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Abstract

The invariance principle from causality is at the heart of notable approaches such
as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD)
generalization failures. Despite the promising theory, invariance principle-based
approaches fail in common classification tasks, where invariant (causal) features
capture all the information about the label. Are these failures due to the methods
failing to capture the invariance? Or is the invariance principle itself insufficient? To
answer these questions, we revisit the fundamental assumptions in linear regression
tasks, where invariance-based approaches were shown to provably generalize OOD.
In contrast to the linear regression tasks, we show that for linear classification
tasks we need much stronger restrictions on the distribution shifts, or otherwise
OOD generalization is impossible. Furthermore, even with appropriate restrictions
on distribution shifts in place, we show that the invariance principle alone is
insufficient. We prove that a form of the information bottleneck constraint along
with invariance helps address key failures when invariant features capture all the
information about the label and also retains the existing success when they do not.
We propose an approach that incorporates both of these principles and demonstrate
its effectiveness in several experiments.

1 Introduction

Recent years have witnessed an explosion of examples showing deep learning models are prone to
exploiting shortcuts (spurious features) (Geirhos et al., 2020; Pezeshki et al., 2020) which make
them fail to generalize out-of-distribution (OOD). In Beery et al. (2018), a convolutional neural
network was trained to classify camels from cows; however, it was found that the model relied on the
background color (e.g., green pastures for cows) and not on the properties of the animals (e.g., shape).
These examples become very concerning when they occur in real-life applications (e.g., COVID-19
detection (DeGrave et al., 2020)).

To address these out-of-distribution generalization failures, invariant risk minimization (Arjovsky
et al., 2019) and several other works were proposed (Ahuja et al., 2020; Pezeshki et al., 2020; Krueger
et al., 2020; Robey et al., 2021; Zhang et al., 2021). The invariance principle from causality (Peters
et al., 2015; Pearl, 1995) is at the heart of these works. The principle distinguishes predictors that
only rely on the causes of the label from those that do not. The optimal predictor that only focuses on
the causes is invariant and min-max optimal (Rojas-Carulla et al., 2018; Koyama and Yamaguchi,
2020; Ahuja et al., 2021b) under many distribution shifts but the same is not true for other predictors.
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Our contributions. Despite the promising theory, invariance principle-based approaches fail in
settings (Aubin et al., 2021) where invariant features capture all information about the label contained
in the input. A particular example is image classification (e.g., cow vs. camel) (Beery et al., 2018)
where the label is a deterministic function of the invariant features (e.g., shape of the animal), and
does not depend on the spurious features (e.g., background). To understand such failures, we revisit
the fundamental assumptions in linear regression tasks, where invariance-based approaches were
shown to provably generalize OOD. We show that, in contrast to the linear regression tasks, OOD
generalization is significantly harder for linear classification tasks; we need much stronger restrictions
in the form of support overlap assumptions3 on the distribution shifts, or otherwise it is not possible
to guarantee OOD generalization under interventions on variables other than the target class. We
then proceed to show that, even under the right assumptions on distribution shifts, the invariance
principle is insufficient. However, we establish that information bottleneck (IB) constraints (Tishby
et al., 2000), together with the invariance principle, provably works in both settings – when invariant
features completely capture the information about the label and also when they do not. (Table 1
summarizes our theoretical results presented later). We propose an approach that combines both these
principles and demonstrate its effectiveness on linear unit tests (Aubin et al., 2021) and on different
real datasets.

Task Invariant features Support overlap Support overlap OOD generalization guarantee (Etr → Eall)
capture label info invariant features spurious features ERM IRM IB-ERM IB-IRM

Linear
Classification

Full/Partial No Yes/No Impossible for any algorithm to generalize OOD [Thm2]
Full Yes No 7 7 3 3 [Thm3,4]

Partial Yes No 7 7 7 3 [Appendix]
Full Yes Yes 3 3 3 3 [Thm3,4]

Partial Yes Yes 7 3 7 3
Linear
Regression

Full No No 3 3 3 3
Partial No No 7 3 7 3 [Thm4]

Table 1: Summary of the new and existing results (Arjovsky et al., 2019; Rosenfeld et al., 2021b).
IB-ERM (IRM): information bottleneck - empirical (invariant) risk minimization ERM (IRM).

2 OOD generalization and invariance: background & failures
Background. We consider a supervised training data D gathered from a set of training environments
Etr: D = {De}e∈Etr , where De = {xei , yei }n

e

i=1 is the dataset from environment e ∈ Etr and ne is
the number of instances in environment e. xei ∈ Rd and yei ∈ Y ⊆ Rk correspond to the input feature
value and the label for ith instance respectively. Each (xei , y

e
i ) is an i.i.d. draw from Pe, where Pe is

the joint distribution of the input feature and the label in environment e. Let X e be the support of the
input feature values in the environment e. The goal of OOD generalization is to use training data D
to construct a predictor f : Rd → Rk that performs well across many unseen environments in Eall,
where Eall ⊃ Etr. Define the risk of f in environment e as Re(f) = E

[
`(f(Xe), Y e)

]
, where for

example ` can be 0-1 loss, logistic loss, square loss, (Xe, Y e) ∼ Pe, and the expectation E is w.r.t.
Pe. Formally stated, our goal is to use the data from training environments Etr to find f : Rd → Y to
minimize

min
f

max
e∈Eall

Re(f). (1)

So far we did not state any restrictions on Eall. Consider binary classification: without any restrictions
on Eall, no method can reduce the above objective (` is 0-1 loss) to below one. Suppose a method
outputs f∗; if ∃ e ∈ Eall \ Etr with labels based on 1− f∗, then it achieves an error of one. Some
assumptions on Eall are thus necessary. Consider how Eall is restricted using invariance for linear
regressions (Arjovsky et al., 2019).
Assumption 1. Linear regression structural equation model (SEM). In each e ∈ Eall

Y e ← w∗inv · Zeinv + εe, Zeinv ⊥ εe, E[εe] = 0,E
[
|εe|2

]
≤ σ2

sup

Xe ← S(Zeinv, Z
e
spu)

(2)

where w∗inv ∈ Rm, Zeinv ∈ Rm, Zspu ∈ Ro, S ∈ Rd×(m+o), S is invertible (m+ o = d). We focus on
invertible S but several results extend to non-invertible S as well (see Appendix).

3Support is the region where the probability density for continuous random variables (probability mass
function for discrete random variables) is positive. Support overlap refers to the setting where train and test
distribution maybe different but share the same support. We formally define this later in Assumption 5.
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Assumption 1 states how Y e andXe are generated from latent invariant features Zeinv
4, latent spurious

features Zespu and noise εe. The relationship between label and invariant features is invariant, i.e.,
w∗inv is fixed across all environments. However, the distributions of Zeinv, Z

e
spu, and εe are allowed

to change arbitrarily across all the environments. Suppose S is identity. If we regress only on the
invariant features Zeinv, then the optimal solution is w∗inv, which is independent of the environment,
and the error it achieves is bounded above by the variance of εe (σ2

sup). If we regress on the entire
Ze and the optimal predictor places a non-zero weight on Zespu (e.g., Zespu ← Y e + ζe), then this
predictor fails to solve equation (1) (∃ e ∈ Eall, Zespu →∞, error→∞, see Appendix for details).
Also, not only regressing on Zeinv is better than on Ze, it can be shown that it is optimal, i.e., it solves
equation (1) under Assumption 1 and achieves a value of σ2

sup for the objective in equation (1).

Invariant predictor. Define a linear representation map Φ : Rr×d (that transforms Xe as Φ(Xe))
and define a linear classifier w : Rk×r (that operates on the representation w · Φ(Xe)). We want to
search for representations Φ such that E[Y e|Φ(Xe)] is invariant (in Assumption 1 if Φ(Xe) = Zeinv,
then E[Y e|Φ(Xe)] is invariant). We say that a data representation Φ elicits an invariant predictor
w ·Φ across the set of training environments Etr if there is a predictor w that simultaneously achieves
the minimum risk, i.e., w ∈ arg minw̃ R

e(w̃ · Φ), ∀e ∈ Etr. The main objective of IRM is stated as

min
w∈Rk×r,Φ∈Rr×d

1

|Etr|
∑
e∈Etr

Re(w · Φ) s.t. w ∈ arg min
w̃∈Rk×r

Re(w̃ · Φ), ∀e ∈ Etr. (3)

Observe that if we drop the constraints in the above which search only over invariant predictors,
then we get the standard empirical risk minimization (ERM) (Vapnik, 1992) (assuming all the
training environments occur with equal probability). In all our theorems, we use 0-1 loss for binary
classification Y = {0, 1} and square loss for regression Y = R. For binary classification, the output
of the predictor is given as I(w ·Φ(Xe)), where I(·) is the indicator function that takes 1 if the input is
≥ 0 and 0 otherwise, and the risk is Re(w ·Φ) = E

[
|I(w ·Φ(Xe))−Y e|

]
. For regression, the output

of the predictor is w ·Φ(Xe) and the corresponding risk is Re(w ·Φ) = E
[
(w ·Φ(Xe)− Y e)2

]
. We

now present the main OOD generalization result from Arjovsky et al. (2019) for linear regressions.

Theorem 1. (Informal) If Assumption 1 is satisfied, Rank[Φ] > 0, |Etr| > 2d, and Etr lie in a linear
general position (a mild condition on the data in Etr, defined in the Appendix), then each solution to
equation (3) achieves OOD generalization (solves equation (1), @ e ∈ Eall with risk > σ2

sup).

Despite the above guarantees, IRM has been shown to fail in several cases including linear SEMs in
(Aubin et al., 2021). We take a closer look at these failures next.

Understanding the failures: fully informative invariant features vs. partially informative in-
variant features (FIIF vs. PIIF). We define properties salient to the datasets/SEMs used in the OOD
generalization literature. Each e ∈ Eall, the distribution (Xe, Y e) ∼ Pe satisfies the following proper-
ties. a) ∃ a map Φ∗ (linear or not), which we call an invariant feature map, such that E

[
Y e
∣∣Φ∗(Xe

)]
is the same for all e ∈ Eall and Y e 6⊥ Φ∗(Xe). These conditions ensure Φ∗ maps to features that
have a finite predictive power and have the same optimal predictor across Eall. For the SEM in
Assumption 1, Φ∗ maps to Zeinv. b) ∃ a map Ψ∗ (linear or not), which we call spurious feature map,
such that E

[
Y e
∣∣Ψ∗(Xe

)]
is not the same for all e ∈ Eall and Y e 6⊥ Ψ∗(Xe) for some environments.

Ψ∗ often creates a hindrance in learning predictors that only rely on Φ∗. Note that Ψ∗ should not be a
transformation of some Φ∗. For the SEM in Assumption 1, suppose Zespu is anti-causally related to
Y e, then Ψ∗ maps to Zespu (See Appendix for an example).

In the colored MNIST (CMNIST) dataset (Arjovsky et al., 2019), the digits are colored in such a
way that in the training domain, color is highly predictive of the digit label but this correlation being
spurious breaks down at test time. Suppose the invariant feature map Φ∗ extracts the uncolored digit
and the spurious feature map Ψ∗ extracts the background color. Ahuja et al. (2021b) studied two
variations of the colored MNIST dataset, which differed in the way final labels are generated from
original MNIST labels (corrupted with noise or not). They showed that the IRM exhibits good OOD
generalization (50% improvement over ERM) in anti-causal-CMNIST (AC-CMNIST, original data
from Arjovsky et al. (2019)) but is no different from ERM and fails in covariate shift-CMNIST (CS-
CMNIST). In AC-CMNIST, the invariant features Φ∗(Xe) (uncolored digit) are partially informative
about the label, i.e., Y 6⊥ Xe|Φ∗(Xe), and color contains information about label not contained

4In many examples in the literature, invariant features are causal, but not always (Rosenfeld et al., 2021b).
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Fully informative invariant features (FIIF) Partially informative invariant features (PIIF)
∀e ∈ Eall, Y e ⊥ Xe|Φ∗(Xe) ∃ e ∈ Eall Y e 6⊥ Xe|Φ∗(Xe)

Task: classification Task: classification or regression
Example 2/2S, CS-CMNIST Example 1/1S, Example 3/3S, AC-CMNIST
SEM in Assumption 2 SEM in Rosenfeld et al. (2021b)
ERM and IRM fail ERM fails, IRM succeeds sometimes
Theorem 3,4 (This paper) Theorem 9, 5.1 (Arjovsky et al., 2019; Rosenfeld et al., 2021b)

Table 2: Categorization of OOD evaluation datasets and SEMs. Example 1/1S, 2/2S, 3/3S from
(Aubin et al., 2021), AC-CMNIST(Arjovsky et al., 2019), CS-CMNIST(Ahuja et al., 2021b).

in the uncolored digit. On the other hand in CS-CMNIST, invariant features are fully informative
about the label, i.e., Y ⊥ Xe|Φ∗(Xe), i.e., they contains all the information about the label that
is contained in input Xe. Most human labelled datasets have fully informative invariant features;
the labels (digit value) only depend on the invariant features (uncolored digit) and spurious features
(color of the digit) do not affect the label. 5 In the rare case, when the humans are asked to label
images in which the object being labelled itself is blurred, humans can rely on spurious features
such as the background making such a data representative of PIIF setting. In Table 2, we divide
the different datasets used in the literature based on informativeness of the invariant features. We
observe that when the invariant features are fully informative, both IRM and ERM fail but only in
classification tasks and not in regression tasks (Ahuja et al., 2021b); this is consistent with the linear
regression result in Theorem 1, where IRM succeeds regardless of whether Y e ⊥ Xe|Zeinv holds or
not. Motivated by this observation, we take a closer look at the classification tasks where invariant
features are fully informative.

3 OOD generalization theory for linear classification tasks

A two-dimensional example with fully informative invariant features. We start with a 2D classi-
fication example (based on Nagarajan et al. (2021)), which can be understood as a simplified version
of the CS-CMNIST dataset (Ahuja et al., 2021b), Example 2/2S of Aubin et al. (2021), where both
IRM and ERM fail. The example goes as follows. In each training environment e ∈ Etr

Y e ← I
(
Xe

inv −
1

2

)
, where Xe

inv ∈ {0, 1} is Bernoulli
(1

2

)
,

Xe
spu ← Xe

inv ⊕W e, where W e ∈ {0, 1} is Bernoulli
(
1− pe

)
with selection bias pe >

1

2
,

(4)

where Bernoulli(a) takes value 1 with probability a and 0 otherwise. Each training environment is
characterized by the probability pe. Following Assumption 1, we assume that the labelling function
does not change from Etr to Eall, thus the relation between the label and the invariant features does
not change. Assume that the distribution of Xe

inv and Xe
spu can change arbitrarily. See Figure 1a)

for a pictorial representation of this example illustrating the gist of the problem: there are many
classifiers with the same error on Etr while only the one identical to the labelling function I(Xe

inv− 1
2 )

generalizes correctly OOD. Define a classifier I(winvxinv +wspuxspu − 1
2 (winv +wspu)). Define a set

of classifiers S = {(winv, wspu) s.t. winv > |wspu|}. Observe that all the classifiers in S achieve a zero
classification error on the training environments. However, only classifiers for which wspu = 0 solve
the OOD generalization (eq. (1)). With Φ as the identity, it can be shown that all the classifiers S form
an invariant predictor (satisfy the constraint in equation (3) over all the training environments when
` is the 0-1 loss). Observe that increasing the number of training environments to infinity does not
address the problem, unlike with the linear regression result discussed in Theorem 1 (Arjovsky et al.,
2019), where it was shown that if the number of environments increases linearly in the dimension
of the data, then the solution to IRM also solves the OOD generalization (eq. (1)). 6 We use the
above example to construct general SEMs for linear classification when the invariant features are
fully informative. We follow the structure of the SEM from Assumption 1 in our construction.

