. 2 . 32
F.2 Differentiable Blotto - Alg. 2 . 33
F.3 Non-transitive Mixture Model . 33
F.4 Iterated Matching Pennies - Alg. 4 . 34
F.5 Kuhn Poker . 34

G Author Contributions 35

14

A Meta-solver Architecture

In this section, we recap the meta-solver properties that we need and illustrate how we designed
models to achieve them. There exist two properties the model should have.

• The model should handle a variable-length matrix input.

• The model should be subject to row-permutation equivariance and column-permutation invariance.

Three different techniques can be utilised to achieve the first property, which also corresponds to
the three different models we propose: MLP based, Conv1d based and GRU based model. If not
specifically mentioned, we utilise ReLU as the activation function for all MLP used in our meta-solver.

A.1 MLP-based Meta-Solver

N×N
MLP

Column
Mean-Pooling

Row-wise
Concatenation

N×128

MLP
N×64

Global Info
64

N×1
MLP

Row
Mean-Pooling

Figure 6: MLP based Meta-Solver

The first model is based on MLP. Inspired by PointNet[37], we utilise MLP + pooling operation + row-
wise operation to handle variable-length matrix inputs and permutation invariance/equivariance. The
first MLP + Column Mean-Pooling operation generates row-wise features: N×N → N×N×64→
N × 64. Then the model transforms it to global matrix information by MLP + Row Mean-Pooling
operation: N × 64→ N × 64→ 64. Finally, the model conducts row-wise concatenation between
row-wise features and the global matrix information, and transforms it with the last MLP for the final
output: N × (64 + 64)→ N × 128→ N × 1.

The MLP-based model successfully satisfies the properties we need. However, empirically we find
that it does not always perform well within our training framework. We empirically find out even
if the model violates the second property, it can still work well. We believe this is because there
exists some particular patterns of meta distribution in the PSRO iterations, so even if the model is
not a generally proper meta-strategy solver, it can still work well under PSRO. Next, we will detail
Conv1d-based and GRU-based models which are not completely subject to the second property.

A.2 Conv1D-based Meta-Solver

N×N

Conv1d
Block

N×N
Global Info

N
N×N

Column
Mean-Pooling

Conv1d
Block

Row-wise
Concatenation

N×2×N

Column
Mean-Pooling

N×1

Figure 7: Conv1D based Meta-Solver

Our second model is Conv1d based. To satisfy variable-length matrix inputs, we make use of a Fully
Convolutional Neural Network [27] with Conv1d on the row vectors Mi which, by construction,
with particular kernel and padding size will not decrease the feature size in the forward pass. The
procedure is shown as follows. Firstly, the model has multiple Conv1d-LeakyReLU layers (as a
Conv1d block) for generating row-wise features: N ×N → N ×N . Then similar column Mean-
Pooling and row-wise concatenation are utilised to achieve global matrix information: N ×N →
N ;N × (1 + 1)×N → N × 2×N . The final Conv1d block + Column Mean-Pooling operation
gives the final prediction result: N × 2×N → N ×N → N × 1.

15

N×N
MLP

N×N×64 N×64

Row-wise
Concatenation

N×128

N×1
Global Info

64

Column GRU Row GRU MLP

Figure 8: GRU based Meta-solver

Note that Conv1d-based model follows property 1 and row permutation equivariance. However, it
violates the column permutation invariance property since we conduct Conv1d operation on column
vectors.

A.3 GRU-based Meta-Solver

The final model is based on GRU, which can take in variable-length input sequences. To achieve
a variable-length matrix input, we utilise GRU on both the column vectors and row vectors. The
procedure is shown as follows. Firstly, the model utilises MLP + column GRU to aggregate the
column vector for row-wise features: N ×N → N ×N × 64→ N × 64. With similar row GRU +
row-wise concatenation + MLP, the model gets the final result: N×64→ 64;N×(64+64)→ N×1

Note that the GRU-based model only follows property 1. With GRU plugged in, it cannot hold both
row permutation equivariance and column permutation invariance.

B Proof of Remark 3.1

Remark 3.1. For a given distribution of game p(G), by denoting exploitability at the final iteration
M
(
φBR
T+1, 〈πT ,ΦT 〉

)
as MT+1, the meta-gradient for θ (see also Fig. 1) is

∇θJ(θ) =EG
[∂MT+1

∂φBR
T+1

∂φBR
T+1

∂θ
+
∂MT+1

∂πT

∂πT
∂θ

+
∂MT+1

∂ΦT

∂ΦT

∂θ

]
,where (6)

∂πT
∂θ

=
∂fθ(MT)

∂θ
+
∂fθ(MT)

∂MT

∂MT

∂ΦT

∂ΦT
∂θ

,
∂φBR

T+1

∂θ
=
∂φBR

T+1

∂πT

∂πT
∂θ

+
∂φBR

T+1

∂ΦT

∂ΦT

∂θ
, (7)

∂ΦT
∂θ

=

{
∂ΦT−1

∂θ
,
∂φBR

T

∂θ

}
, (8)

and Eq. (8) can be further decomposed by iteratively applying Eq. (7) from iteration T − 1 to 0.

Proof of Remark 3.1. Here we will only consider the single-population case, which is the same as in
the main paper for notation convenience. Note that the whole framework can be easily extended to
the multi-population case. Firstly, we illustrate how the forward process works.

Assume we have t policies in the policy pool Φt at the beginning of iteration t+ 1.

Mt = {M(φi,φj)} ∀φi,φj ∈ Φt (15)

We generate the curricula (meta distribution) by meta-solver fθ.

πt = fθ(Mt) (16)

Then we utilise best-response optimisation w.r.t the mixed meta-policy for the new policy which is
added into the policy pool.

M(φ, 〈πt,Φt〉) : =
t∑

k=1

πktM(φ,φk) (17)

φBR
t+1 = argmax

φ
M (φ, 〈πt,Φt〉) (18)

Φt+1 = Φt ∪ φBR
t+1 (19)

16

After the final iteration T , we get the policy pool ΦT and calculate the exploitability of the final
meta-policy:

MT = {M(φi,φj)} ∀φi,φj ∈ ΦT (20)
πT = fθ(MT) (21)

φBR
T+1 = argmax

φ
M (φ, 〈πT ,ΦT 〉) (22)

Exp = M
(
φBR
T+1, 〈πT ,ΦT 〉

)
(23)

Given a distribution P (G) over game G, the meta-gradient for θ can be derived by applying the
chain rule:

∇θJ(θ) = EG
[∂MT+1

∂φBR
T+1

∂φBR
T+1

∂θ
+
∂MT+1

∂πT

∂πT
∂θ

+
∂MT+1

∂ΦT

∂ΦT

∂θ

]
,where (24)

∂πT
∂θ

=
∂fθ(MT)

∂θ
+
∂fθ(MT)

∂MT

∂MT

∂ΦT

∂ΦT
∂θ

, (25)

∂φBR
T+1

∂θ
=
∂φBR

T+1

∂πT

∂πT
∂θ

+
∂φBR

T+1

∂ΦT

∂ΦT

∂θ
, (26)

∂ΦT
∂θ

=

{
∂ΦT−1

∂θ
,
∂φBR

T

∂θ

}
. (27)

Note that Eq. (27) can be further decomposed by iteratively applying Eq. (25) and Eq. (26), which
means the gradients will backpropagate through multiple iterations. The whole process is similar to
the backpropagation through time (BPTT) process in RNN.

In the following section, we detail how the gradient is calculated with two different best-response
oracles - a Gradient-Descent oracle and a Reinforcement Learning oracle, in particular showing how
we take meta-gradients for both.

B.1 Gradient-Descent Best-Response with direct Meta-gradient

For a GD based best-response oracle, the payoff function of the game is differentiable, so we can
directly obtain gradients ∂MT+1

∂φBR
T+1

, ∂MT+1

∂πT
, ∂MT+1

∂ΦT
by automatic differentiation.

An example for a GD oracle with one gradient-descent step:

φBR
t+1 = φ0 + α

∂M (φ0, 〈πt,Φt〉)
∂φ0

, (28)

where φ0 and α denote the initial parameters and learning rate respectively. The backward gradients
of one-step GD share similarities with MAML [12], which can be written as:

∂φBR
t+1

∂πt
= α

∂2M (φ0, 〈πt,Φt〉)
∂φ0∂πt

,
∂φBR

t+1

∂Φt
= α

∂2M (φ0, 〈πt,Φt〉)
∂φ0∂Φt

. (29)

Eq. (28) and (29) can be easily extended to situations where we take a few gradient steps. Eq. (27)
can be calculated iteratively by calling for the previous gradient terms,

∂ΦT
∂θ

=

{
∂φBR

1

∂θ
,
∂φBR

2

∂θ
, ...,

∂φBR
T

∂θ

}
=

{
α
∂2M (φ0, 〈πt,Φt〉)

∂φ0∂πt

∂πt
∂θ

+ α
∂2M (φ0, 〈πt,Φt〉)

∂φ0∂Φt

∂Φt

∂θ

}
t∈{1,2,...,T}

(30)

.

B.2 Gradient-Descent Best-Response with Implicit Gradient based Meta-gradient

The direct meta-gradient formulation above becomes easily intractable when the computational graph
including hundreds of gradient updates. Thus, here we offer another alternative based on implicit

17

gradients for efficient meta-gradient backpropagation. The main issue here is to solve the gradient

terms ∂φBR
T+1

∂πT
,
∂φBR

T+1

∂ΦT
.

Firstly, we can get an exact best-response by hundreds of gradient steps to achieve:

φBR
t+1 = argmax

φ
M (φ, 〈πt,Φt〉) (31)

Since φBR
t+1 is a minimiser of the inner loop optimisation, we can derive the stationary point condition

by implicit function theorem:

∂M
(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1

= 0

→ ∂

∂πt

∂M
(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1

= 0

→
∂2M

(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1∂φ
BR
t+1

T

∂φBR
t+1

∂πt
+
∂2M

(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1∂πt
= 0

→
∂φBR

t+1

∂πt
= −

[
∂2M

(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1∂φ
BR
t+1

T

]−1
∂2M

(
φBR
t+1, 〈πt,Φt〉

)
∂φBR

t+1∂πt
(32)

Note that this implicit gradient requires the Hessian matrix ∂2M(φBR
t+1,〈πt,Φt〉)

∂φBR
t+1∂φ

BR
t+1

T to be invertible, so it

may not hold in some situations (like normal form games). Following the same reasoning, we can
get:

∂φBR
t+1

∂Φt
= −

[
∂2M(φBR

t+1, 〈πt,Φt〉)
∂φBR

t+1∂φ
BR
t+1

T

]−1
∂2M(φBR

t+1, 〈πt,Φt〉)
∂φBR

t+1∂Φt
. (33)

B.3 Reinforcement Learning Best-response Oracle with Direct Meta-gradient

For a Reinforcement Learning based best-response oracle, the only difference is that we need to
replace gradient terms with policy gradient estimation. We utilise first-order policy gradients for
estimating ∂MT+1

∂φBR
T+1

, ∂MT+1

∂πT
, ∂MT+1

∂ΦT
. For the best-response process, a one-step RL example is to

replace Eq. (28) with:

φBR
t+1 = φ0 + α

∂M (φ0, 〈πt,Φt〉)
∂φ0

= φ0 + α

t∑
k=1

πkt∇φ0Eτ∼P (τ |φ0,φ
BR
k

) [R(τ)] , (34)

where α and τ refer to the learning rate and the joint trajectories for two agents respectively. Reward
R represents the trajectory return for the first agent. The backward meta-gradient for the best-response
process can be computed as:

∂φBR
t+1

∂πt
= α

∂2M (φ0, 〈πt,Φt〉)
∂φ0∂πt

= α
(
∇φ0Eτ∼P (τ |φ0,φ

BR
k

) [R(τ)]
)
{k=1,2,...,t}

, (35)

∂φBR
t+1

∂Φt
= α

∂2M (φ0, 〈πt,Φt〉)
∂φ0∂Φt

= α
(
∇φ0∇φBR

k
Eτ∼P (τ |φ0,φ

BR
k

) [R(τ)]
)
{k=1,2,...,t}

. (36)

Eq. (27) for a Reinforcement Learning based oracle can be handled following a similar manner by
replacing gradients with policy gradient estimation.