5The deterministic labelling case was referred as realizable problems in (Arjovsky et al., 2019).
6Please note that this example illustrates certain important facets in a very simple fashion; only in this

example a max-margin classifier can solve the problem but not in general. (Further explanation in the Appendix).
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Figure 1: a) 2D classification example illustrating multiple invariant predictors: Most of these
predictors rely on spurious features and each of them achieve zero error across all Etr, b) illustration
of the impossibility result. If latent invariant features in the training environments are separable, then
there are multiple equally good candidates that could have generated the data, and the algorithm
cannot distinguish between these.

Assumption 2. Linear classification structural equation model (FIIF). In each e ∈ Eall

Y e ← I
(
w∗inv · Zeinv

)
⊕Ne, Ne ∼ Bernoulli(q), q <

1

2
, Ne ⊥ (Zeinv, Z

e
spu),

Xe ← S
(
Zeinv, Z

e
spu

)
,

(5)

where w∗inv ∈ Rm with ‖w∗inv‖ = 1 is the labelling hyperplane, Zeinv ∈ Rm, Zespu ∈ Ro, Ne is binary
noise with identical distribution across environments, ⊕ is the XOR operator, S is invertible.

If noise level q is zero, then the above SEM covers linearly separable problems. See Figure 2a) for the
directed acyclic graph (DAG) corresponding to this SEM. From the DAG observe that Y e ⊥ Xe|Zeinv,
which implies that the invariant features are fully informative. Contrast this with a DAG that follows
Assumption 1 shown in Figure 2b), where Y e 6⊥ Xe|Zeinv and thus the invariant features are not fully
informative. If Eall follows the SEM in Assumption 2 and suppose the distribution of Zeinv, Z

e
spu

can change arbitrarily, then it can be shown that only a classifier identical to the labelling function
I(w∗inv · Zeinv) can solve the OOD generalization (eq. (1)); such a classifier achieves an error of q
(noise level) in all the environments. As a result, if for a classifier we can find e ∈ Eall that follows
Assumption 2 where the error is greater than q, then such a classifier does not solve equation (1). Now
we ask – what are the minimal conditions on training environments Etr to achieve OOD generalization
when Eall follow Assumption 2? To achieve OOD generalization for linear regressions, in Theorem 1,
it was required that the number of training environments grows linearly in the dimension of the data.
However, there was no restriction on the support of the latent invariant and latent spurious features,
and they were allowed to change arbitrarily from train to test (for further discussion on this, see the
Appendix). Can we continue to work with similar assumptions for the SEM in Assumption 2 and
solve the OOD generalization (eq. (1))? We state some assumptions and notations to answer that.
Define the support of the invariant (spurious) features Zeinv (Zespu) in environment e as Zeinv (Zespu).

Assumption 3. Bounded invariant features. ∪e∈EtrZeinv is a bounded set.7

Assumption 4. Bounded spurious features. ∪e∈EtrZespu is a bounded set.

Assumption 5. Invariant feature support overlap. ∀e ∈ Eall,Zeinv ⊆ ∪e′∈EtrZe
′

inv

Assumption 6. Spurious feature support overlap. ∀e ∈ Eall,Zespu ⊆ ∪e′∈EtrZe
′

spu

Assumption 5 (6) states that the support of the invariant (spurious) features for unseen environments is
the same as the union of the support over the training environments. It is important to note that support
overlap does not imply that the distribution over the invariant features does not change. We now
define a margin that measures how much the is training support of invariant features Zeinv separated
by the labelling hyperplane w∗inv. Define Inv-Margin = minz∈∪e∈EtrZeinv sgn

(
w∗inv · z

)(
w∗inv · z

)
. This

margin only coincides with the standard margin in support vector machines when the noise level
q is 0 (linearly separable) and S is identity. If Inv-Margin > 0, then the labelling hyperplane w∗inv
separates the support into two halves (see Figure 1b)).

7A set Z is bounded if ∃M <∞ such that ∀z ∈ Z, ‖z‖ ≤M .
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Assumption 7. Strictly separable invariant features. Inv-Margin > 0.

Next, we show the importance of support overlap for invariant features.

Theorem 2. Impossibility of guaranteed OOD generalization for linear classification. Suppose
each e ∈ Eall follows Assumption 2. If for all the training environments Etr, the latent invariant
features are bounded and strictly separable, i.e., Assumption 3 and 7 hold, then every deterministic
algorithm fails to solve the OOD generalization (eq. (1)), i.e., for the output of every algorithm
∃ e ∈ Eall in which the error exceeds the minimum required value q (noise level).

The proofs to all the theorems are in the Appendix. We provide a high-level intuiton as to why
invariant feature support overlap is crucial to the impossibility result. In Figure 1b), we show that if
the support of latent invariant features are strictly separated by the labelling hyperplane w∗inv, then we
can find another valid hyperplane w+

inv that is equally likely to have generated the same data. There is
no algorithm that can distinguish between w∗inv and w+

inv. As a result, if we use data from the region
where the hyperplanes disagree (yellow region Figure 1b)), then the algorithm fails.

Significance of Theorem 2. We showed that without the support overlap assumption on the invariant
features, OOD generalization is impossible for linear classification tasks. This is in contrast to linear
regression in Theorem 1 (Arjovsky et al., 2019), where even in the absence of the support overlap
assumption, guaranteed OOD generalization was possible. Applying the above Theorem 2 to the 2D
case (eq. (4)) implies that we cannot assume that the support of invariant latent features can change,
or else that case is also impossible to solve.

Next, we ask what further assumptions are minimally needed to be able to solve the OOD generaliza-
tion (eq. (1)). Each classifier can be written as w̄ ·Xe = w̄ · S(Zeinv, Z

e
spu) = w̃inv · Zeinv + w̃spuZ

e
spu.

If w̃spu 6= 0, then the classifier w̄ is said to rely on spurious features.

Theorem 3. Sufficiency and Insufficiency of ERM and IRM. Suppose each e ∈ Eall follows
Assumption 2. Assume that a) the invariant features are strictly separable, bounded, and satisfy
support overlap, b) the spurious features are bounded (Assumptions 3-5, 7 hold).

• Sufficiency: If the spurious features satisfy support overlap (Assumption 6 holds), then both ERM
and IRM solve the OOD generalization problem (eq. (1)). Also, there exist solutions to ERM and
IRM solutions that rely on the spurious features and still achieve OOD generalization.

• Insufficiency: If spurious features do not satisfy support overlap, then both ERM and IRM fail at
solving the OOD generalization problem (eq. (1)). Also, there exist no such classifiers that rely on
spurious features and also achieve OOD generalization.

Significance of Theorem 3. From the first part, we learn that if the support overlap is satisfied for
both the invariant features and the spurious features, then either ERM or IRM can solve the OOD
generalization (eq. (1)). Interestingly, in this case we can have classifiers that rely on the spurious
features and yet solve the OOD generalization (eq. (1)). For the 2D case (eq. (4)) this case implies
that the entire set S solves the OOD generalization (eq. (1)). From the second part, we learn that if
support overlap holds for invariant features but not for spurious features, then the ideal OOD optimal
predictors rely only on the invariant features. In this case, methods like ERM and IRM continue to
rely on spurious features and fail at OOD generalization. For the above 2D case (eq. (4)) this implies
that only the predictors that rely only on Xe

inv in the set S solve the OOD generalization (eq. (1)).

To summarize, we looked at SEMs for classification tasks when invariant features are fully informative,
and find that the support overlap assumption over invariant features is necessary. Even in the presence
of support overlap for invariant features, we showed that ERM and IRM can easily fail if the support
overlap is violated for spurious features. This raises a natural question – Can we even solve the
case with the support overlap assumption only on the invariant features? We will now show that the
information bottleneck principle can help tackle these cases.

4 Information bottleneck principle meets invariance principle
Why the information bottleneck? The information bottleneck principle prescribes to learn a
representation that compresses the input X as much as possible while preserving all the relevant
information about the target label Y (Tishby et al., 2000). Mutual information I(X; Φ(X)) is used
to measure information compression. If representation Φ(X) is a deterministic transformation of X ,
then in principle we can use the entropy of Φ(X) to measure compression (Kirsch et al., 2020). Let
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Figure 2: Comparison of the DAG from Assumption 2 (fully informative invariant features) vs. DAGs
from Rosenfeld et al. (2021b); Arjovsky et al. (2019) (partially informative invariant features).

us revisit the 2D case (eq. (4)) and apply this principle to it. Following the second part of Theorem 3,
where ERM and IRM failed, assume that invariant features satisfy the support overlap assumption,
but make no such assumption for the spurious features. Consider three choices for Φ: identity (selects
both features), selects invariant feature only, selects spurious feature only. The entropy of H(Φ(Xe))
when Φ is the identity is H(pe) + log(2), where H(pe) is the Shannon entropy in Bernoulli(pe). If
Φ selects the invariant/spurious features only, then H(Φ(Xe)) = log(2). Among all three choices,
the one that has the least entropy and also achieves zero error is the representation that focuses on the
invariant feature. We could find the OOD optimal predictor in this example just by using information
bottleneck. Does it mean the invariance principle isn’t needed? We answer this next.

Why invariance? Consider a simple classification SEM. In each e ∈ Etr, Y e ← X1,e
inv ⊕X

2,e
inv ⊕Ne

and Xe
spu ← Y e ⊕ V e, where all the random variables involved are binary valued, noise Ne, V e

are Bernoulli with parameters q (identical across Etr), ce (varies across Etr) respectively. If ce < q,
then in Etr predictions based on Xe

spu are better than predictions based on X1,e
inv , X

2,e
inv . If both

X1,e
inv , X

2,e
inv are uniform Bernoulli, then these features have a higher entropy than Xe

spu. In this case,
the information bottleneck would bar using X1,e

inv , X
2,e
inv . Instead, we want the model to focus on X1,e

inv ,
X2,e

inv and not on Xe
spu. Invariance constraints encourage the model to focus on X1,e

inv , X2,e
inv . In this

example, observe that invariant features are partially informative unlike the 2D case (eq. (4)).

Why invariance and information bottleneck? We have illustrated through simple examples when
the information bottleneck is needed but not invariance and vice-versa. We now provide a simple
example where both these constraints are needed at the same time. This example combines the
2D case (eq. (4)) and the example we highlighted in the paragraph above: Y e ← Xe

inv ⊕ Ne,
X1,e

spu ← Xe
inv ⊕W e, and X2,e

spu ← Y e ⊕ V e. In this case, the invariance constraint does not allow
representations that use X2,e

spu but does not prohibit representations that rely on X1,e
spu . However,

information bottleneck constraints on top ensure that representations that only use Xe
inv are used. We

now describe an objective 8 that combines both these principles:

min
w,Φ

∑
e∈Etr

he
(
w ·Φ

)
s.t.

1

|Etr|
∑
e∈Etr

Re
(
w ·Φ

)
≤ rth, w ∈ arg min

w̃∈Rk×r
Re(w̃ ·Φ),∀e ∈ Etr, (6)

where he in the above is a lower bounded differential entropy defined below and rth is the threshold
on the average risk. Typical information bottleneck based optimization in neural networks involves
minimization of the entropy of the representation output from a certain hidden layer. For both
analytical convenience and also because the above setup is a linear model, we work with the simplest
form of bottleneck which directly minimizes the entropy of the output layer. Recall the definition of
differential entropy of a random variableX , h(X) = −EX [log dPX ] and dPX is the Radon-Nikodym
derivative of PX with respect to Lebesgue measure. Because in general differential entropy has
no lower bound, we add a small independent noise term ζ (Kirsch et al., 2020) to the classifier to
ensure that the entropy is bounded below. We call the above optimization information bottleneck
based invariant risk minimization (IB-IRM). In summary, among all the highly predictive invariant
predictors we pick the ones that have the least entropy. If we drop the invariance constraint from the
above optimization, we get information bottleneck based empirical risk minimization (IB-ERM). In
the above formulation and following result, we assume that Xe are continuous random variables; the
results continue to hold for discrete Xe as well (See Appendix for details).
Theorem 4. IB-IRM and IB-ERM vs. IRM and ERM

8Results extend to alternate objective with information bottleneck constraints and average risk as objective.
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• Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows Assumption 2. Assume
that the invariant features are strictly separable, bounded, and satisfy support overlap (Assumptions
3,5 and 7 hold). Also, for each e ∈ Etr Zespu ← AZeinv + W e, where A ∈ Ro×m, W e ∈ Ro is
continuous, bounded, and zero mean noise. Each solution to IB-IRM (eq. (6), with ` as 0-1 loss, and
rth = q), and IB-ERM solves the OOD generalization (eq. (1)) but ERM and IRM (eq.(3)) fail.

• Partially informative invariant features (PIIF). Suppose each e ∈ Eall follows Assumption 1 and
∃ e ∈ Etr such that E[εeZespu] 6= 0. If |Etr| > 2d and the set Etr lies in a linear general position
(a mild condition defined in the Appendix), then each solution to IB-IRM (eq. (6), with ` as square
loss, σ2

ε < rth ≤ σ2
Y , where σ2

Y and σ2
ε are the variance in the label and noise across Etr) and IRM

(eq.(3)) solves OOD generalization (eq. (1)) but IB-ERM and ERM fail.

Significance of Theorem 4 and remarks. In the first part (FIIF), IB-ERM and IB-IRM succeed
without assuming support overlap for the spurious features, which was crucial for success of ERM
and IRM in Theorem 3. This establishes that support overlap of spurious features is not a necessary
condition. Observe that when invariant features are fully informative, IB-ERM and IB-IRM succeed,
but when invariant features are partially informative IB-IRM and IRM succeed. In real data settings,
we do not know if the invariant features are fully or partially informative. Since IB-IRM is the
only common winner in both the settings, it would be pragmatic to use it in the absence of domain
knowledge about the informativeness of the invariant features. In the paragraph preceding the
objective in equation (6), we discussed examples where both the IB and IRM constraints were needed
at the same time. In the Appendix, we generalize that example and show that if we change the
assumptions in linear classification SEM in Assumption 2 such that the invariant features are partially
informative, then we see the joint benefit of IB and IRM constraints. At this point, it is also worth
pointing to a result in Rosenfeld et al. (2021b), which focused on linear classification SEMs (DAG
shown in Figure 2c) with partially informative invariant features. Under the assumption of complete
support overlap for spurious and invariant features, authors showed IRM succeeds.

4.1 Proposed approach
We take the three terms from the optimization in equation (6) and create a weighted combination as∑
e

(
Re(Φ)+λ‖∇w,w=1.0R

e(w·Φ)‖2+νhe(Φ)
)
≤
∑
e

(
Re(Φ)+λ‖∇w,w=1.0R

e(w·Φ)‖2+νh(Φ)
)
.

In the LHS above, the first term corresponds to the risks across environments, the
second term approximates invariance constraint (follows the IRMv1 objective (Arjovsky
et al., 2019)), and the third term is the entropy of the classifier in each environment.

Figure 3: Comparing conver-
gence of |wspu|√

w2
spu+w2

inv

(metric from

Nagarajan et al. (2021)) for aver-
age selection bias p = 0.9.