18

So the main issue is: how can we estimate the second-order policy gradient
∇φ1∇φ2Eτ∼p(τ |φ1,φ2)[R(τ)], where φ1, φ2 denotes policy for two agents. There are sev-
eral higher order gradient estimators like DICE [13], LVC [40] that can help us. In our case, we
utilise DICE which is entirely compatible with automatic differentiation toolbox. In the following
part, we follow similar analysis way like [40] to show how second-order policy gradient is like
and how we can estimate unbiased first-order and second-order policy gradient with DICE. In the
following part, P (τ | φ1,φ2) and Pφ1,φ2(τ) represent the probability of the joint trajectory.

∇φ1∇φ2Eτ∼P (τ |φ1,φ2)[R(τ)]

= ∇φ1Eτ∼P (τ |φ1,φ2) [∇φ2 logPφ1,φ2(τ)R(τ)]

= ∇φ1

∫
P (τ | φ1,φ2)∇φ2 logPφ1,φ2(τ)R(τ)dτ

=

∫ [
P (τ | φ1,φ2)∇φ1 logPφ1,φ2(τ)∇φ2 logPφ1,φ2(τ)

>R(τ)

+ P (τ | φ1,φ2)∇φ1∇φ2 logPφ1,φ2(τ)R(τ)
]
dτ

= Eτ∼P (τ |φ1,φ2)

[
R(τ)

(
∇φ1∇φ2 logPφ1,φ2(τ) +∇φ1 logPφ1,φ2(τ)∇φ2 logPφ1,φ2(τ)

>
)]
.

(37)
In fact, we can show that ∇φ1∇φ2 logPφ1,φ2(τ) = 0.

∇φ1∇φ2 logPφ1,φ2(τ) = ∇φ1∇φ2 log

n∏
i=0

Pφ1,φ2(a
1
i , a

2
i |s1i , s2i)

= ∇φ1∇φ2 log

n∏
i=0

πφ1(a
1
i |s1i)πφ2(a

2
i |s2i)

= ∇φ1∇φ2

n∑
i=0

(
log(πφ1(a

1
i |s1i)) + log(πφ2(a

2
i |s2i))

)
= 0 (38)

where n denotes the length of the RL trajectory, πφ1 and πφ2 represent stochastic policies for two
agents respectively. Note that Pφ1,φ2(a1i , a

2
i |s1i , s2i) = πφ1(a1i |s1i)πφ2(a2i |s2i) because the agent

only relies on its own state. Following [13]’s formulation, we have:

JDICE =

H−1∑
t=0

�
({
at
′≤t
j∈{1,2}

})
rt

=

H−1∑
t=0

exp

(
t∑

t′=0

log πφ1

(
a1t′ | s1t′

)
log πφ2

(
a2t′ | s2t′

)
− ⊥

(
log πφ1(a

1
t′ | s1t′) log πφ1(a

2
t′ | s2t)

))
rt

(39)

We denote ⊥ as the "stop gradient" operator and→ as the "evaluates to" operator. "Evaluates to"
operator→ is in contrast with =, which also brings the equality of gradients. So the "stop gradient"
operator here means that ⊥ (fθ(x))→ fθ(x) but∇θ ⊥ (fθ(x))→ 0.

To make the DICE loss concise, we reformulate it as follows:

JDICE =

H−1∑
t=0

(
t∏

t′=0

πφ1

(
a1t′ | s1t′

)
πφ2(a2t′ | s2t′)

⊥ (πφ1 (a1t′ | s1t′)πφ2 (a2t′ | s2t′))

)
rt (40)

where rt refers to the reward agent 1 gets at timestep t.

∇φ1J
DICE =

H−1∑
t=0

∇φ1

(
t∏

t′=0

πφ1

(
a1t′ | s1t′

)
πφ2(a

2
t′ | s2t′)

⊥
(
πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

))) rt
=

H−1∑
t=0

(
t∏

t′=0

πφ1

(
a1t′ | s1t′

)
πφ2(a

2
t′ | s2t′)

⊥
(
πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

)))(t∑
t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))
rt

→
H−1∑
t=0

(
t∑

t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))
rt (41)

19

Eτ∼P (τ |φ1,φ2)

[
∇φ1J

DICE
]
= Eτ∼P (τ |φ1,φ2)

[
H−1∑
t=0

(
t∑

t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))
rt

]
= ∇φ1Eτ∼P (τ |φ1,φ2) [R(τ)] (42)

which corresponds to standard policy gradients for single-agent in a multi-agent environment (agents
will consider other agents as part of the environment). And the hessian for the DICE loss is:

∇φ2∇φ1J
DICE

=

H−1∑
t=0

∇φ2

(
t∏

t′=0

πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

)
⊥
(
πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

)))(t∑
t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))
rt

=

H−1∑
t=0

(
t∏

t′=0

πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

)
⊥
(
πφ1

(
a1t′ | s1t′

)
πφ2

(
a2t′ | s2t′

))) ·
(

t∑
t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))(t∑
t′=0

∇φ2 log πφ2

(
a2t′ | s2t′

))>
rt

which can be evaluated via the following:

→
H−1∑
t=0

(
t∑

t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))(t∑
t′=0

∇φ2 log πφ2

(
a2t′ | s2t′

))>
rt (43)

So finally we have:

Eτ∼PT (τ |φ1,φ2)

[
∇φ1∇φ2J

DICE
]

= Eτ∼P (τ |φ1,φ2)

H−1∑
t=0

(
t∑

t′=0

∇φ1 log πφ1

(
a1t′ | s1t′

))(t∑
t′=0

∇φ2 log πφ2

(
a2t′ | s2t′

))>
rt


= Eτ∼P (τ |φ1,φ2)

[
R(τ)∇φ1 logPφ1,φ2(τ)∇φ2 logPφ1,φ2(τ)

>
]

= ∇φ1∇φ2Eτ∼P (τ |φ1,φ2)[R(τ)] (44)

In all, we have shown that by plugging DICE into the computation graph, we can obtain unbiased
first-order and second-order policy gradient estimation and also the overall meta-gradient estimation.

20

C Pseudo-Codes of the Proposed Algorithms

C.1 Gradient-Descent Best-Response Oracles

Non-Implicit Version

Here we provide details of NAC where few-step gradient descent is used as the best-response oracle
in Alg. (2), and therefore we are in the non-implicit setting.

Algorithm 2 NAC with Gradient-Descent Best-Response Oracles

Require: Game distribution p(G), inner learning rate α, outer learning rate β, time window T .
1: Randomly initialise policy pool φ0, Initialise parameters θ of the meta solver fθ.
2: for each training iteration do
3: Sample games {Gk}k=1,...,K from p(G).
4: for each game Gk do
5: for each iteration t do
6: Compute the meta-policy πt−1 = f(Mt−1).
7: Initialise random best-response policy φ0.
8: for gradient updates n do
9: Compute φn+1 = φn + α∂M(φn,〈πt−1,Φt−1〉)

∂φn
via Eq. (9)

10: end for
11: Expand the population Φt = Φt−1 ∪ {φBR

t }
12: end for
13: Compute the meta-policy πT = f(MT).
14: Compute Expi(πT ,ΦT) by Eq. (3)
15: end for
16: Compute the meta-gradient gk via Eq. (6) with br meta-gradient following Eq. (10)
17: Update meta-solver’s parameters θ′ = θ − β 1

K

∑
k gk.

18: end for

Implicit Version

Here we provide details of NAC where many-step gradient descent is used as the best-response oracle
in Alg. (3), and therefore we are in the implicit setting.

Algorithm 3 NAC with Gradient-Descent Best-Response Oracles-Implicit

Require: Game distribution p(G), inner learning rate α, outer learning rate β, time window T .
1: Randomly initialise policy pool φ0, Initialise parameters θ of the meta solver fθ.
2: for each training iteration do
3: Sample games {Gk}k=1,...,K from p(G).
4: for each game Gk do
5: for each iteration t do
6: Compute the meta-policy πt−1 = f(Mt−1).
7: Initialise random best-response policy φ0.
8: for gradient updates n (Large n) do
9: Compute φBR

n+1 = φn + α∂M(φn,〈πt−1,Φt−1〉)
∂φn

via Eq. (9)
10: end for
11: Expand the population Φt = Φt−1 ∪ {φBR

t }
12: end for
13: Compute the meta-policy πT = f(MT).
14: Compute Expi(πT ,ΦT) by Eq. (3)
15: end for
16: Compute the meta-gradient gk via Eq. (6) with br meta-gradient following Eq. (11)
17: Update meta-solver’s parameters θ′ = θ − β 1

K

∑
k gk.

18: end for

21

C.2 Reinforcement Learning Best-Response Oracles

Here we provide details of NAC where reinforcement learning is used as the best-response oracle in
Alg. (4), where we apply DICE for unbiased meta-gradient estimation.

Algorithm 4 NAC with Reinforcement Learning Best-Response Oracles

Require: Game distribution p(G), inner learning rate α, outer learning rate β, time window T .
1: Randomly initialise policy pool φ0, Initialise parameters θ of the meta solver fθ.
2: for each training iteration do
3: Sample games {Gk}k=1,...,K from p(G).
4: for each game Gk do
5: for each iteration t do
6: Compute the meta-policy πt−1 = f(Mt−1).
7: Initialise random best-response policy φ0.
8: for gradient updates n do
9: Compute φn+1 = φn + α∂M(φn,〈πt−1,Φt−1〉)

∂φn
with DICE in Eq. (12)

10: end for
11: Expand the population Φt = Φt−1 ∪ {φBR

t }
12: end for
13: Compute the meta-policy πT = f(MT).
14: Compute Expi(πT ,ΦT) by Eq. (3)
15: end for
16: Compute the meta-gradient gk via Eq. (6) obtained by differentiating DICE in Eq. (12)
17: Update meta-solver’s parameters θ′ = θ − β 1

K

∑
k gk.

18: end for

22

C.3 Optimising the Meta-Solver through Evolution Strategies

ES-NAC with Approximate Tabular Best-response V1

Here we provide details of NAC-ES where we use Tabular Approximate Best-Response V1 as the
best-response oracle in Alg. (5).

Algorithm 5 ES-NAC with Approximate Tabular Best-response V1

Require: Game distribution p(G), outer learning rate α, time window T , perturbations n, precision
σ.

1: Randomly initialise policy pool φ0, Initialise parameters θ of the meta solver fθ.
2: for each training iteration do
3: Sample games {Gk}k=1,...,K from p(G).
4: Sample ε1, ..., εn ∼ N (0, I) and store n models f(θ+εi).
5: for each stored model f do
6: for each game Gk do
7: for each iteration t do
8: Compute the meta-policy πt−1 = f(Mt−1).
9: Initialise tabular best-response policy φBR

t .
10: for each state s do
11: for each action a do
12: Get exp. val. of a against πt−1, Eπt−1

(v(a)|s), by traversing game-tree.
13: end for
14: Compute a′ = arg maxa Eπt−1

(v(a)|s)
15: Set φBR

t (a′|s) = 0.75 and φBR
t (a¬′|s) = 0.25

16: end for
17: Expand the population Φt = Φt−1 ∪ {φBR

t }
18: end for
19: Compute the meta-policy πT = f(MT).
20: Compute Expi(πT ,ΦT) by Eq. (3)
21: end for
22: end for
23: Compute the meta-gradient gk via Eq. (13)
24: Update meta-solver’s parameters θ′ = θ − α 1

K

∑
k gk.

25: end for

23

ES-NAC with Approximate Tabular Best-response V2

Here we provide details of NAC-ES where we use Tabular Approximate Best-Response V2 as the
best-response oracle in Alg. (6).

Algorithm 6 ES-NAC with Approximate Tabular Best-response V2

Require: Game distribution p(G), outer learning rate α, time window T , perturbations n, precision
σ.