In the RHS, h(Φ) is the entropy of Φ unconditional on the environ-
ment (the entropy on the left-hand side is entropy conditional on
the environment assuming all the environments are equally likely).
Optimizing over differential entropy is not easy, and thus we resort
to minimizing an upper bound of it (Kirsch et al., 2020). We use
the standard result that among all continuous random variables with
the same variance, Gaussian has the maximum differential entropy.
Since the entropy of Gaussian increases with its variance, we use the
variance of Φ instead of the differential entropy (For further details,
see the Appendix). Our final objective is given as∑

e

(
Re(Φ) + λ‖∇w,w=1.0R

e(w · Φ)‖2 + γVar(Φ)
)
. (7)

On the behavior of gradient descent with and without informa-
tion bottleneck. In the entire discussion so far, we have focused on ensuring that the set of optimal
solutions to the desired objective (IB-IRM, IB-ERM, etc.) correspond to the solutions of the OOD
generalization problem (eq. (1)). In some simple cases, such as the 2D case (eq. (4)), it can be shown
that gradient descent is biased towards selecting the ideal classifier (Soudry et al., 2018; Nagarajan
et al., 2021). Even though gradient descent can eventually learn the ideal classifier that only relies
on the invariant features, training is frustratingly slow as was shown by Nagarajan et al. (2021). In
the next theorem, we characterize the impact of using IB penalty (Var(Φ)) in the 2D example (eq.
(4)). We compare the methods in terms of |wspu(t)

winv(t)
|, which was the metric used in Nagarajan et al.

(2021); wspu(t) and winv(t) are the weights for the spurious feature and the invariant feature at time t
of training (assuming training happens with continuous time gradient descent).
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Theorem 5. Impact of IB on learning speed. Suppose each e ∈ Etr follows the 2D case from
equation (4). Set λ = 0, γ > 0 in equation (7) to get the IB-ERM objective with ` as exponential loss.
Continuous-time gradient descent on this IB-ERM objective achieves |wspu(t)

winv(t)
| ≤ ε in time less than

W0( 1
2γ )

2(1−p)ε (W0(·) denotes the principal branch of the Lambert W function), while in the same time the

ratio for ERM |wspu(t)
winv(t)

| ≥ ln( 1+2p
3−2p )/ln

(
1 +

W0( 1
2γ )

2(1−p)ε
)
, where p = 1

|Etr|
∑
e∈Etr p

e .

|wspu(t)
winv(t)

| converges to zero for both methods, but it converges much faster for IB-ERM (for p =

0.9, ε = 0.001, γ = 0.58, the ratio for IB-ERM is |wspu(t)
winv(t)

| ≤ 0.001 and ratio for ERM is |wspu(t)
winv(t)

| ≥
0.09). In the above theorem, we analyzed the impact of information bottleneck only. The convergence
analysis for both the penalties jointly comes with its own challenges, and we hope to explore this in
future work. However, we carried out experiments with gradient descent on all the objectives for the
2D example (eq. (4)). See Figure 3 for the comparisons.

5 Experiments
Methods, datasets & metrics. We compare our approaches – information bottleneck based ERM (IB-
ERM) and information bottleneck based IRM (IB-IRM) with ERM and IRM. We also compare with
an Oracle model trained on data where spurious features are permuted to remove spurious correlations.
We use all the datasets in Table 2, Terra Incognita dataset (Beery et al., 2018), and COCO (Ahmed
et al., 2021). We follow the same protocol for tuning hyperparameters from Aubin et al. (2021);
Arjovsky et al. (2019) for their respective datasets (see the Appendix for more details). As is reported
in literature, for Example 2/2S, Example 3/3S we use classification error and for AC-CMNIST,
CS-CMNIST, Terra Incognita, and COCO we use accuracy. For Example 1/1S, we use mean square
error (MSE). The code for experiments can be found at https://github.com/ahujak/IB-IRM.

Summary of results. In Table 3, we provide a comparison of methods for different examples in
linear unit tests (Aubin et al., 2021) for three and six training environments. In Table 4, we provide a
comparison of the methods for different CMNIST datasets, Terra Incognita and COCO dataset. Based
on our Theorem 4, we do not expect ERM and IB-ERM to do well on Example 1/1S, Example 3/3S
and AC-CMNIST as these datasets fall in the PIIF category, i.e, the invariant features are partially
informative. On these examples, we find that IRM and IB-IRM do better than ERM and IB-ERM
(for Example 3/3S when there are three environments all methods perform poorly). Based on our
Theorem 4, we do not expect IRM and ERM to do well on Example 2/2S, CS-CMNIST, Terra
Incognita and COCO dataset,9 as these datasets fall in the FIIF category, i.e., the invariant features
are fully informative. On these FIIF examples, we find that IB-ERM always performs well (close to
oracle), and in some cases IB-IRM also performs well. Our experiments confirm that IB penalty has
a crucial role to play in FIIF settings and IRMv1 penalty has a crucial role to play in PIIF settings (to
further this claim, we provide an ablation study in the Appendix). On Example 1/1S, AC-CMNIST,
we find that IB-IRM is able to extract the benefit of IRMv1 penalty. On CS-CMNIST and Example
2/2S we find that IB-IRM is able to extract the benefit of IB penalty. In settings such as COCO
dataset, where IB-IRM does not perform as well as IB-ERM, better hyperparameter tuning strategies
should be able to help IB-IRM adapt and put a higher weight on IB penalty. Overall, we can conclude
that IB-ERM improves over ERM (significantly in FIIF and marginally in PIIF settings), and IB-IRM
improves over IRM (improves in FIIF settings and retains advantages in PIIF settings).

Remark. As we move from three to six environments, we observe that MSE in Example 1/1S exhibits
a larger variance. This is because of the way data is generated, the new environments that are sampled
have labels that have a higher noise level (we follow the same procedure as in Aubin et al. (2021)).

6 Extensions, limitations, and future work
Extension to non-linear models and multi-class classification. In this work our theoretical analysis
focused on linear models. Consider the map X ← S(Zinv, Zspu) in Assumption 2. Suppose S is
non-linear and bijective. We can divide the learning task into two parts a) invert S to obtain Zinv, Zspu

and b) learn a linear model that only relies on the invariant features Zinv to predict the label Y . For

9We place Terra Incognita and COCO dataset in the FIIF assuming that the humans who labeled the images
did not need to rely on unreliable/spurious features such as background to generate the labels.
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#Envs ERM IB-ERM IRM IB-IRM Oracle

Example1 3 13.36 ± 1.49 12.96 ± 1.30 11.15± 0.71 11.68 ± 0.90 10.42±0.16
Example1s 3 13.33 ± 1.49 12.92 ± 1.30 11.07 ± 0.68 11.74 ± 1.03 10.45±0.19
Example2 3 0.42 ± 0.01 0.00 ± 0.00 0.45 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Example2s 3 0.45 ± 0.01 0.00 ± 0.01 0.45 ± 0.01 0.06 ± 0.12 0.00 ± 0.00
Example3 3 0.48 ± 0.07 0.49 ± 0.06 0.48 ± 0.07 0.48 ± 0.07 0.01 ± 0.00
Example3s 3 0.49 ± 0.06 0.49 ± 0.06 0.49 ± 0.07 0.49 ± 0.07 0.01 ± 0.00

Example1 6 33.74 ± 60.18 32.03 ± 57.05 23.04 ± 40.64 25.66 ± 45.96 22.21±39.25
Example1s 6 33.62 ± 59.80 31.92 ± 56.70 22.92 ± 40.60 25.60 ± 45.62 22.13±38.93
Example2 6 0.37 ± 0.06 0.02 ± 0.05 0.46 ± 0.01 0.43 ± 0.11 0.00±0.00
Example2s 6 0.46 ± 0.01 0.02 ± 0.06 0.46 ± 0.01 0.45 ± 0.10 0.00±0.00
Example3 6 0.33 ± 0.18 0.26 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.01±0.00
Example3s 6 0.36 ± 0.19 0.27 ± 0.20 0.14 ± 0.18 0.19 ± 0.19 0.01±0.00

Table 3: Comparisons on linear unit tests in terms of mean square error (regression) and classification
error (classification). “#Envs” means the number of training environments.

ERM IB-ERM IRM IB-IRM

CS-CMNIST 60.27 ± 1.21 71.80 ± 0.69 61.49 ± 1.45 71.79 ± 0.70
AC-CMNIST 16.84 ± 0.82 50.24 ± 0.47 66.98 ± 1.65 67.67 ± 1.78
Terra Incognita 49.80 ± 4.40 56.40 ± 2.10 54.60 ± 1.30 54.10 ± 2.00
COCO 22.70 ± 1.04 31.66 ± 2.39 18.47 ± 10.20 25.10 ± 1.03

Table 4: Classification accuracy percentage on colored MNISTs, Terra Incognita and COCO dataset.

part b), we can rely on the approaches proposed in this work. For part a), we need to leverage
advancements in the field of non-linear ICA (Khemakhem et al., 2020). The current state-of-the-art
to solve part a) requires strong structural assumptions on the dependence between all the components
of Zinv, Zspu (Lu et al., 2021). Therefore, solving part a) and part b) in conjunction with minimal
assumptions forms an exciting future work. In the entire work, the discussion was focused on binary
classification tasks and regression tasks. For multi-class classification settings, we consider natural
extension of the SEM in Assumption 2 (See the Appendix) and our main results continue to hold.

On the choice for IB penalty and IRMv1 penalty. We use the approximation for entropy (in
equation (7)) described in Kirsch et al. (2020). The approximation (even though an upper bound)
serves as an effective proxy for the true information bottleneck as shown in the experiments in Kirsch
et al. (2020) (e.g., see their experiment on Imagenette dataset). Also, our experiments validate this
approximation even in moderately high dimensions, as an example in CS-CMNIST, the dimension
of the layer at which bottleneck constraints are applied is 256. Developing tighter approximations
for information bottleneck in high dimensions and analyzing their impact on OOD generalization is
an important future work. In recent works (Rosenfeld et al., 2021b; Kamath et al., 2021; Gulrajani
and Lopez-Paz, 2021), there has been criticism of different aspects of IRM, e.g., failure of IRMv1
penalty in non-linear models, the tuning of IRMv1 penalty, etc. Since we use IRMv1 penalty in our
proposed loss, these criticisms apply to our objective as well. Other approximations of invariance
have been proposed in the literature (Koyama and Yamaguchi, 2020; Ahuja et al., 2020; Chang et al.,
2020). Exploring their benefits together with information bottleneck is a fruitful future work. Before
concluding, we want to remark that we have already discussed the closest related works. However,
we also provide a detailed discussion of the broader related literature in the Appendix.

7 Conclusion
In this work, we revisited the fundamental assumptions for OOD generalization for settings when
invariant features capture all the information about the label. We showed how linear classification
tasks are different and need much stronger assumptions than linear regression tasks. We provide
a sharp characterization of performance of ERM and IRM under different assumptions on support
overlap of invariant and spurious features. We showed that support overlap of invariant features is
necessary or otherwise OOD generalization is impossible. However, ERM and IRM seem to fail
even in the absence of support overlap of spurious features. We prove that a form of the information
bottleneck constraint along with invariance goes a long way in overcoming the failures while retaining
the existing provable guarantees.
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A Appendix

Organization. In Section A.1, we discuss the societal impact of this work. In Section A.2, we
provide further details on the experiments. In Section A.3, we provide a detailed discussion on
structural equation models and the linear general position assumption used to prove Theorem 1. In
Section A.4, we first cover the notations used in the proofs, followed by some technical remarks to be
kept in mind for all the proofs, and then we provide the proof of the impossibility result in Theorem
2. In Section A.5, we provide the proof for sufficiency and insufficiency characterization of ERM and
IRM discussed in Theorem 3. In Section A.6, we provide the proof for Theorem 4, which compares
IB-IRM, IB-ERM with IRM and ERM. In Section A.7, we discuss the step-by-step derivation of the
final objective in equation (7). In Section A.8, we provide the proof for Theorem 5, which compares
the impact of information bottleneck penalty on the learning speed. In Section A.9, we provide an
analysis of settings when both IRM and IB penalty work together in conjunction. Also, at the end
of each section describing a proof, we provide remarks on various aspects, including some simple
extensions that our results already cover. Although in the main manuscript we covered the relevant
related works, in Section A.10, we provide a more detailed discussion on other related works.

A.1 Societal impact

When machine learning models are deployed to assist in making decisions in safety-critical applica-
tions (e.g., self-driving cars, healthcare, etc.), we want to ensure that they make decisions that can
be trusted well beyond the regime of the training data that they are exposed to. The models used in
current practice are prone to exploiting spurious correlations/shortcuts in arriving at decisions and are
thus not always reliable. In this work, we took some steps towards building a well-founded theory
and proposing methods based on the same that can eventually help us build machines that work well
beyond the training data regime. At this point, we do not anticipate a negative impact specifically of
this work.

A.2 Experiments details

In this section, we provide further details on the experiments. The codes to reproduce the exper-
iments is provided at https://github.com/ahujak/IB-IRM. We have also added the codes to
DomainBed (https://github.com/facebookresearch/DomainBed).

A.2.1 Datasets

We first describe the datasets (Example 1/1S, Example 2/2S, Example 3/3S) introduced in Aubin
et al. (2021); these datasets are referred to as the linear unit tests. The results for linear unit tests are
presented in Table 3.

Example 1/1S (PIIF). This example follows the linear regression SEM from Assumption 1. The
dataset in environment e ∈ Eall is sampled from the following

Zeinv ∼ Nm(0, (σe)2), Ỹ e ∼ Nm(WyzZ
e
inv, (σ

e)2),

Zespu ∼ No(WzyỸ
e, 1), Ze ← (Zeinv, Z

e
spu),

Y e ← 2

(m+ o)
1T
mỸ

e, Xe ← S(Ze),

where Wyz ∈ Rm×m, Wzy ∈ Ro×m are matrices drawn i.i.d. from the standard normal distribution,
1m ∈ Rm is a vector of ones, Nk is a k dimensional vector from the normal distribution. For the first
three environments (e0, e1, e2), the variances are fixed as (σe0)2 = 0.1, (σe1)2 = 1.5, and (σe2)2 =
2.0. When the number of environments is greater than three, then (σej )2 ∼ Uniform(10−2, 10).
The scrambling matrix S is set to identity in Example 1 and a random unitary matrix is selected to
rotate the latents in Example 1S. In the above dataset, the invariant features are causal and partially
informative about the label. The spurious features are anti-causally related to the label and carry extra
information about the label not contained in the invariant features.

Example 2/2S (FIIF). This example follows the linear classification SEM from Assumption 2 with
zero noise. The dataset generalizes the 2D cow versus camel classification task in equation (4). Let
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θcow = 1m, θcamel = −θcow, νanimal = 10−2,

θgrass = 1o, θsand = −θgrass, νbackground = 1.

The dataset in environment e ∈ Eall is sampled from the following distribution

Ue ∼ Categorical
(
pese, (1− pe)se, pe(1− se), (1− pe)(1− se)

)
,

Zeinv ∼
{

(Nm(0, 0.1) + θcow)νanimal if Ue ∈ {1, 2},
(Nm(0, 0.1) + θcamel)νanimal if Ue ∈ {3, 4},

Zespu ∼
{

(No(0, 0.1) + θgrass)νbackground if Ue ∈ {1, 4},
(No(0, 0.1) + θsand)νbackground if Ue ∈ {2, 3},

Ze ← (Zeinv, Z
e
spu), Xe ← S(Ze),

Y e ← I(1T
mZ

e
inv),

where for the first three environments the background parameters are pe0 = 0.95, pe1 = 0.97,
pe2 = 0.99 and the animal parameters are se0 = 0.3, se1 = 0.5, se2 = 0.7. When the number
of environments are greater than three, then pej ∼ Uniform(0.9, 1), and sej ∼ Uniform(0.3, 0.7).
The scrambling matrix S is set to identity in Example 2 and a random unitary matrix is selected to
rotate the latents in Example 2S. In the above dataset, the invariant features are causal and carry full
information about the label. The spurious features are correlated with the invariant features through a
confounding selection bias Ue.