1: Randomly initialise policy pool φ0, Initialise parameters θ of the meta solver fθ.
2: for each training iteration do
3: Sample games {Gk}k=1,...,K from p(G).
4: Sample ε1, ..., εn ∼ N (0, I) and store n models f(θ+εi).
5: for each stored model f do
6: for each game Gk do
7: for each iteration t do
8: Compute the meta-policy πt−1 = f(Mt−1).
9: Initialise tabular best-response policy φBR

t .
10: for each state s do
11: for each action a do
12: Get exp. val. of a against πt, Eπt−1(v(a)|s), by traversing game-tree.
13: end for
14: Compute a′ = arg maxa Eπt−1

(v(a)|s)
15: Sample η1,η2 ∼ N (0, 1)
16: Set φBR

t (a′|s) = 1 + η1 and φBR
t (a¬′|s) = η2

17: Normalise φBR
t (s)

18: end for
19: Expand the population Φt = Φt−1 ∪ {φBR

t }
20: end for
21: Compute the meta-policy πT = f(MT).
22: Compute Expi(πT ,ΦT) by Eq. (3)
23: end for
24: end for
25: Compute the meta-gradient gk via Eq. (13)
26: Update meta-solver’s parameters θ′ = θ − α 1

K

∑
k gk.

27: end for

24

D Additional Experimental Results

The Pseudo code is in Appendix C. In this section we offer additional experimental results for better
illustration of NAC.

D.1 Kuhn Poker Experiments

We provide the in-task training results for the Kuhn Poker exact tabular best-response method in Fig.
(9), which was used to generate the exact best-response generalisation results from Kuhn Poker to
Leduc Poker in Fig. (5). Notably, whilst our model is slightly outperformed by PSRO, both achieve
an exploitability of very close to 0 and therefore have both converged to an ε-Nash equilibrium.

0 5 10 15 20 25
Iterations

0.0

0.5

1.0

1.5

2.0

Ex
pl

oi
ta

bi
lit

y

Ours
PSRO
PSRO-Uniform
PSRO-rN
Self-Play

Figure 9: In-task training performance on Kuhn Poker using an exact tabular best-response oracle.

25

D.2 Visualisation of the Learned Curricula

In Fig. (D.2) we offer a truncated view into the auto-curricula generated by PSRO and NAC. Here,
we extend the visualisation to the full iterative process for PSRO and NAC in Fig. (10) and Fig. (11)
respectively. Due to the the approximate best-response setting, PSRO converges at iteration 7 and
fail to reach all 7 Gaussian distributions. We suspect this is because fictitious play can only generate
a difficult to beat auto-curricula without considering whether the best-response process is capable
of learning a strong enough policy. In contrast, NAC generates a more smooth and appropriate
auto-curricula, in which even an approximate best-response is able to learn a useful policy to explore
each distribution one by one. Finally NAC essentially explores all 7 Gaussian distributions and
achieves lower exploitability. Another interesting point is that the meta-solver only offers higher
probability over the points near the Gaussian centres, which validates its ability to accurately evaluate
the policies in a population.

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10 Iteration 11

Iteration 12 Iteration 13 Iteration 14 Iteration 15 Iteration 16 Iteration 17

PSRO

Figure 10: Visualisation of the full curricula on 2D-RPS using PSRO. Red points denote the meta-
solver output, and darker refers to higher probability in π. The blue star is the latest best-response.

Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10 Iteration 11

Iteration 12 Iteration 13 Iteration 14 Iteration 15 Iteration 16 Iteration 17

Ours

Figure 11: Visualisation of the full curricula on 2D-RPS using NAC. Red points denote the meta-
solver output, and darker refers to higher probability in π. The blue star is the latest best-response.

26

In addition, we offer a similar visualisation of 12 iterations’ worth of policy distributions produced
by NAC on Kuhn Poker. Due to the approximate best-response limitation, it’s difficult for NAC to get
the exact Nash equilibrium policy. However, the final policy distribution of NAC still achieves a great
approximation to the exact one.

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 0
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 1
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 2
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 3
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Iteration 4
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 5
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 6
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 7
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 8
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 9
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 10
Nash Equilibrium
NAC

J JB JP JPB Q QB QP QPB K KB KP KPB
Strategy

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Iteration 11
Nash Equilibrium
NAC

Policy Visualisation in Kuhn Poker

Figure 12: Visualisations of the whole 12 iterations policy distribution on Kuhn Poker for NAC and
exact Nash Equilibrium. The Orange Red bar and Lighr blue bar refer to policy distribution for
NAC and exact Nash Equilibrium respectively. The pink red bar represents the overlapping policy
distribution.

27

D.3 Meta-Game Generalisation Results

[8] introduced the concept of Games of Skill where certain real-world games share a similar structure
in terms of their respective meta-games, and this work additionally released a collection of meta-
games sharing this structure. As we utilise Randomly generated Games of Skill as our training game
for our NFG meta-solver, we additionally test the ability of our learned meta-solver to generalise to
unseen Games of Skill in the collection of meta-games from [8].

0 5 10 15 20

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ex
pl

oi
ta

bi
lit

y

3 Move Parity Game 2

0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

1.25

1.50

AlphaStar

0 5 10 15 20
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Connect Four

0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ex
pl

oi
ta

bi
lit

y

Go 3x3

0 5 10 15 20
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Go 4x4

0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

1.6

Hex 3x3

0 5 10 15 20
Iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ex
pl

oi
ta

bi
lit

y

Quoridor 3x3

0 5 10 15 20
Iterations

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Quoridor 4x4

0 5 10 15 20
Iterations

0.6

0.8

1.0

1.2

1.4

1.6

Tic Tac Toe

Ours PSRO PSRO-Uniform

Figure 13: Exploitability results on the meta-games introduced in [8]. NAC performs at least as well
as the best baseline in all settings, and often outperforms the PSRO baselines.

28

D.4 Meta-solver trained with Reinforcement Learning

In our paper, we also train the meta-solver with Reinforcement Learning. Note that RL here refers
to the technique for training the meta-solver rather than the best-response oracle. In particular, we
can treat the whole PSRO iteration as an environment, the curricula generated by the meta-solver as
action, and the negative exploitability as the reward for the meta-solver RL agent. In other words,
we formulate the PSRO process as an independent MDP, similar to [11]. Following this idea, we
reformulate the training of the meta-solver as an RL problem with a continuous action space and
solve such an MDP with Deep Deterministic Policy Gradient (DDPG).

We conduct experiments to train the meta-solver with DDPG on 2D-RPS. Empirically we find that
the trained meta-solver can achieve better performance compared with PSRO-Uniform. However, it
cannot beat PSRO, unlike our meta-gradient based meta-solver. We believe that this might be because
the dynamics of the PSRO environment is complicated which makes it rather challenging for DDPG
to learn a good policy (i.e., the meta-solver).

0 2 4 6 8 10 12 14
Iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
pl

oi
ta

bi
lit

y

RL-LMAC
PSRO-Uniform
PSRO

Figure 14: NAC trained with DDPG for environment on 2D-RPS.

29

E Additional Implementation Details

We report any relevant additional implementation details in this section.

The code can be found in: https://github.com/waterhorse1/NAC

E.1 Environment Description

Random Games of Skill [8] are normal-form games designed to consist of both a transitive
and non-transitive element. The payoff function is shown as: Gi,j := 1

2 (Wi,j − Wj,i) + Si −
Sj with Wi,j , Si

i.i.d∼ N (0, σ2
W or σ2

S). The intuition behind random games of skill is to model the
transitive strength of a strategy via S and the non-transitive cycles by W . [8] shows that many real
worlds game exhibits the geometry property of games of skill.

In our experimental setting, we increase the presence of non-transitive cycles by substituting 1
2 (Wi,j−

Wj,i) with (Wi,j −Wj,i). Note that random games of skill naturally provides us with a distribution
P (G) over games. We set the meta training distribution on 200*200 games of skill matrix and utilise
gradient descent for best-response policy update and exploitability calculation in PSRO. This is a
symmetric game so we only need to construct one policy pool for PSRO. Note that the best-response
for exploitability calculation in GOS is gradient descent rather than direct maximisation over all pure
actions, so it is actually an approximate exploitability. It might bring in negative exploitability but it is
still a fair comparison because we use the same way to calculate the exploitability for all algorithms.

Differentiable Lotto. Differentiable lotto is a game inspired by [16] and is introduced in [3]. This
game is defined over a fixed set of customers ci ∈ R2, i ∈ {1, ..., n} where each customer repre-
sents a fixed point on a 2D plane. In this game, each agent determines {(p1,v1) , . . . , (pk,vk)},
where vi and pi respectively denote the position and the units of resources of server i. Given
two agent (p,v) and (q,w), the customers c are softly assigned to servers based on the dis-
tance between customer and server. The payoff function is then given as: φ((p,v), (q,w)) :=∑c,k
i,j=1 (pjvij − qjwij) , where (vi1, . . . , wik) := softmax(−‖ci − v1‖2 , . . . ,−‖ci −wk‖2).

This game is a relatively more transitive game compared with Random Games of Skill and Non-
transitive Mixture Model game. And since there exists infinite points over 2d plane, Differentiable
Lotto is an open-ended game.

In our experiments, we use 9 customers and 500 servers. We set meta-training distribution by
randomizing the customers positions and the initial positions of servers according toN (0, 1). Gradient
descent is utilized for best-response policy update and exploitability calculation in PSRO. Note that
this is a symmetric game so we only need to construct one policy pool for PSRO.

Non-Transitive Mixture Model. Non-Transitive Mixture Model is also an open-ended game with
both transitivity and non-transitivity. To achieve Nash policy, the player needs to not only climb up to
the Gaussian distribution to maximize transitive payoff, but also explore each Gaussian distribution
to remain un-exploitable.

In our experiment, we set n = 7, and randomize the center of Gaussian distribution and initial
position of strategies for meta-training distribution. Gradient descent is utilized for best-response
policy update and exploitability calculation in PSRO. Note that this is a symmetric game so we only
need to construct one policy pool for PSRO.

Iterated Matching Pennies (IMP).

Table 1: Matching pennies
Head Tail

Head (+a, -a) (-a, +a)
Tail (-b, +b) (+b, -b)

We follow the works of [14] and [20] in using IMP [15], a zero-sum game in which the row player
wants to have matching pennies whilst the column player wants to have clashing pennies. The
original matching pennies game is shown in Table (1) as a = b = 1. We extend it to the iterated form
where agents can condition their actions on past history. We follow [14] to model it as a memory-1

30

https://github.com/waterhorse1/NAC

two-agent MRP and agent’s action at timestep t will condition on the joint action at timestep t− 1.
As mentioned in Section (3.5), our training framework, alongside most meta-learning frameworks,
cannot tolerate a large amount of inner-loop gradient steps. Fortunately, IMP is fairly simple and
does not need to take many policy gradient steps to reach an approximate best-response. We show
Table (1) as the stage-game of the iterated game played in IMP. We set a, b ∼ U(0.5, 2) as the
meta-training distribution over the game. Policy gradient is utilized for best-response policy update
and exploitability calculation in PSRO. The iteration length is 50.

In IMP, we follow the setting in [14] where each agent’s policy is fully specified by 5 probabilities.
For agent a in IMP, they are the probability of head at game start πa(H|S0), and the head probabilities
in the four memories: πa(H|HH), πa(H|HT), πa(H|TH) and πa(H|TT). Note that this is a
non-symmetric game so we need to construct two policy pools for PSRO.

Kuhn Poker was introduced by [22] as a two-player, sequential-move, imperfect information poker
game which has a total of 6 information states for each player, 12 overall. A round of Kuhn Poker is
as follows: Both players start with 2 chips and both put in 1 chip in order to play. The deck is only
3 cards, and each player is dealt one card. At this point, both players have the choice of betting or
passing - if both players take the same action then the player with the higher card wins, otherwise
the player who made a bet wins. Kuhn Poker is a simplified version of poker which can be easily
integrated with game theoretic analysis and is therefore well-aligned with the use of PSRO. Kuhn
Poker has a large strategy space consisting 212 pure strategies in total.

In Kuhn Poker it is easy to find an exact best-response to a meta-strategy by traversing the game-tree
and selecting the the action at each state with the highest expected value. The results of using this
exact approach are shown in Appendix D.1. However, the central interest of our work is when using
approximate best-responses, so we also suggest two different manners in which we can specify an
approximate best-response when traversing the game-tree.