Example 3/3S (PIIF). This example is a classification problem following the SEM assumed in
(Rosenfeld et al., 2021b). The example is meant to present a linear version of the spiral classification
problem in (Parascandolo et al., 2021). Let θinv = 0.1 · 1m, and θespu ∼ No(0, 1) for all the
environments. The dataset in environment e ∈ Eall is sampled from the following distribution

Y e ∼ Bernoulli
(1

2

)
,

Zeinv ∼
{
Nm(+θinv, 0.1) if Y e = 0,

Nm(−θinv, 0.1) if Y e = 1,

Zespu ∼
{
No(+θespu, 0.1) if Y e = 0,

No(−θespu, 0.1) if Y e = 1,
,

Ze ← (Zeinv, Z
e
spu), Xe ← S(Ze).

(8)

The scrambling matrix S is set to identity in Example 3 and a random unitary matrix is selected to
rotate the latents in Example 3S. In the above dataset, the invariant features are anti-causally related
to the label Y e. The spurious features carry extra information about the label not contained in the
invariant features.

AC-CMNIST dataset (PIIF). We follow the same construction as was proposed in Arjovsky et al.
(2019). We set up a binary classification task– identify whether the digit is less than 5 (not including
5) or more than 5. There are three environments – two training environments containing 25,000 data
points each, one test environment containing 10,000 points. Define a preliminary label Ỹ = 0 if the
digit is between 0-4 and Ỹ = 1 if the digit is between 5-9. We add noise to this preliminary label
by flipping it with a 25 percent probability to construct the final label. We flip the final labels to
obtain the color id Zespu, where the flipping probabilities are environment-dependent. The flipping
probabilities are 0.2, 0.1, and 0.9, in the first, second, and third environment respectively. The third
environment is the testing environment. If Zespu = 1, we color the digit red, otherwise we color it to
be green. In this dataset, the color (spurious feature) carries extra information about the label not
contained in the uncolored image.

CS-CMNIST dataset (FIIF). We follow the same construction based on Ahuja et al. (2021b), except
instead of a binary classification task, we set up a ten-class classification task, where the ten classes are
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the ten digits. For each digit class, we have an associated color.10 There are also three environments
– two training environments containing 20,000 data points each, one test containing 20,000 points.
In the two training environments, the pe is set to 1.0 and 0.9, i.e., given the digit label the image is
colored with the associated color with probability pe and with a random color with probability 1− pe.
In the testing environment, the pe is set to 0, i.e., all the images are colored completely at random. In
this dataset, the color (spurious feature) does not carry any extra information about the label that is
not already contained in the uncolored image.

Terra Incognita dataset (FIIF). This dataset is a subset of the Caltech Camera Traps dataset (Beery
et al., 2018) as formulated in Gulrajani and Lopez-Paz (2021). We set up a ten-class classification
task for 3× 224× 224 images - identifying between 9 different species of wild animal and no animal
({ bird, bobcat, cat, coyote, dog, empty, opossum, rabbit, raccoon, squirrel}). There are four domains
- {L100, L38, L43, L46} - which represents different locations of the cameras in the American
Southwest. For a given location the background never change, except for illumination difference
across the time of day and vegetation changes across seasons. The data is unbalanced in the number
of images per location, distribution of species per location, and distribution of species overall.

COCO dataset (FIIF). We use COCO on colours dataset described in Ahmed et al. (2021) (See the
details in Appendix A.2 of Ahmed et al. (2021)). There are ten object classes and for each object
class there is a majority color associated with it, i.e., an object class assumes the background color
assigned to it with 0.8 probability. At test time, the object backgrounds are colored randomly with
colors different from the ones seen in training.

A.2.2 Training and evaluation procedure

Example 1/1S, 2/2S, 3/3S. We follow the same protocol as was prescribed in Aubin et al. (2021)
for the model selection, hyperparameter selection, training, and evaluation. For all three examples,
the models used are linear. The training loss is the square error for the regression setting (Example
1/1S), and binary cross-entropy for the classification setting (Example 2/2S, 3/3S). For the two new
approaches, IB-IRM, and IB-ERM, there is a new hyperparameter γ associated with the Var(Φ)
term in the final objective in equation (7). We use random hyperparameter search and use 20
hyperparameter queries and average over 50 data seeds; these numbers are the same as what was
used in Aubin et al. (2021). We sample the γ from 1 − 10Uniform(−2,0) following the practice in
unit test experiments (Aubin et al., 2021). Note that the hyperparameters are trained using training
environment distribution data, which is called the train-domain validation set evaluation procedure in
Gulrajani and Lopez-Paz (2021). For the evaluation of performance on Example 1/1s, we reported
mean square errors and standard deviations. For the evaluation of performance on Example 2/2S,
Example 3/3s, we reported classification errors and standard deviations.

AC-CMNIST dataset. We use the default MLP architecture from https://github.com/
facebookresearch/InvariantRiskMinimization. There are two fully connected layers each
with output size 256, ReLU activation, and `2-regularizer coefficient of 1e − 3. These layers are
followed by the output layer of size two. We use Adam optimizer for training with a learning rate set
to 1e−3. We optimize the cross-entropy loss function. We set the batch size to 256. The total number
of steps is set to 500. We use grid search to search the following hyperparameters, λ for IRMv1
penalty, and γ for the IB penalty. For IRM, we need to select the IRMv1 penalty λ, we set a grid of 25
values uniformly spaced in the interval [1e− 1, 1.8e4]. For IB-ERM, we need to select the IB penalty
γ, we set a grid of 25 values uniformly spaced in the interval [1e− 1, 1.8e4]. For IB-IRM, we need to
select both λ and γ, we set a 5× 5 uniform grid that searches over [1e− 1, 1.8e4]× [1e− 1, 1.8e4].
Thus for IB-IRM, IB-ERM, and IRM, we search over 25 hyperparameter values. There are two
procedures we tried to tune the hyperparameters – a) train-domain validation set tuning procedure
(Gulrajani and Lopez-Paz, 2021) which takes samples from the same distribution as train domain and
does limited model queries (we set 25 queries), b) oracle test-domain validation set hyperparameter
tuning procedure (Gulrajani and Lopez-Paz, 2021), which takes samples from the same distribution
as test domain and does limited model queries (we set 25 queries). In Arjovsky et al. (2019), the
authors had used oracle test-domain validation set-based tuning, which is not ideal and is a limitation
of all current approaches on AC-CMNIST. We used the same procedure in Table 4 (5 percent of the
total data 50000 follows the test environment distribution). In Section A.2.3, we show the results for

10The list of the RGB values for the ten colors are: [0, 100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0,
255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147], [160, 160, 160].
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all the methods when we use train-domain validation set tuning. For the evaluation, we reported the
accuracy and standard deviations (averaged over thirty trials).

CS-CMNIST dataset. We use a ConvNet architecture with three convolutional layers with feature
map dimensions of 64,128 and 256. Each convoluional layer is followed by a ReLU activation and
batch normalization layer. The final output layer is a linear layer with output dimension equal to the
number of classes. We use SGD optimizer for training with a learning rate set to 1e− 1 and decay
every 600 steps. We optimize the cross-entropy loss function without weight decay. We set the batch
size to 128. The total number of steps is set to 2000. We use grid search to search the following
hyperparameters, λ for IRMv1 penalty, and γ for the IB penalty. For IRM, we need to select the
IRMv1 penalty λ, we set a grid of 25 values uniformly spaced in the interval [1e − 1, 1.8e4]. For
IB-ERM, we need to select the IB penalty γ, we set a grid of 25 values uniformly spaced in the
interval [1e − 1, 1.8e4]. For IB-IRM, we need to select both λ and γ, we set a 5 × 5 uniform grid
that searches over [1e− 1, 1.8e4]× [1e− 1, 1.8e4]. Thus for IB-IRM, IB-ERM, and IRM, we search
over 25 hyperparameter values. In the paragraph above, we described that for AC-CMNIST all the
procedures only work when using the oracle test-domain validation procedure. In the results of the
CS-CMNIST experiment in the main manuscript, we showed results for the train domain validation
procedure and found that IB-IRM and IB-ERM yield better performance. For completeness, we also
carried oracle test-domain validation procedure-based hyperparameter tuning for CS-CMNIST and
the results are discussed in Section A.2.3. For the evaluation, we reported accuracy and standard
deviations (averaged over five trials). In both CMNIST datasets, we had experimented with placing
the IB penalty at the output layer (logits) and the penultimate layer (layer just before the logits), and
found that it is much more effective to place the IB penalty on the penultimate layer. Thus in both the
CMNIST datasets, the results presented use IB penalty on the penultimate layer.

Terra Incognita dataset. We use the pretrained ResNet-50 model as a featurizer that outputs feature
maps of size 2048 for a given image on top of which we add a 1 layer MLP which makes the
classification (2048 → 9). We use a random hyper parameter sweep over 20 random hyperparameter
configurations on which we look at the train-domain validation set to perform model selection, as
described in Gulrajani and Lopez-Paz (2021). The distribution of the hyper parameters are shown in
Table 5. Results shown in Table 4 are for the environment L100 as test environment, the reported
accuracies are averaged over 3 random trial seed. For both the information bottleneck penalized
algorithms (IB-ERM and IB-IRM), we apply the penalty on the feature map given by the featurizer,
conditional on the environment.

Table 5: Hyperparameters distributions for random search given included penalty of the algorithm.

Penalty Parameter Random distribution

All
dropout RandomChoice([0, 0.1, 0.5])
learning rate 10Uniform(−5,−3.5)

batch size 2Uniform(3,5.5)

weight decay 10Uniform(−6,−2)

IRMv1 penalty weight 10Uniform(−1,5)

annealing steps 10Uniform(0,4)

IB penalty weight 10Uniform(−1,5)

annealing steps 10Uniform(0,4)

COCO dataset. Other than the IB penalty, we use the exact same hyperparameters (default values)
and setup as describe in Appendix B.2 of Ahmed et al. (2021) paper and the codebase that Ahmed
et al. (2021) paper provides. For all experiments that involve an IB loss term component, IB penalty
weighting of 1.0 is used and IB penalty weighting is linearly ramped up to 1.0 from epoch 1 to 200.
For all experiments that involve an IRM loss term component, IRM penalty weighting of 1.0 is used,
and IRM penalty weighting is linearly ramped up to 1.0 from epoch 1 to 200. Batch size of 64 is
used for all experiments. We do not tune the hyperparameters in this experiment. Mean and standard
deviation of classification accuracy are obtained via 4 seeds for each method.
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A.2.3 Supplementary experiments

AC-CMNIST. In the AC-CMNIST dataset, for completeness, we report the accuracy of the Oracle
model, where the Oracle model at train time is fed images where the background colors do not have
any correlation with the label. Oracle model achieved a test accuracy 70.39±0.47 percent. In Table 5,
we provide the supplementary experiments for AC-CMNIST carried out with train-domain validation
set tuning procedure (Gulrajani and Lopez-Paz, 2021). It can be seen that none of the methods work
in this case. In Table 6, we provide the supplementary experiments for AC-CMNIST carried out
with test-domain validation set tuning procedure (Gulrajani and Lopez-Paz, 2021). In this case, both
IB-IRM and IRM perform well.

Method 5% 10% 15% 20%
ERM 17.17± 0.62 18.06± 1.72 18.74± 1.23 19.11± 1.18

IB-ERM 17.69± 0.54 17.80± 1.81 16.27± 1.20 18.18± 1.46
IRM 16.48± 2.50 17.85± 1.67 17.32± 2.12 18.09± 2.78

IB-IRM 18.37± 1.44 17.83± 0.65 18.54± 1.42 19.24± 1.49
Table 6: AC-CMNIST. Comparisons of the methods using the train-domain validation set tuning
procedure (Gulrajani and Lopez-Paz, 2021). The percentages in the columns indicate what fraction
of the total data (50000 points) is used for validation.

Method 5% 10% 15% 20%
ERM 16.84± 0.82 17.01± 0.83 16.79± 0.89 16.27± 0.93

IB-ERM 50.24± 0.47 50.25± 0.46 50.52± 0.45 50.34± 0.56
IRM 66.98± 1.65 67.57± 1.39 67.01± 1.86 67.29± 1.62

IB-IRM 67.67± 1.78 68.22± 1.62 67.56± 1.71 67.24± 1.36
Table 7: CS-CMNIST. Comparisons of the methods using the oracle test-domain validation set tuning
procedure (Gulrajani and Lopez-Paz, 2021). The percentages in the columns indicate what fraction
of the total data (50000 points) is used for validation.

AC-CMNIST. In the CS-CMNIST dataset, for completeness, we report the accuracy of the Oracle
model, which achieved a test accuracy of 99.03± 0.08 percent. In Table 7, we provide the supple-
mentary experiments for CS-CMNIST carried out with train-domain validation set tuning procedure
(Gulrajani and Lopez-Paz, 2021). In Table 8, we provide the supplementary experiments for CS-
CMNIST carried out with test-domain validation set tuning procedure (Gulrajani and Lopez-Paz,
2021). In both cases, both IB-IRM and IB-ERM RM perform well. Unlike AC-CMNIST, in the
CS-CMNIST dataset both the validation procedures lead to a similar performance.

Method 5% 10% 15% 20%
ERM 60.27± 1.21 61.02± 0.59 60.35± 1.01 58.59± 1.67

IB-ERM 71.80± 0.69 71.51± 1.01 71.27± 1.04 70.68± 1.02
IRM 61.49± 1.45 61.74± 1.28 60.01± 0.59 59.96± 0.96

IB-IRM 71.79± 0.70 71.57± 1.01 71.37± 0.62 70.65± 0.90
Table 8: CS-CMNIST. Comparisons of the methods using the train-domain validation set tuning
procedure (Gulrajani and Lopez-Paz, 2021). The percentages in the columns indicate what fraction
of the total data (50000 points) is used for validation.

Method 5% 10% 15% 20%
ERM 61.27± 1.40 61.02± 1.59 60.35± 1.01 58.59± 1.67

IB-ERM 71.65± 0.76 71.68± 1.23 71.27± 0.89 70.07± 1.18
IRM 62.00± 1.60 62.01± 1.33 60.26± 0.51 59.96± 0.96

IB-IRM 71.90± 0.78 71.07± 0.95 71.18± 0.80 70.75± 1.00
Table 9: CS-CMNIST. Comparisons of the methods using the oracle test-domain validation set tuning
procedure (Gulrajani and Lopez-Paz, 2021). The percentages in the columns indicate what fraction
of the total data (50000 points) is used for validation
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Figure 4: Illustrating the impact of the IB and IRM penalty on linear unit tests (Aubin et al., 2021)

Ablation to understand the role of invariance penalty and information bottleneck. In the main
body, we compared IB-IRM, IB-ERM, IRM, and ERM with the penalty of the respective methods
tuned using the validation procedures from Gulrajani and Lopez-Paz (2021). In this section, we carry
out an ablation analysis on linear unit tests (Aubin et al., 2021) to understand the role of the different
penalties. In Figure 4, for each example we consider the setting with six environments and show four
points on a square with corresponding performance values. The bottom corner corresponds to ERM
when both penalties are turned off, top corner is when both penalties are turned on, and the other two
corners are when one of the penalties are on. In Example 1, which corresponds to PIIF setting, we
find that IRM penalty alone helps the most. In Example 2, which corresponds to FIIF setting, we find
that IB penalty helps the most. In Example 3, which again corresponds to PIIF, we find that both
penalties help.

A.2.4 Compute description

Our computing resource is one Tesla V100-SXM2-16GB with 18 CPU cores.

A.2.5 Assets used and the license details

In this work, we mainly relied on the following github repositories – Domainbed11, IRM 12, linear
unit tests13. All the repositories mentioned above use the MIT license. We used the standard MNIST
dataset 14 to generate the colored MNIST datasets. Other datasets we used are synthetic.

11https://github.com/facebookresearch/DomainBed based on Gulrajani and Lopez-Paz (2021)
12https://github.com/facebookresearch/InvariantRiskMinimization based on Arjovsky et al.

(2019)
13https://github.com/facebookresearch/InvarianceUnitTests based on Aubin et al. (2021)
14http://yann.lecun.com/exdb/mnist/
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A.3 Background on structural equation models

For completeness, we provide a more detailed background on structural equation models (SEMs),
which is borrowed from Arjovsky et al. (2019).

A.3.1 Structural equation models and assumptions on Eall

Definition 1. A structural equation model C = (S, N) that describes the random vector X =
(X1, . . . , Xd) is given as follows

Si : Xi ← fi(Pa(Xi), Ni), (9)
where Pa(Xi) are the parents of Xi, Ni is independent noise, and N = (N1, . . . , Nd) is the noise
vector. Xj is said to cause Xi if Xj ∈ Pa(Xi). We draw the causal graph by placing one node for
each Xi and drawing a directed edge from each parent to the child. The causal graphs are assumed
to be acyclic.
Definition 2. An intervention e on C is the process of replacing one or several of its structural
equations to obtain a new intervened SEM Ce = (Se, Ne), with structural equations given as

Sei : Xe
i ← fei (Pa(Xe

i ), Ne
i ), (10)

where the variable Xe
i is said to be intervened if Si 6= Sei or Ni 6= Ne

i

The above family of interventions are used to model the environments.
Definition 3. Consider a SEM C that describes the random vector (X,Y ), whereX = (X1, . . . , Xd),
and the learning goal is to predict Y fromX . The set of all environments obtained using interventions
Eall(C) indexes all the interventional distributions Pe, where (Xe, Y e) ∼ Pe. An intervention e is
valid if the following conditions are met: i) the causal graph remains acyclic, ii) E[Y e|Pa(Y )] =
E[Y |Pa(Y )], i.e. expectation conditional on parents is invariant, and the variance Var[Y e|Pa(Y )]
remains within a finite range.

Following the above definitions it is possible to show that a predictor that relies on causal parents
only v : Rd → Y and is given as v(x) = E[fY (Pa(Y ), NY )] solves the OOD generalization problem
in equation (1) over the environments Eall(C) that form valid interventions as stated in Definition 3.
Next, we provide an example to show why v is OOD optimal.

Example to illustrate why predictors that rely on causes are robust. We reuse the toy example
from Arjovsky et al. (2019) to explain why models that rely on causes are more robust to valid
interventions Eall discussed in the previous section.

Y e ← Xe
inv + εe

Xe
spu ← Y e + ζe

(11)

whereXe
inv ∈ N (0, (σe)2) is the cause of Y e,Ne ∈ N (0, (σe)2) is noise,Xe

spu is the effect of Y e and
ζe ∈ N (0, 1) is also noise. Suppose there are two training environments Etr = {e1, e2}, in the first
(σe1)2 = 1 and in the second (σe2)2 = 2. The three possible models winvX

e
inv + wspuX

e
spu we could

build are as follows: a) regress only on Xe
inv, then in the optimal model winv = 1, wspu = 0, b) regress

only on Xe
spu and get winv = 0, wspu = σ2

(σe)2+ 1
2

, c) regress on (Xe
inv, X

e
spu) to get winv = 1

(σe)2+1

and winv = (σe)2

(σe)2+1 . Observe that the predictor that focuses on the cause only does not depend on
σ2 and is thus invariant to distribution shifts induced by change in (σe)2, which is not the case with
the other models. For environment in Eall \ Etr we can change the distribution of Xe

inv and Xe
spu

arbitrarily. Consider an environment e ∈ Eall where Xe
spu is set to a very large constant c, the square

error of the model that relies on spurious features grows with the magnitude of c but the error of the
model that relies on Xe

inv does not change. Another remark we would like to make here is that in the
main manuscript, we defined the notions of invariant feature map Φ∗, and spurious feature map Ψ∗.
Observe that in this example Φ∗(Xe) = Xe

inv, and Ψ∗(Xe) = Xe
spu.

A.3.2 Remark on the linear general position assumption and its implications on support
overlap

In Theorem 1 that we informally stated from Arjovsky et al. (2019), there is one more technical
condition on that we explain below. We also explain how this assumption does not restrict the support
of the latents Ze from changing arbitrarily.
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Assumption 8. Linear general position. A set of training environments Etr lie in a linear general
position of degree r if |Etr| > d− r + d

r for some r ∈ N and for all non-zero x ∈ Rd

dim

(
span

({
EXe [XeXeT]x− EXeεe [Xeεe]

}
e∈Etr

))
> d− r. (12)

The above assumption merely requires non-co-linearity of the training environments only. The
set of matrices EXe [XeXeT] not satisfying this assumption have a zero measure (Theorem 10
Arjovsky et al. (2019)). Consider the case when S is identity and observe that the above assumption
translates to only a restriction on co-linearity of EZe [ZeZeT], where Ze = (Zeinv, Z

e
spu). Assume that

EZe [ZeZeT] is positive definite. We explain how this Assumption 8 does not constraint the support
of the latent random variables Ze. From the set of matrices EZe [ZeZeT] and EZe [Zeεe] that satisfy
the Assumption 8, we can construct another set of matrices with norm one that satisfy the above
Assumption 8. Define a random variable Z̃e = Ze

c and the matrices corresponding to it also satisfy
the Assumption 8, where c =

√
‖EZe [ZeZeT]‖.

For all non-zero z ∈ R,

dim

(
span

({
EZe [ZeZeT]z − EZeεe [Zeεe]

}
e∈Etr

))
> d− r =⇒

dim

(
span

({
EZ̃e [Z̃

eZ̃eT]z̃ − EZ̃eεe [Z̃
eεe]
}
e∈Etr

))
> d− r,

(13)

where z̃ = zc. Define Σe = E[ZeZeT] (Σ̃e = E[Z̃eZ̃eT]) and ρe = E[Zeεe] (ρ̃e = E[Z̃eεe]).
Observe that ‖Σ̃e‖ = 1. So far we established that if there exist a set of matrices {Σe, ρe}e∈Etr
satisfying the linear general position assumption (Assumption 8), then it also implies that there
exist a set of matrices {Σ̃e, ρ̃e}e∈Etr , where ‖Σ̃e‖ = 1, that satisfy the linear general position
assumption (Assumption 8). Next, we will show that the set of matrices {Σ̃e}e∈Etr , {ρ̃e}e∈Etr can be
constructed from random variables with bounded support. We will show that Σ̃e can be constructed by
transforming a uniform random vector. Define a uniform random vector Ke, where each component
Ke
i ∼ Uniform[−

√
3,
√

3]. Define Z̄e = BKe. Observe that

E[Z̄eZ̄e,T] = BBt. (14)
Since every positive definite matrix can be decomposed as BBt, we can use matrix B to construct
the required Σ̃e. Since ‖Σ̃e‖ = 1, we get ‖BBt‖| = 1 =⇒ ‖B‖ = 1. Also, ‖Z̄e‖ ≤ ‖B‖‖Ke‖ =
‖Ke‖. Having fixed the matrix B above, we use it to set the correlation E[Keεe]

BE[Keεe] = ρ̃e =⇒ E[Keεe] = B−1ρ̃e (15)

Thus we can conclude without loss of generality that from any set of matrices {Σe, ρe}e∈Etr satisfying
the linear general position assumption, we can construct random variables with bounded support
that satisfy the linear general position assumption. By solving IRM (equation (3)) over such training
environments with bounded support, we can still recover the ideal invariant predictor that solves
the OOD generalization problem in equation (1) (i.e., @e ∈ Eall for which risk > σ2

sup). The above
conditions show that we can have the data in Etr come from a region with bounded support, and the
environments in Eall \ Etr are not required to satisfy support overlap with data from Etr, which is in
stark contrast to the linear classification results that we showed.
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A.4 Notations and proof of Theorem 2 (impossibility of guaranteed OOD generalization for
linear classification)

Notations for the proofs. We describe the common notations used in the proofs that follow. We also
remind the reader of the notation from the main manuscript for convenience. ◦ is used to denote the
composition of functions, · is used for matrix multiplication. Pe denotes the probability distribution
over the input feature valuesXe, and the labels Y e in environment e. Ze describes the latent variables
decomposed into (Zeinv, Z

e
spu). S is the matrix relating Xe and Ze and Xe = S(Ze). w denotes a

linear classifier, Φ denotes the representation map that transforms input data into a representation,
which is then fed to the classifier. I is the indicator function, which takes a value 1 when the input
is greater than or equal to zero, and 0 otherwise. sgn is the sign function, which takes a value 1
when the input is greater than or equal to zero, and −1 otherwise. In all the results, except for
Theorem 5, we use ` as 0-1 loss for classification, and square loss for regression. For a discrete
random variable X ∈ Rd, the support is defined as X = {x ∈ Rd | PX(x) > 0}, where PX(x)
is the probability of X = x. For a continuous random variable X ∈ Rd, the support is defined as
X = {x ∈ Rd | dPX(x) > 0}, where dPX(x) is the Radon-Nikodym derivative of PX w.r.t the
Lebesgue measure over the completion of the Borel sets in Rd (Ash and Doléans-Dade, 2000). Ze,
Zeinv, Zespu, and X e are the support of Ze, Zeinv, Zespu, and Xe respectively in environment e.

Remark on Assumption 2. In all the proofs that follow, we assume that the dimension of invariant
feature m is greater than or equal to 2. Also, all the components w∗inv are non-zero without loss
of generality (if some component was zero, then such a latent can be a part of Zespu. X = Rd and
Y = {0, 1} for classification and Y = R for regression. Before we can prove Theorem 2, we need to
prove intermediate lemmas needed as preliminary results for it.

Define

Winv =
{

(winv, 0) ∈ Rm+o
∣∣ ‖winv‖ = 1, ∀zinv ∈ ∪e∈EtrZeinv, I

(
w∗inv ·zinv

)
= I
(
winv ·zinv

)}
(16)

This set Winv defines a family of hyperplanes equivalent to the labelling hyperplane w∗inv on the
training environments. Define a classifier g∗ : X → Y as

g∗ = I ◦
((
w∗inv, 0

)
◦ S−1

)
(17)

The classifier g∗ takes Xe as input and outputs I(w∗inv · Zeinv).
Lemma 1. If we consider the set of all the environments that follow Assumption 2, then the classifier
based on the labelling hyperplane g∗ solves equation (1) and achieves a risk of q in each environment.

Proof of Lemma 1. Observe that g∗ is the classifier one would get by solving for the Bayes
optimal classifier on each environment. The justification goes as follows. If w∗inv · Zeinv ≥ 0, then
P(Y e = 0|Xe) < P(Y e = 1|Xe) (since q < 1

2 ), which implies the prediction is 1. If w∗inv ·Zeinv < 0,
then P(Y e = 1|Xe) < P(Y e = 0|Xe), which implies the prediction is 0. We show that g∗ achieves
an error of q in each environment,

Re(g∗) = E
[
Y e ⊕ I(w∗inv · Zeinv)

]
= E

[(
I(w∗inv · Zeinv)⊕Ne

)
⊕ I(w∗inv · Zeinv)

]
= q.

(18)

Define F to be the set of all the maps Rd → Y . From the equation (18) we get,

∀e ∈ Eall,∀f ∈ F , Re(f) ≥ q,
=⇒ ∀f ∈ F , max

e∈Eall
Re(f) ≥ q,

=⇒ min
f∈F

max
e∈Eall

Re(f) ≥ q.
(19)

g∗ achieves the lower bound above as it achieves an error of q in each environment. This completes
the proof.

We relax the Assumption 2 to the case where we allow for spurious features to carry extra information
about the label.
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Assumption 9. Linear classification structural equation model. (PIIF) In each e ∈ Eall,

Y e ← I
(
w∗inv · Zeinv

)
⊕Ne, Ne ∼ Bernoulli(q), q <

1

2
, Ne ⊥ Zeinv,

Xe ← S
(
Zeinv, Z

e
spu

)
.

(20)

Observe that the SEM above in Assumption 9 is analogous the the SEM in Assumption 1. Also,
observe that in the above SEM ∃ e such that Ne 6⊥ Zespu, which makes the invariant features partially
informative about the label. We show that the Lemma 1 extends to the above SEMs (Assumption 9)
as well.
Lemma 2. If we consider the set of all the environments that follow Assumption 9, then g∗ solves
equation (1) and achieves a risk of q in each environment.

Proof of Lemma 2. Consider the environment e′ ∈ Eall, where Ne′ ⊥ (Ze
′

inv, Z
e′

spu). Observe that in
this environment g∗ is a Bayes optimal classifier and achieves a risk value of q.

∀f ∈ F , Re
′
(f) ≥ q =⇒ ∀f ∈ F , max

e∈Eall
Re(f) ≥ q,

=⇒ min
f∈F

max
e∈Eall

Re(f) ≥ q
(21)

g∗ achieves the lower bound above as it achieves an error of q in each environment. This completes
the proof.
Lemma 3. If Assumption 2, 3, and 7 hold, and m ≥ 2, then the set Winv (eq. (16)) consists of
infinitely many hyperplanes that are not aligned with w∗inv.

Proof of Lemma 3. For each zinv ∈ ∪e∈EtrZeinv define y∗ = sgn(w∗inv · zinv).

From the definition of Inv-Margin in Assumption 7, it follows that ∃ c > 0 such that ∀zinv ∈
∪e∈EtrZeinv

y∗
(
w∗inv · zinv

)
≥ c. (22)

Next, we choose a γ ∈ Rm that is not in the same direction as w∗inv, i.e., @ a ∈ R such that γ = aw∗inv
(such a direction always exists since m ≥ 2). Define the margin of w∗inv + γ w.r.t labels y∗ from w∗inv

y∗
(
w∗inv · zinv + γ · zinv

)
. (23)

Using Cauchy-Schwarz inequality we get

|y∗(γ · zinv)| = |γ · zinv| ≤ ‖γ‖‖zinv‖. (24)

Since the support of the invariant features in training set ∪e∈EtrZeinv is bounded, we set the magnitude
of γ sufficiently small to control y∗

(
γ · zinv

)
. Since ∪e∈EtrZeinv, is bounded ∃ zsup > 0 such that

∀zinv ∈ ∪e∈EtrZeinv, ‖zinv‖ < zsup. If ‖γ‖ ≤ c
2zsup , then from equation (24), we get that for each

zinv ∈ ∪e∈EtrZeinv, |y
(
γ · zinv

)
| ≤ c

2 . Using this we get for each zinv ∈ ∪e∈EtrZeinv

y∗
((
w∗inv + γ

)
· zinv

)
= y∗

(
w∗inv · zinv

)
+ y∗

(
γ · zinv

)
≥ y∗winv · zinv − |y∗γ · zinv| ≥

c

2
. (25)

From equation (22) and (25), we have that

sgn
(
(w∗inv + γ) · zinv

)
= sgn

(
w∗inv · zinv

)
=⇒ I

(
(w∗inv + γ) · zinv

)
= I
(
w∗inv · zinv

)
.

The same condition would also hold if we normalized the classifier. As a result,( 1

‖w∗inv + γ‖
(w∗inv + γ), 0

)
∈ Winv.

Also, observe that we can construct infinite such vectors that belong toWinv. A simple way to check
this this is consider γ

′
= θγ, where θ ∈ (0, 1). The same condition in equation (25) also holds with

γ replaced with γ
′
. We define this set as follows

Winv(γ) =
{( 1

‖w∗inv + θγ‖
(w∗inv + θγ), 0

)
∈ Rm+o

∣∣ θ ∈ [0, 1]
}
, (26)
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and from the reasoning presented above it follows thatWinv(γ) ⊆ Winv. This completes the proof.