In Pseudo-code 5 we illustrate our first method, where the action with the highest expected value at
each state will be played the majority of the time, but the policy may also take the action with the
lower expected value with a lower probability. Notably, these action probability values are fixed at
0.75 and 0.25. We note that, whilst this setting performs well on the Kuhn Poker game, it is not able
to generalise effectively to Leduc Poker.

In Pseudo-code 6 we illustrate our second method, where again the action with the highest expected
value at each state will be played the majority of the time, but we introduce more randomness into
the process. Strictly, we sample two perturbations η1,η2 ∼ N (0, 1) and the action with the highest
expected value will be played with probability 1 + η1 and the other action will be played with
probability η2. We believe this to be a fundamentally more applicable measure as, because in Kuhn
Poker it is difficult to define a distribution over games (as there is only one Kuhn Poker game), we
instead have this setting defined over the distribution of best-responses allowing us to maintain a
distribution setting. We believe this distribution over best-responses is what allows this method to
generalise well to Leduc Poker, as it is able to explore more dynamics of the game-type.

E.2 Implementation Details

In this section we will list any specific implementation details that we used for each meta-solver
training experiment.

NAC With Gradient-Descent Best-Response Oracles

• In order to control for any instances of gradient explosion, we apply gradient clip normalisa-
tion on the meta-gradient with the clip parameter being reported in Appendix F.

• In order to speed up the training process, we distributed each game in a batch across multiple
training nodes.

NAC With Gradient-Descent Best-Response Oracles - Implicit

• In order to control for any instances of gradient explosion, we apply gradient clip normalisa-
tion on the meta-gradient with the clip parameter being reported in Appendix F.

• In order to meet the stationary point condition for implicit gradient, we take enough inner-
loop gradient steps until the gradient norm is below the threshold.

31

• In order to speed up the training process, we distributed each game in a batch across multiple
training nodes.

NAC With Reinforcement Learning Best-Response Oracles

• In order to control for any instances of gradient explosion, we apply a special trick - layer-
wise gradient normalisation on the meta-gradient with the clip parameter being reported in
Appendix F.

• In order to speed up the training process, we distributed each game in a batch across multiple
training nodes.

• We apply linear baseline method in the inner-loop rl based best-response for variance reduc-
tion. This is a commonly used strategy for reinforcement learning based meta learning[12].

ES-NAC

• In order to speed up the training process, we distributed each perturbation of the meta-solver
across multiple training nodes.

E.3 Meta-testing

There exist some differences between the baseline algorithms and NAC when we conduct meta-testing.
Since the baseline algorithms need no further training, in the testing phase, we evaluate the baseline
algorithms on multiple tasks sampled from the task distribution so the confidence interval for baseline
algorithms refers to the randomness brought by different tasks. However, since we need to conduct
the training on multiple seeds for NAC (so there exist two random variables - task and random seed),
we follow previous Meta-RL evaluation way [39] to have each trained model tested on multiple
tasks and calculate the mean exploitability over tasks. It can reduce the randomness brought by task
distribution. So the confidence interval in the plot for NAC refers to the standard deviation brought
by different random seeds.

E.4 Computing Infrastructure

We used two internal compute servers both consisting of 4x Nvidia GeForce 1080-Ti cards, however
each model is trained on at most 1 card. Additionally we made use of High Performance Computing
Cluster for ES experiments.

F Hyperparameter Details

We report our hyperparameter settings we use for experiments in this section.

F.1 Games of Skill - Alg. 2

Table 2: Hyper-parameter settings for Random Games of Skill Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD GRADIENT DESCENT SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.01 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 100 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 5 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE GRU TYPE OF META-SOLVER
GRADIENT CLIP VALUE 1.0 META-GRADIENT CLIP VALUE
PSRO ITERATIONS 20 NUMBER OF PSRO ITERATIONS
WINDOW SIZE 5 NUMBER OF WINDOW SIZE
INNER LEARNING RATE 25.0 LEARNING RATE FOR BEST-RESPONSE UPDATES
INNER GD STEPS 5 NUMBER OF BEST-RESPONSE UPDATE STEPS
EXPLOITABILITY LEARNING RATE 10.0 LEARNING RATE FOR EXPLOITABILITY CALCULATION
INNER EXPLOITABILITY STEPS 20 NUMBER OF EXPLOITABILITY UPDATE STEPS

32

F.2 Differentiable Blotto - Alg. 2

Table 3: Hyper-parameter settings for Differentiable Lotto Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD GRADIENT DESCENT SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.001 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 100 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 5 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE GRU TYPE OF META-SOLVER
GRADIENT CLIP VALUE 1.0 META-GRADIENT CLIP VALUE
PSRO ITERATIONS 20 NUMBER OF PSRO ITERATIONS
WINDOW SIZE 5 NUMBER OF WINDOW SIZE
INNER LEARNING RATE 20.0 LEARNING RATE FOR BEST-RESPONSE UPDATES
INNER GD STEPS 20 NUMBER OF BEST-RESPONSE UPDATE STEPS
EXPLOITABILITY LEARNING RATE 20.0 LEARNING RATE FOR EXPLOITABILITY CALCULATION
INNER EXPLOITABILITY STEPS 30 NUMBER OF EXPLOITABILITY UPDATE STEPS

F.3 Non-transitive Mixture Model

F.3.1 Best response by Non-implicit Gradient Descent - Alg. 2

Table 4: Hyper-parameter settings for non-implicit 2D-RPS Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD GRADIENT DESCENT SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.007 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 400 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 8 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE CONV1D TYPE OF META-SOLVER
LR SCHEDULE STEP 100 OUTER LR SCHEDULER STEP ITERATION
LR SCHEDULE GAMMA 0.3 OUTER LR SCHEDULER MULTIPLICATIVE VALUE
GRADIENT CLIP VALUE 2.0 META-GRADIENT CLIP VALUE
PSRO ITERATIONS 15 NUMBER OF PSRO ITERATIONS
WINDOW SIZE 9 NUMBER OF WINDOW SIZE
INNER LEARNING RATE 2.0 LEARNING RATE FOR BEST-RESPONSE UPDATES
INNER GD STEPS 5 NUMBER OF BEST-RESPONSE UPDATE STEPS
EXPLOITABILITY LEARNING RATE 2.0 LEARNING RATE FOR EXPLOITABILITY CALCULATION
INNER EXPLOITABILITY STEPS 20 NUMBER OF EXPLOITABILITY UPDATE STEPS