We restate Theorem 2 for convenience.
Theorem 6. Impossibility of guaranteed OOD generalization for linear classification. Suppose
each e ∈ Eall follows Assumption 2. If for all the training environments Etr, the latent invariant
features are bounded and strictly separable, i.e., Assumption 3 and 7 hold, then every deterministic
algorithm fails to solve the OOD generalization (eq. (1)), i.e., for the output of every algorithm
∃ e ∈ Eall in which the error exceeds the minimum required value q (noise level).

Proof of Theorem 6. Consider any algorithm, it takes the data from all the training environments as in-

puts and outputs a classifier. We write the algorithm as a map F : ∪∞i=1

(
X×Y

)i
. . . |Etr| times ∪∞i=1(

X ×Y
)i
→ YX , where F takes as input data from each of the training environments and outputs a

classifier, which takes as input a data point from X and outputs the label in Y . For datasets {De}e∈Etr
from the different training environments the output of the learner is F

(
{De}e∈Etr ). For simplicity

of notation, let us denote F
(
{De}e∈Etr ) as f . We first show that if f 6= g∗, where g∗ is defined

in equation (17), then the learner cannot be OOD optimal. Take the point x where the f 6= g∗.
Let z = S−1(x). Define a test environment where Ze = z occurs with probability 1. In such an
environment, the error achieved by f would be 1 − q (E[f ⊕ g∗ ⊕ Ne] = E[1 ⊕ Ne] = 1 − q).
As a result, f cannot solve equation (1). This observation combined with Lemma 1 leads us to the
conclusion that f = g∗ is necessary and sufficient to solve equation (1) when Eall follow Assumption
2.

We define a family of classifiers usingWinv (from eq. (16)) as follows

W†inv =
{
I ◦
(

(w, 0) ◦ S−1
) ∣∣∣ (w, 0) ∈ Winv

}
. (27)

Next, we would like to show that the setW†inv consists of infinitely many distinct functions.

Choose any w
′

inv such that (w
′

inv, 0) ∈ Winv and w
′

inv 6= w∗inv. Define g
′

= I ◦
(

(w
′

inv, 0) ◦ S−1
)

. We

will next show that g∗ 6= g
′
, where g∗ was defined in equation (17).

Define [
w∗inv
w
′

inv

]
zinv =

[
1
−1

]
. (28)

There are two possibilities a) w
′

inv is not aligned with w∗inv in which case the rank of the matrix in the
above equation (28) is two and as a result the range space of the matrix spans all two-dimensional
vectors, b) w

′

inv is aligned with w∗inv but since ‖w′inv‖ = 1, w
′

inv = −w∗inv in which case zinv = w∗inv
solves the above equation (28). In both the cases the equation (28) has a solution. Let the solution of
the above equation (28) be z̃inv. Define x̃ = S · (z̃inv, 0). Therefore, from equation (28) it follows
that g∗(x̃) 6= g

′
(x̃). See the simplification below for the justification.

g∗(x̃) = I
(

(w∗inv, 0) · S−1(x̃)
)

= I(w∗inv · z̃inv) = 1

g
′
(x̃) = I

(
(w
′

inv, 0) · S−1(x̃)
)

= I(w
′

inv · z̃inv) = 0
(29)

We showed above that g∗ ∈ W†inv and g
′ ∈ W†inv are two distinct functions. Recall in Lemma 4, we

showedWinv has infinitely many distinct hyperplanes. We can select any pair of hyperplanesWinv,
for the corresponding functions in the setW†inv the condition in equation (28) continues to hold. Thus
we can conclude that there are infinitely many distinct functions inW†inv.

Recall we described above that an algorithm can successfully solve equation (1), if and only if the
output f = g∗. Observe that the same exact training data {De}e∈Etr can be generated by any other
labelling hyperplane w

′

inv 6= w∗inv, where (w
′

inv, 0) ∈ Winv (this follows from the definition ofWinv in

equation (16)). Define g
′

= I ◦
(

(w
′
, 0) ◦ S−1

)
, where g

′ ∈ W†inv. From the justification above, we
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know that g
′ 6= g. Since g

′ 6= g∗ the algorithm can only be successful on one of the two labelling
hyperplanes w

′

inv or w∗inv. In fact, since we showed that there are infinitely many possible distinct
hyperplanes inWinv, the algorithm can only succeed on one of them. To summarize, the algorithm
fails almost everywhere on the entire set,Winv, of equivalent generating models. This completes the
proof.

Remark on extension under partially informative invariant features, i.e., Assumption 9. The
impossibility result extends to the case when the environments follow Assumption 9. The first thing
to note is that from Lemma 2, g∗ continues to be the OOD optimal solution hyperplane. In the
above proof, we had shown the construction of how there are infinitely many possible equally good
hyperplanes that could have generated the data. To arrive at those hyperplanes, we relied on Lemma
3, where we showed that there are multiple candidate hyperplanes that could have generated the
same training data. In the lemma, we only exploited the separability of latent invariant features and
boundedness. If we continue to assume separability and boundedness for invariant features, then the
result from Lemma 3 can be used in this case as well. As a result, we can continue to use the claim
that there are multiple equally good candidate hyperplanes that the algorithm cannot distinguish.
Thus the impossibility result extends to this setup too.

Remark on inveribility of S. The entire proof only requires us to assume to be able to have
invertibility on the latent invariant features, i.e., we should be able to recover Zeinv fromXe. Therefore,
Theorem 2 extends to matrices S that are only invertible upto the Zeinv.

Remark on impossibility under continuous random variable assumption. In the proof, we
showed that if the test environment e places all the mass on the solution of equation (28), then the
algorithm fails. In the setting, where we are only allowed to work with continuous random variables,
can we continue to claim impossibility? The answer is yes. The reason is quite simple, we can instead
of using the solution to equation (28) construct a small ball around that region. Since the solution to
equation (28) that we constructed is in the interior of the half-spaces such an argument works.

Remark on multi-class classification. We describe a natural extension of the model in Assumption
2 to k-class classification.
Assumption 10. Linear classification structural equation model (FIIF) for multi-class classifica-
tion. In each e ∈ Eall

Y e ← arg max(W ∗inv · Zeinv)
Xe ← S

(
Zeinv, Z

e
spu

)
,

(30)

where W ∗inv ∈ Rk×m, arg max is taken over the k rows to generate the label Y e, S ∈ Rd×d.

We can add noise as well in the above SEM, which uniformly at random switches the class. The key
geometric intuition for the impossibility result that we proved above, which was illustrated in Figure
1, carries over to this case provided the label generating hyperplane separates the supports of adjacent
classes with a finite margin. Following the same geometric intuition, we can generalize the formal
impossibility proof to this case as well for the SEM in Assumption 10.
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A.5 Proof of Theorem 3: sufficiency and insufficiency of ERM and IRM

Lemma 4. If Assumptions 2, 4, 7 hold, then there exists a classifier which puts a non-zero weight on
the spurious feature and continues to be Bayes optimal in all the training environments.

Proof of Lemma 4. We will follow the construction based on Lemma 3’s proof.

Choose an arbitrary non-zero vector γ ∈ Ro. We will derive a bound on the margin of (w∗inv, γ).
Consider a zinv ∈ ∪e∈EtrZeinv and a zspu ∈ ∪e∈EtrZespu. Define y∗ = sgn(w∗inv · zinv). The margin
(w∗inv, γ) at this point (zinv, zspu) with respect to y∗ is defined as

y∗
(
w∗inv · zinv

)
+ y∗

(
γ · zspu

)
. (31)

Using Cauchy-Schwarz inequality, we get

|y∗
(
γ · zspu

)
| = |γ · zspu| ≤ ‖γ‖‖zspu‖. (32)

Since the train support of spurious feature is bounded we can set the magnitude of γ sufficiently
small to control y∗

(
γ · zspu

)
. If ‖γ‖ ≤ c

2zsup , then |γ · zspu| ≤ c
2 , where zsup satisfies the following

condition – for each z ∈ ∪e∈EtrZespu and ‖z‖ ≤ zsup. We can use this to find a bound on the margin
as follows. Recall from equation (22) we have

y∗
(
w∗inv · zinv

)
≥ c. (33)

We use the condition |γ · zspu| ≤ c
2 in the simplification below

y∗
(
w∗inv · zinv

)
+ y∗

(
γ · zspu

)
≥ c− |γ · zspu| ≥

c

2
. (34)

From the above equation it follows that sgn
(
(w∗inv, γ)·(zinv, zspu)

)
= sgn

(
(w∗inv, 0)·(zinv, zspu)

)
=⇒

I
(
(w∗inv, γ) · (zinv, zspu)

)
= I
(
(w∗inv, 0) · (zinv, zspu)

)
. This condition holds for each zinv ∈ ∪e∈EtrZeinv

and a zspu ∈ ∪e∈EtrZespu. We use this condition to compute the error of a classifier based on (w∗inv, γ)

below. Define g∗spu = I ◦ (w∗inv, γ) ◦ S−1. The error achieved by g∗spu is

Re(g∗spu) = E
[
Y e ⊕ I

(
(w∗inv, γ) · (zinv, zspu)

)]
= E

[
I
(
(w∗inv, 0) · (zinv, zspu)

)
⊕Ne ⊕ I

(
(w∗inv, γ) · (zinv, zspu)

)]
= E

[
Ne
]

= q.
(35)

The same calculation as above equation (35) holds in all the training environments. Thus g∗spu achieves
the minimum error possible q for all the training environments e ∈ Etr.
We restate Theorem 3 for convenience.
Theorem 7. Sufficiency and Insufficiency of ERM and IRM. Suppose each e ∈ Eall follows
Assumption 2. Assume that a) the invariant features are strictly separable, bounded, and satisfy
support overlap, b) the spurious features are bounded (Assumptions 3-5, 7 hold).

• Sufficiency: If the spurious features satisfy support overlap (Assumption 6 holds), then both ERM
and IRM solve the OOD generalization problem (eq. (1)). Also, there exist ERM and IRM solutions
that rely on the spurious features and still achieve OOD generalization.

• Insufficiency: If spurious features do not satisfy support overlap, then both ERM and IRM fail at
solving the OOD generalization problem (eq. (1)). Also, there exist no such classifiers that rely on
the spurious features and still achieve OOD generalization.

Proof of Theorem 7. Let us begin with the first part of the Theorem. We first show that there exist
solutions to ERM and IRM that rely on spurious features that also achieve OOD generalization (that
is solve (1)). Since Assumptions 2, 4, 7, hold we can use Lemma 4. From Lemma 4, it follows that
for each zinv ∈ ∪e∈EtrZeinv and for each zspu ∈ ∪e∈EtrZeinv:

I
(
(w∗inv, γ) · (zinv, zspu)

)
= I
(
(w∗inv, 0) · (zinv, zspu)

)
. (36)
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From Assumption 5 and 6 it follows that for each zinv ∈ ∪e∈EallZeinv and for each zspu ∈ ∪e∈EallZeinv.

I
(
(w∗inv, γ) · (zinv, zspu)

)
= I
(
(w∗inv, 0) · (zinv, zspu)

)
(37)

Therefore, the error of the classifier g∗spu = I ◦ (w∗inv, γ) ◦ S−1 in each environment e ∈ Eall is

Re(g∗spu) = E
[
Y e ⊕ I

(
(w∗inv, γ) · (zinv, zspu)

)]
= E

[
I
(
(w∗inv, 0) · (zinv, zspu)

)
⊕Ne ⊕ I

(
(w∗inv, γ) · (zinv, zspu)

)]
= E

[
Ne
]

= q.
(38)

g∗spu is Bayes optimal on each environment e ∈ Eall. Therefore, g∗spu also solves equation (1). Since
g∗spu is optimal in all the environments, it also solves ERM as it also minimizes the sum of risks
across training environments. g∗spu is also a valid invariant predictor since it is simultaneously optimal
across all the environments. Since g∗spu achieves an average error of q across training environments,
each solution to ERM and IRM has to achieve an error of q in all the training environments as well.
Since the solution to ERM and IRM achieves an error of q it cannot differ from g∗ at any point in the
training support. This argument holds in a pointwise sense when Zeinv is a discrete random variable,
otherwise, say when Zeinv is a continuous random variable this argument can only be violated over a
set of measure zero.15 Owing to the support overlap between Etr and Eall, each solution to ERM and
IRM continues to succeed in Eall. This completes the first part of the proof.

We now move to the next part of the theorem, where the spurious features do not satisfy support
overlap assumption (Assumption 6). Consider a linear classifier that the method learns I ◦ w, where I
is composed with a linear function. The classifier operates on x, and we get I(w ·x) and since x = Sz
(from Assumption 2) we can write this as I(w · S(z)). To simplify notation, we call I ◦w ◦ S = I ◦ w̃.
Our goal is to show that if w̃ assigns a non-zero weight to the spurious features, then I ◦w ◦ S cannot
solve the OOD generalization problem (eq. (1)). We write w̃ = (w̃inv, w̃spu). Suppose w̃spu 6= 0 and
yet the classifier solves the problem in equation (1). Consider the classifier that generates the data
(w∗inv, 0). Pick any point zinv ∈ ∪e∈EallZeinv and pick any non-zero zespu ∈ Ro. Call z = (zinv, zspu)
We divide the analysis into two cases.

Case 1: I
(
(w̃inv, w̃spu) · z

)
6= I
(
(w∗inv, 0) · z

)
. In this case, (w̃inv, w̃spu) cannot solve equation (1) as

there exists a test environment where we have all the mass on z.

Case 2: I
(
(w̃inv, w̃spu) · z

)
= I
(
(w∗inv, 0) · z

)
. Observe that since w̃spu 6= 0, we can increase or

decrease one of the components of zspu corresponding to a non-zero w̃spu until the two classifiers
disagree in which case we get Case 1. Note that since Assumption 6 does not hold, we are allowed to
change zspu arbitrarily.

Thus we have established that a classifier cannot be OOD optimal if it assigns a non-zero weight to
the spurious feature. As a result, the classifier from the first part g∗spu which assigned non-zero weight
to spurious features cannot be OOD optimal without the Assumption 6. However, g∗spu continues
to be in the solution space of both ERM and IRM as it is still Bayes optimal across all the train
environments, which is why both ERM and IRM fail. At this point the proof of the statement of
theorem is complete. However, we give a characterization of optimal solutions in the next paragraph.

Now let us consider any classifier in w ∈ Winv (from equation (16)) written as w = (winv, 0). For
such a classifier by definition it is true that for each zinv ∈ ∪e∈EtrZeinv, I

(
winv · zinv

)
= I
(
w∗inv · zinv

)
.

From Assumption 5 it follows that for each zinv ∈ ∪e∈EallZeinv, I
(
winv · zinv

)
= I
(
w∗inv · zinv

)
and thus

the classifier continues to achieve an error of q on all the test environments. Thus we can conclude
that I ◦w ◦ S−1 is OOD optimal. Therefore, all the elements in the setW†inv (from eq. (27)) are OOD
optimal.

Remark on invertibility of S. The proof extends to the case when we can invert and recover entire
Zeinv and also recover at least one component of the spurious features Zespu.

Remark on failure of ERM and IRM under continuous random variable assumption. In the
proof, we showed that if the test environment e places all the mass on the solution to Case 1, then the

15The continuous random variable case can give rise to some pathological shifts. We show later in the proof
of Theorem 4 as to why we do not need to worry about these pathological shifts.
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algorithm fails. In the setting, where we are only allowed to work with continuous random variables,
can we continue to make the claim for impossibility? The answer is yes. The reason is quite simple,
we can instead of using the solution to Case 1 construct a small ball around that region, where the
classifiers continue to disagree.

Remark on multi-class classification. We extend the result to the above SEM in Assumption 10.
The reason ERM and IRM fail in this case is two fold – a) there exists a hyperplane that perfectly
separates the support of the invariant features with a finite margin and b) support of spurious features
are allowed to change. In the multi-class case, we can use the same reasoning – if there is a hyperplane
that perfectly separates for adjacent classes, ERM and IRM continue to fail as long as the support of
spurious features is allowed to change.
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A.6 Proof of Theorem 4: IB-IRM and IB-ERM vs. IRM and ERM

We now lay down some properties of the entropy of discrete random variables and in parallel also lay
down the properties of differential entropy of continuous random variables. Recall that a discrete
random variable has a non-zero probability at each point in its support and a continuous random
variable has a zero probability (and a positive density) at each point in the support.

The entropy or the Shannon entropy of a discrete random variable X ∼ PX with support X is defined
as

H(X) = −
∑
x∈X

PX(X = x) log
(
PX(X = x)

)
. (39)

The differential entropy of a continuous random variable X ∼ PX with support X is given as follows

h(X) = −
∫
x∈X

log
(
dPX(x)

)
dPX(x), (40)

where dPX(x) is the Radon-Nikodym derivative of PX w.r.t the Lesbegue measure.
Lemma 5. If X and Y are discrete scalar valued random variables that are independent, then

H(X + Y ) ≥ max
{
H(X), H(Y )

}
.

Proof of Lemma 5. Define Z = X + Y .

H(Z|X) = −
∑
x∈X

PX(x)
∑
z∈Z

PZ|X(Z = z|X = x) log
(
PZ|X(Z = z|X = x)

)
= −

∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)
= −

∑
x∈X

PX(x)
∑
z∈Z

PY |X(Y = z − x|X = x) log
(
PY |X(Y = z − x|X = x)

)
(use X ⊥ Y )

= −
∑
x∈X

PX(x)
∑
z∈Z

PY (Y = z − x) log
(
PY (Y = z − x)

)
= H(Y )

(41)

I(Z;X) = H(Z)−H(Z|X) = H(X + Y )−H(Y )

I(Z;Y ) = H(Z)−H(Z|Y ) = H(X + Y )−H(X)
(42)

From equation (42) and the property of mutual information that I(Z;X) ≥ 0, I(Z;Y ) ≥ 0 it follows
that

H(X + Y ) ≥ H(Y ), H(X + Y ) ≥ H(X) =⇒ H(X + Y ) ≥ max{H(X), H(Y )}. (43)

This completes the proof.
Lemma 6. If X and Y are continuous scalar valued random variables that are independent, then

h(X + Y ) ≥ max
{
h(X), h(Y )

}
.

Proof of Lemma 6. Define Z = X + Y .

h(Z|X) = EPX

[
EPZ|X

[
log
(
dPZ|X(Z = z|X = x)

)]]
= EPX

[
EPY |X

[
log
(
dPY |X(Y = z − x|X = x)

)]]
(use X ⊥ Y )

= h(Y )

(44)
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Note that I(Z;X) ≥ 0 =⇒ h(Z) ≥ h(Z|X). Combining this with the above equation (44) we get
h(X + Y ) ≥ h(Y ). (45)

From symmetry it follows that h(X + Y ) ≥ h(X). This completes the proof.
Lemma 7. If X and Y are discrete scalar valued random variables that are independent with the
supports satisfying 2 ≤ |X | <∞, 2 ≤ |Y| <∞, then

H(X + Y ) > max
{
H(X), H(Y )

}
.

Proof of Lemma 7. Suppose |X | = {xmin, . . . , xmax} and Y = {ymin, . . . , ymax}. The smallest value
ofX+Y is xmin+ymin and the largest value is xmax+ymax. Suppose that the inequality in the claim is
not true in which case from Lemma 5 it followsH(X+Y ) = H(X) orH(X+Y ) = H(Y ). Suppose
H(X + Y ) = H(X), then from equation (42) it follows that I(X + Y ;Y ) = 0 =⇒ X + Y ⊥ Y .
Observe that if Z = xmax + ymax =⇒ Y = ymax. Therefore, P(Y = ymax|Z = xmax + ymax) = 1.
However, P(Y = ymax) 6= 1 as the support of Y has at least two elements. This contradicts
X+Y ⊥ Y . As a result,H(X+Y ) 6= H(X). We can symmetrically show thatH(X+Y ) 6= H(Y ).
Combining this with Lemma 5, it follows that H(X + Y ) > max{H(X), H(Y )}.
Lemma 8. If X and Y are continuous scalar valued random variables that are independent and
have a bounded support, then

h(X + Y ) > max
{
h(X), h(Y )

}
Proof of Lemma 8. The steps of the proof are similar to Lemma 7. Suppose the inequality in the claim
is not true in which case from Lemma 6 it follows that either h(X+Y ) = h(X) or h(X+Y ) = h(Y ).
Suppose h(X + Y ) = h(X) which implies I(X + Y ;Y ) = 0 =⇒ X + Y ⊥ Y . The support of X
can be written in the form of union of intervals. Suppose we consider the rightmost interval and we
write it as [xmax −∆, xmax]. Similarly for Y , we write the rightmost interval as [ymax −∆, ymax]. 16

Define an eventM : xmax + ymax − δ ≤ X + Y ≤ xmax + ymax. IfM occurs, then Y ≥ ymax − δ
and X ≥ xmax − δ.

PX(X ≤ xmax − δ|M) = 0

PY (Y ≤ ymax − δ|M) = 0
(46)

If δ < ∆ we know that
PX(X ≤ xmax − δ) > 0

PY (Y ≤ ymax − δ) > 0
(47)

If X + Y ⊥ Y then PY (Y ≤ ymax − δ) = PY (Y ≤ ymax − δ|M), which is not the case from the
above equations (46) and (47). Thus X+Y 6⊥ Y =⇒ I(X+Y ;Y ) > 0 =⇒ h(X+Y ) > h(X).
We can say the same for Y and conclude that h(X + Y ) > h(Y ). This completes the proof.

Theorem 4 has two versions – one for discrete random variables, and the other for continuous random
variables. We discuss the discrete random variable case first as its easier to understand and then move
to the continuous random variable case.

A.6.1 Discrete random variables

In this section, we assume that in each e ∈ Eall, random variables Zeinv, Z
e
spu, N

e,W e in Assumption
8 are discrete. We formulate the optimization in terms of Shannon entropy as follows.

min
w∈Rk×r,Φ∈Rr×d

1

|Etr|
∑
e

He
(
w · Φ)

s.t.
1

|Etr|
∑
e

Re
(
w · Φ

)
≤ r∗

w ∈ arg min
w̃∈Rk×r

Re(w̃ · Φ)

(48)

Note that the only difference between equation (48) and the equation (6) is that the objective here is
Shannnon entropy, while the objective in the other case is the differential entropy.

16We use same ∆ for both X and Y because can take the smaller of the rightmost intervals for X and Y .
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Theorem 8. IB-IRM and IB-ERM vs IRM and ERM

Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows Assumption 2. Assume
that the invariant features are strictly separable, bounded, and satisfy support overlap (Assumptions
3,5 and 7 hold). Also, for each e ∈ Etr Zespu ← AZeinv +W e, where A ∈ Ro×m, W e ∈ Ro is discrete,
bounded noise, with zero mean (and each component takes at least two distinct values). Each solution
to IB-IRM (eq. (6), with ` as 0-1 loss, and rth = q), and IB-ERM solves the OOD generalization (eq.
(1)) but ERM and IRM (eq.(3)) fail.

In the above Theorem 8, we only state the first part of the Theorem 4, the reason is that the proof of
the second part proof is exactly the same in both discrete and continuous random variable case and
we describe the proof for the second part in the continuous random variable section next.

Proof of Theorem 8. First, let us discuss why IRM and ERM fail in the above setting. We argue that
the failure, in this case, follows directly from the second part of Theorem 3. To directly use the second
part of Theorem 3, we need Assumptions 2-5 and 7 to hold. In the statement of the above theorem,
Assumption 2, 3, 5, and 7 already hold. We are only required to show that Assumption 4 holds. Since
Zeinv and W e are bounded on training environments we can argue that Zespu is also bounded in training
environments (‖Zespu‖ ≤ ‖A‖Zeinv‖+ ‖W e‖). We can now directly use the second part of Theorem 3
because Assumptions 2-5 and 7 hold. Since Assumption 6 is not required to hold, both ERM and
IRM will fail as their solution space continue to contain classifiers that rely on spurious features. To
further elaborate on why ERM and IRM fail, recall that in the second part of Theorem 3, we relied on
Lemma 4. In Lemma 4, we had shown that if latent invariant features are strictly separable, and latent
spurious features are bounded, then there exist classifiers that rely on spurious features and yet are
Bayes optimal on all the training environments. In this case, we have latent invariant features that are
strictly separable and spurious features that are bounded, which is why we can use Theorem 3. We
now move to the part, where we establish why IB-IRM and IB-ERM succeed.

Consider a solution to equation (48) and call it Φ†. Consider the prediction made by this model

Φ† ·Xe = Φ† · S(Zeinv, Z
e
spu) = Φinv · Zeinv + Φspu · Zespu. (49)

We first show that Φspu is zero. We prove this by contradiction. Assume Φspu 6= 0 and use the
condition in the theorem to simplify the expression for the prediction as follows

Φinv · Zeinv + Φspu · Zespu
= Φinv · Zeinv + Φspu · (AZeinv +W e)

= Φinv · Zeinv + Φspu · (AZeinv +W e)

=
[
Φinv + Φspu ·A

]
· Zeinv + Φspu ·W e.

(50)

We will show that Φ+ =
([

Φinv +Φspu ·A
]
, 0
)
S−1 =

[
Φinv +Φspu ·A

]
S†inv, where S†inv corresponds

to the first m rows of the matrix S−1, can continue to achieve an error of q and has a lower entropy
than Φ†. Recall that Φ† achieves an average error across the training environments of q (because
rth = q the average cannot fall below q as in that case at least one environment would have a lower
error than q which is not possible), which implies each environment also achieves an error of q.

Consider an environment e ∈ Etr. Since the error Φ† is q it implies that for each training environment
e

I(w∗inv · Zeinv) = I(Φinv · Zeinv + Φspu · Zespu) (51)

holds over all the points in the support of environment e. Suppose the above claim was not true, i.e.
suppose the set I(w∗inv ·Zeinv) 6= I(Φinv ·Zeinv + Φspu ·Zespu) occurs with a for some point in the support
(suppose that point occurs with probability θ). Let us compute the error

Re(Φ†) = E
[(
I(w∗inv · Zeinv)⊕Ne ⊕ I(Φinv · Zeinv + Φspu · Zespu)

)]
= θE[1⊕Ne] + (1− θ)E[Ne] > q

(52)
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If the above is true, then that contradicts the claim that Φ† achieves an error of q. Thus the statement
in equation (51) has to hold at all points in the training support of the invariant features. LetWe be
the support of W e. In each training environment, if we consider a zeinv ∈ Zeinv, then ∀we ∈ We, the
following holds – if I(w∗inv · zeinv) = 1, then

Φinv · zeinv + Φspu · (Azeinv + we) ≥ 0

=⇒ Φinv · zeinv + Φspu · (Azeinv) ≥ −Φspu · we

=⇒
(
Φinv + Φspu ·A

)
· zeinv ≥ max

we∈W̃e
−Φspu · we

=⇒
(
Φinv + Φspu ·A

)
· zeinv ≥ 0

=⇒ Φ+Xe ≥ 0.

(53)

Similarly, we can argue that if I(w∗inv · zeinv) = 0, then(
Φinv + Φspu ·A

)
· zeinv < 0

Φ+Xe < 0.
(54)

In the above simplification equation (53), we use maxwe −Φspu · we ≥ 0. Consider any component
of −Φspu; if the sign of the component is positive (negative), then set the corresponding component
of we to be positive (negative). As a result, −Φspu · we ≥ 0. In this argument, we only relied on the
assumption that we can take both signs in the setWe. SupposeWe had either positive or negative
values only then this would imply that the mean of we is strictly positive or negative, which cannot
be true because W e is zero mean. From equation (53) and (54), we can conclude that Φ+ achieves
the same error of q in all the training environments.

Observe that we can write Φ† ·Xe = Φ+ ·Xe + Φspu ·W e. We state two properties that we use to
show that entropy Φ+ is smaller than Φ†:

a) Φspu ·W e ⊥ Φ+ ·Xe (Φ+ ·Xe =
[
Φinv + Φspu ·A

]
· Zeinv and Zeinv ⊥W e),

b) Φ+ ·X , Φspu ·W e are discrete random variables with finite support of size at least two.

We justify why b) is true in the above. Φ+ ·Xe is a bounded random variable (Zespu is bounded as
Zeinv and W e are bounded. Thus Xe is also bounded). Φ+ ·Xe has at least two elements in its support
this follows from equation (53) and (54). Φspu ·W e is bounded since W e is bounded and takes at
least two values because each component of W e takes at least two distinct values.

From a), b), and Lemma 7 it follows that Φ+ · Xe is a classifier with lower entropy. We already
established that Φ+ achieves the same error as Φ† for all the training environments. Φ+ achieves an
error of q for all the training environments simultaneously. Since q is the smallest value for the error
that is achievable, the invariance constraint in equation (71) is automatically satisfied. Therefore, Φ+

is strictly preferable to Φ†. Thus the solution Φ† cannot rely on the spurious features and Φspu = 0.

Thus any solution Φ† to equation (48) has to satisfy Φ† · S = (Φinv, 0) and Φ† · S also satisfies

I(w∗inv · Zeinv) = I(Φinv · Zeinv). (55)

Recall that in the second part of Theorem 3’s proof we showed that if a solution does not rely on
spurious features and satisfies equation (65) for all the points in the support, then under the support
overlap assumptions such a solution is OOD optimal as well. Since we assume support overlap
assumption holds for the invariant features, we use the same argument from the second part of
Theorem 3 and it follows that the solution to equation (48) also solves equation (1).

A.6.2 Continuous random variables

In this section, we assume that in each e ∈ Eall, the random variables Zeinv, Z
e
spu, N

e,W e in Assump-
tion 2 are continuous.

Lower bounding the differential entropy objective: In general, the differential entropy can be
unbounded below. Following the work of Kirsch et al. (2020), we add an independent noise term to
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the predictor to ensure that the entropy is lower bounded. Suppose w ·Φ is the output of the predictor
and the entropy of the predictor for the data in environment e as he(w · Φ). Consider a prediction
made by the classifier w · Φ(Xe); we add noise κe (continuous, bounded random variable with a
finite entropy) to this prediction to get w · Φ(X) + κe. The differential entropy after noise addition
as he(w ·Φ(Xe) + κe). Observe that he(w ·Φ(Xe) + κe) ≥ h(κe). In the rest of the discussion, we
just write he(w · Φ(Xe) + κe) as he(w · Φ) to make the notation less cumbersome. We constrain
HΦ (Hw) in the optimization in equation (6) to a set H̃Φ = {Φ ∈ Rr×d | 0 < φinf ≤ ‖Φ‖ ≤ φsup}
(H̃w = {w ∈ Rk×r | 0 < winf ≤ ‖w‖ ≤ wsup}) instead ofHΦ = Rr×d (Hw = Rk×r). The reason
to do this is that while the 0-1 loss does not change with scaling of the predictor but the entropy can
change a lot. The lower bound on the norm of the classifier ensures that the optimization does not
shrink it to zero in trying to minimize the entropy. We restate the optimization in equation (6) after
accounting for the pathologies of differential entropy that we described above:

min
w∈H̃w,Φ∈H̃Φ

1

|Etr|
∑
e

he
(
w · Φ)

s.t.
1

|Etr|
∑
e

Re
(
w · Φ

)
≤ rth

w ∈ arg min
w̃∈H̃w

Re(w̃ · Φ)

(56)

We restate Theorem 4 for convenience.
Theorem 9. IB-IRM and IB-ERM vs IRM and ERM

• Fully informative invariant features (FIIF). Suppose each e ∈ Eall follows Assumption 2. Assume
that the invariant features are strictly separable, bounded, and satisfy support overlap (Assumptions
3,5 and 7 hold). Also, for each e ∈ Etr Zespu ← AZeinv + W e, where A ∈ Ro×m, W e ∈ Ro is
continuous, bounded, and zero mean noise. Each solution to IB-IRM (eq. (6), with ` as 0-1 loss, and
rth = q), and IB-ERM solves the OOD generalization (eq. (1)) but ERM and IRM (eq.(3)) fail.

• Partially informative invariant features (PIIF). Suppose each e ∈ Eall follows Assumption 1 and
∃ e ∈ Etr such that E[εeZespu] 6= 0. If |Etr| > 2d and the set Etr lies in a linear general position
(a mild condition defined in the Appendix), then each solution to IB-IRM (eq. (6), with ` as square
loss, σ2

ε < rth ≤ σ2
Y , where σ2

Y and σ2
ε are the variance in the label and noise across Etr) and IRM

(eq.(3)) solves OOD generalization (eq. (1)) but IB-ERM and ERM fail.

Proof of Theorem 9. First, let us discuss why IRM and ERM fail in the above setting. We argue that
the failure, in this case, follows directly from the second part of Theorem 3. To directly use the second
part of Theorem 3, we need Assumptions 2-5 and 7 to hold. In the statement of the above theorem,
Assumption 2, 3, 5, and 7 already hold. We are only required to show that Assumption 4 holds. Since
Zeinv and W e are bounded on training environments we can argue that Zespu is also bounded in training
environments (‖Zespu‖ ≤ ‖A‖Zeinv‖+ ‖W e‖). We can now directly use the second part of Theorem 3
because Assumptions 2-5 and 7 hold. Since Assumption 6 is not required to hold, both ERM and
IRM will fail as their solution space continue to contain classifiers that rely on spurious features. 17

Consider a solution to IB-IRM (eq. (56)) and call it Φ†. Consider the prediction made by this model

Φ† ·Xe = Φ† · S(Zeinv, Z
e
spu) = Φinv · Zeinv + Φspu · Zespu. (57)

We first show that Φspu is zero. We prove this by contradiction. Assume Φspu 6= 0 and use the
condition in the theorem to simplify the expression for the prediction as follows.

Φinv · Zeinv + Φspu · Zespu
= Φinv · Zeinv + Φspu · (AZeinv +W e)

= Φinv · Zeinv + Φspu · (AZeinv +W e)

=
[
Φinv + Φspu ·A

]
· Zeinv + Φspu ·W e.

(58)

17In the remark following the proof of Theorem 3, we had discussed the failure of ERM and IRM continues to
hold even when we are restricted to use continuous random variables.
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We will show that Φ+ =
([

Φinv +Φspu ·A
]
, 0
)
S−1 =

[
Φinv +Φspu ·A

]
S†inv, where S†inv corresponds

to the first m rows of the matrix S−1, can continue to achieve an error of q and has a lower entropy
than Φ†. Recall that Φ† achieves an average error across the training environments of q (because
rth = q the average cannot fall below q as in that case at least one environment would have a lower
error than q which is not possible), which implies each environment also achieves an error of q.

Consider an environment e ∈ Etr. Since the error Φ† is q it implies that for each training environment

I(w∗inv · Zeinv) = I(Φinv · Zeinv + Φspu · Zespu), (59)

holds with probability 1. Suppose the above claim was not true, i.e. suppose the set I(w∗inv · Zeinv) 6=
I(Φinv · Zeinv + Φspu · Zespu) occurs with a non-zero probability say θ. Let us compute the error

Re(Φ†) = E
[(
I(w∗inv · Zeinv)⊕Ne ⊕ I(Φinv · Zeinv + Φspu · Zespu)

)]
= θE[1⊕Ne] + (1− θ)E[Ne] > q

(60)

If the above is true, then that contradicts the claim that Φ† achieves an error of q. Thus the statement
in equation (59) has to hold with probability 1. LetWe denote the support of W e in environment e.
We can restate the above observation as – there exists sets Z̃einv ⊆ Zeinv and a set W̃e ⊆ We such that
P(Z̃einv × W̃e) = 1 18 and for each element in Z̃einv × W̃e

I(w∗inv · Zeinv) = I(Φinv · Zeinv + Φspu · Zespu) (61)

Consider a training environment e ∈ Etr. For each zeinv ∈ Z̃einv, the following conditions hold
∀we ∈ W̃e – if I(w∗inv · zeinv) = 1, then

Φinv · zeinv + Φspu · (Azeinv + we) ≥ 0

=⇒ Φinv · zeinv + Φspu · (Azeinv) ≥ −Φspu · we

=⇒
(
Φinv + Φspu ·A

)
· zeinv ≥ max

we∈W̃e
−Φspu · we

=⇒
(
Φinv + Φspu ·A

)
· zeinv ≥ 0

=⇒ Φ+Xe ≥ 0.

(62)

Similarly, we can argue that if I(w∗inv · zeinv) = 0, then(
Φinv + Φspu ·A

)
· zeinv < 0

Φ+Xe < 0.
(63)

In the above simplification in equation (62), we use maxwe −Φspu ·we ≥ 0. Consider any component
of −Φspu; if the sign of the component is positive (negative), then set the corresponding component
of we to be positive (negative). As a result, −Φspu · we ≥ 0. In this argument, we only relied on the
assumption that we can take both signs in the set W̃e. Suppose we can only take either positive or
negative values in W̃e this would imply that the mean of we is strictly positive or negative, which
cannot be true because W e is zero mean. From equation (62), (63), and P(Z̃einv × W̃e) = 1, we can
conclude that Φ+ achieves the same error of q in all the training environments.

Observe that we can write Φ† ·Xe = Φ+ ·Xe + Φspu ·W e. We state two properties that we use to
show that entropy Φ+ is smaller than Φ†:

a) Φspu ·W e ⊥ Φ+ ·Xe (Φ+ ·Xe =
[
Φinv + Φspu ·A

]
· Zeinv and Zeinv ⊥W e),

b) Φ+
inv ·X , Φspu ·W e are continuous bounded random variables,

We justify why b) is true in the above. Φ+
inv · Xe is a bounded random variable (Zespu is bounded

as Zeinv is bounded and as a result Xe is bounded as well). Observe that Φ+
inv 6= 0, this follows

18Owing to the independence of the noise we also have P(Z̃e
inv) = 1, P(W̃e) = 1.
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from equation (62) and (63). Φ+
inv ·Xe is a continuous random variable as well. Suppose Φ+

inv ·Xe

was not continuous, which implies for some constant b, Φ+
inv ·Xe = b with a finite probability. If

Φ+
inv ·Xe = b with a finite probability, then X cannot be a continuous random vector (as there exists

a hyperplane which occurs with a non-zero probability).

From a), b), and Lemma 8 it follows that

he(Φ+ ·Xe) < he(Φ† ·Xe) (64)

Note that the above equation (64) is true independent of whether we added a bounded noise to
keep the entropy bounded from below. Therefore, so far we have established that Φ+ is a classifier
with lower entropy and the same error as Φ†. Observe that Φ+ achieves an error of q for all the
training environments simultaneously. Since q is the smallest value for the error that is achievable,
the invariance constraint in equation (71) is automatically satisfied with Φ† as the classifier and the
representation as the identity. Thus Φ+ is a strictly preferable solution Φ†, which contradicts the
optimality of Φ†. Therefore, it follows that Φspu = 0

Thus any solution Φ† to equation (56) has to satisfy Φ† · S = (Φinv, 0) and Φ† · S also satisfies

I(w∗inv · Zeinv) = I(Φinv · Zeinv) (65)

with probability one. From the second part of Theorem 3’s proof we know if a solution satisfies two
properties a) does not rely on spurious features, and b) satisfies equation (65) for all the points in the
support, then under the support overlap of invariant features such a solution is OOD optimal (solves
equation (1)) as well. In this case, we have also assumed support overlap assumption holds for the
invariant features. We have established that the solution does not rely on spurious features. Also, we
have shown that equation (65) holds not pointwise but with probability one. We can still use the same
argument from the second part of Theorem 3 and it follows that the solution to equation (56) also
solves equation (1). Next, we show why it suffices for the equation (65) to hold with probability one.

Since the equation (65) does not hold pointwise at all the points in the support and can be violated
over a set of probability zero we need to be careful about some pathological shifts at test time that
place a finite mass in the region where equation (1) is violated. We now argue using arguments based
on standard measure theory (Ash and Doléans-Dade, 2000) that such pathological shifts cannot occur
under the assumptions made in this setting.

Recall that we defined Z̃einv×W̃e to be the set where equation (65) holds pointwise. P(Z̃einv×W̃e) = 1.
Owing to the independence Ze ⊥W e, we have P(Z̃einv) = 1, P(W̃e) = 1. It can be shown that the
Lebesgue measure µ of the set Zeinv \ Z̃einv is zero, i.e., µ(Zeinv \ Z̃einv) = 0. If the Lebesgue measure
was positive, i.e., µ(Zeinv \ Z̃einv) > 0, then the probability of this set would also be non-zero, i.e.,
P(Zeinv \ Z̃einv) > 0. The main insight to show this follows from the observation that the probability
density is positive on the set Zeinv \ Z̃einv since the set is part of the support of Zeinv.

A formal argument to show µ(Zeinv \ Z̃einv) > 0 =⇒ P(Zeinv \ Z̃einv) > 0 goes as follows.

Assume the contrary, i.e., P(Zeinv \ Z̃einv) = 0. Let the density be denoted as fZeinv . Define the set
Pk = {zinv ∈ Zeinv \ Z̃einv | fZeinv(z) >

1
k}.

Zeinv \ Z̃einv = ∪∞k=1Pk (66)

Pk ↑ Zeinv \ Z̃einv =⇒ µ(Pk) → µ(Zeinv \ Z̃einv). Since µ(Zeinv \ Z̃einv) > 0, ∃ some s for which
µ(Ps) > 0.

Define gs

gs(x) =

{
1
s if x ∈ Pk
0 otherwise

(67)

P(Zeinv \ Z̃einv) =

∫
Zeinv\Z̃

e
inv

fZeinvdµ ≥
∫
Zeinv\Z̃

e
inv

gsdµ ≥
1

s
µ(Ps) > 0 (68)

µ(Zeinv \ Z̃einv) > 0 =⇒ P(Zeinv \ Z̃einv) > 0 =⇒ P(Z̃einv) < 1 which is a contradiction. Therefore,
µ(Zeinv \ Z̃einv) = 0.
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We now describe how our assumptions already eliminate the possibility of distribution shifts that
happen in such a way that the a finite mass of the distribution resides in the region Zeinv \ Z̃einv.
Recall we assume that ∀e ∈ Eall, Zeinv is a continuous random variable. Since the probability of
continuous random is absolutely continuous w.r.t the Lebesgue measure it follows that for each
e ∈ Eall, µ(Zeinv \ Z̃einv) = 0 =⇒ P(Zeinv \ Z̃einv) = 0. Thus all distribution shifts would place a zero
mass in the region of disagreement.

This completes the first part of the proof.

The second part of the theorem follows directly from the analysis of linear regression SEM in
Arjovsky et al. (2019). The conditions in the second part of the theorem cover the conditions that
are required in Theorem 1. Under those conditions there can be two invariant predictors one is the
trivial invariant predictor that maps every input to zero. The other is the ideal invariant predictor
that focuses on the causes. The constraint rth is set to a low enough value such that only the ideal
invariant predictor gets selected. Observe that the risk achieved by the trivial zero invariant predictor
is 1
|Etr|E[(Y e)2] = σ2

Y and the risk achieved by the ideal 1
|Etr|E[(Ne)2] = σ2

N . If σ2
N < rth < σ2

Y ,
then the only predictor that is selected is the ideal invariant predictor.

We now describe why ERM fails in this case. In the theorem, we assume that ∃ e where v =
E[εeZespu] 6= 0, which implies E[εeXe] 6= 0. We show why this is the case next.

E[εeXe] = E[εeS(Zeinv, Z
e
spu)] = E[Sεe(Zeinv, Z

e
spu)] = S(0, v) 6= 0; since S is invertible (69)

The rest of the proof follows from Proposition 17 in (Ahuja et al., 2021b). If rth is set low enough to
assume the same risk achieved by ERM, then IB-ERM and ERM are identical and IB-ERM also fails.

Remark on invertibility of S. The entire proof extends to the case when S is not invertible but Zeinv
can still be recovered. Note that at no point in the proof we required to have full S to be invertible.

Remark on regularized ERM, IRM. Note that while we showed that the ERM and IRM fail, the
failures extend to `1 or `2 regularized models as well. We would like to also mention that it may
seem that information bottleneck and sparsity constraints such as `1 have similarity. We want to
point out that there is a major difference between the two. In our model, we observe scrambled
data. As a result, even if there is sparsity in the latent space, that does not translate to the observed
space. `1 constraints operate in the input space and that is why they cannot fetch the same outcome
as information bottleneck constraints.

Remark on multi-class classification. The proof presented in this section extends to multi-class
setting described in Assumption 10. The simplification in equation (53) along with the lemmas
(Lemma 6, Lemma 7) help establish why low-entropy representation based classifier discourages
the use of spurious features. We can adapt the analysis in equation (53) to the multi-class case
(Assumption 10) and follow the same line of reasoning to justify why IB-IRM and IB-ERM succeed.
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A.7 Derivation of the final objective in equation (7)

In this section, we give a step-by-step description of derivation of the objective in equation (7). We
rewrite the IB-IRM optimization below in equation (70).

min
Φ∈Rk

1

|Etr|
∑
e

he
(
w · Φ

)
s.t.

1

|Etr|
∑
e

Re
(
w · Φ

)
≤ rth,

1 ∈ arg min
w̃∈R

Re(w̃ · Φ).

(70)

In the above we assumed that the classifiers are scalar. We state a new optimization that we show is
equivalent to the optimization in equation (70).

min
Φ∈Rk

1

|Etr|
∑
e

he
(
Φ
)

s.t.
1

|Etr|
∑
e

Re
(
Φ
)
≤ rth,

1 ∈ arg min
w̃∈R

Re(w̃ · Φ).

(71)

It can be shown that the two forms of optimization in equation (70) and equation (71) are equivalent.
First, we would like to show that the set of feasible classifiers w · Φ for the first optimization in
equation (71) and Φ in the second optimization in equation (71) are the same.

Suppose w∗,Φ∗ is a feasible solution to the constraints in equation (70). Construct Φ† = w∗ ·
Φ∗. Φ† satisfies the constraint 1

|Etr|
∑
eR

e
(
Φ†
)
≤ rth. Suppose for some environment e, 1 6∈

arg minw̃ R
e(w̃ ·Φ†) =⇒ ∃ w 6= 1 such that Re(w ·Φ†) < Re(Φ†). If this is the case, then w×w∗

improves over w∗ and contradicts the optimality of w∗ in equation (70). This establishes that Φ†

satisfies the constraints in equation (70). This shows that the set of feasible classifiers for the first
optimization in equation (70) are a subset of the feasible classifiers in the second optimization (71).

Suppose Φ∗ is a feasible solution to the constraints in equation (71). Take any scalar w and cor-
responding representation Φ∗/w. The combined classifier w · (Φ∗/w) satisfies the first constraint.
Suppose w 6∈ arg minw̃∈RR

e(w