F.3.2 Best response by Implicit Gradient Descent - Alg. 3

Table 5: Hyper-parameter settings for implicit 2D-RPS Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD GRADIENT DESCENT SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.005 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 600 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 10 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE CONV1D TYPE OF META-SOLVER
GRADIENT CLIP VALUES 0.002 VALUE ABOVE WHICH META-GRADIENT IS CLIPPED
PSRO ITERATIONS 10 NUMBER OF PSRO ITERATIONS
WINDOW SIZE 10 NUMBER OF WINDOW SIZE
INNER LEARNING RATE 0.75 LEARNING RATE FOR BEST-RESPONSE UPDATES
INNER GD STEPS 100 NUMBER OF BEST-RESPONSE UPDATE STEPS
EXPLOITABILITY LEARNING RATE 0.75 LEARNING RATE FOR EXPLOITABILITY CALCULATION
INNER EXPLOITABILITY STEPS 200 NUMBER OF EXPLOITABILITY UPDATE STEPS
INNER-LOOP GRADIENT NORM BREAK VALUE 0.001 VALUE AT WHICH INNER-LOOP GRADIENT UPDATE IS STOPPED.

33

F.4 Iterated Matching Pennies - Alg. 4

Table 6: Hyper-parameter settings for Iterated Matching Pennies Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD REINFORCE SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.004 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 50 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 8 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE GRU TYPE OF META-SOLVER
LAYER-WISE GRADIENT NORMALISATION THRESHOLD 0.002 VALUE ABOVE WHICH LAYER-WISE META-GRADIENT IS CLIPPED
PSRO ITERATIONS 9 NUMBER OF PSRO ITERATIONS
WINDOW SIZE 3 NUMBER OF WINDOW SIZE
INNER LEARNING RATE 10.0 LEARNING RATE FOR BEST-RESPONSE UPDATES
INNER GD STEPS 10 NUMBER OF BEST-RESPONSE UPDATE STEPS
EXPLOITABILITY LEARNING RATE 10.0 LEARNING RATE FOR EXPLOITABILITY CALCULATION
EXPLOITABILITY STEPS 20 NUMBER OF EXPLOITABILITY UPDATE STEPS
TRAJECTORIES SAMPLED EACH UPDATE 32 NUMBER OF TRAJECTORIES SAMPLED EACH REINFORCE UPDATE

F.5 Kuhn Poker

F.5.1 Best response by Approximate Tabular V1 - Alg. 5

Table 7: Hyper-parameter settings for Kuhn Poker Tabular V1 Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD APPROXIMATE TABULAR V1 SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.1 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 100 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 5 NUMBER OF GAMES TRAINED ON PER ITERATION
ODEL TYPE CONV1D TYPE OF META-SOLVER
LR SCHEDULE STEP 50 OUTER LR SCHEDULER STEP ITERATION
LR SCHEDULE GAMMA 0.5 OUTER LR SCHEDULER MULTIPLICATIVE VALUE
PSRO ITERATIONS 15 NUMBER OF PSRO ITERATIONS
ES PERTURBATIONS 30 NUMBER OF MODEL PERTURBATIONS VIA ES

F.5.2 Best response by Approximate Tabular V2 - Alg. 6

Table 8: Hyper-parameter settings for Kuhn Poker Tabular V2 Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD APPROXIMATE TABULAR V2 SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.1 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 100 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 5 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE CONV1D TYPE OF META-SOLVER
LR SCHEDULE STEP 20 OUTER LR SCHEDULER STEP ITERATION
LR SCHEDULE GAMMA 0.5 OUTER LR SCHEDULER MULTIPLICATIVE VALUE
PSRO ITERATIONS 15 NUMBER OF PSRO ITERATIONS
ES PERTURBATIONS 30 NUMBER OF MODEL PERTURBATIONS VIA ES

34

F.5.3 Best response by PPO

Table 9: Hyper-parameter settings for Kuhn Poker PPO Training.
SETTINGS VALUE DESCRIPTION

ORACLE METHOD PPO SUBROUTINE OF GETTING ORACLES
OUTER LEARNING RATE 0.2 LEARNING RATE FOR META-SOLVER UPDATES
META TRAINING STEPS 100 NUMBER OF META-SOLVER UPDATE STEPS
META BATCH SIZE 3 NUMBER OF GAMES TRAINED ON PER ITERATION
MODEL TYPE CONV1D TYPE OF META-SOLVER
LR SCHEDULE STEP 20 OUTER LR SCHEDULER STEP ITERATION
LR SCHEDULE GAMMA 0.5 OUTER LR SCHEDULER MULTIPLICATIVE VALUE
ES PERTURBATIONS 30 NUMBER OF MODEL PERTURBATIONS VIA ES
PSRO ITERATIONS 10 NUMBER OF PSRO ITERATIONS
PPO CLIP RATIO 0.8 CLIP RATIO OF PPO TRAINER
PI LR 0.003 LR FOR POLICY OPTIMISER
VF LR 0.001 LR FOR VALUE FUNCTION OPTIMISER
PI TRAIN ITERS 100 NUMBER OF POLICY OPTIMISER TRAINING ITERS.
VF TRAIN ITERS 100 NUMBER OF VF OPTIMISER TRAINING ITERS.
TARGET KL 0.5 EARLY STOPPING CRITERIA

G Author Contributions

We summarise the main contributions from each of the authors as follows:

Xidong Feng: Idea proposing, algorithm design, code implementation and experiments running (on
2D-RPS, 2D-RPS-Implicit and IMP), and paper writing.

Oliver Slumbers: Algorithm design, code implementation and experiments running (on Gos, Blotto,
Kuhn-Poker), and paper writing.

Ziyu Wan: Code implementation and experiments running for RL based NAC in Appendix D.4.

Bo Liu: Experiments running for Kuhn-Poker.

Stephen McAleer: Project discussion and paper writing.

Ying Wen: Project discussion.

Jun Wang: Project discussion and overall project supervision.

Yaodong Yang: Project lead, idea proposing, experiment supervision, and paper writing.

35

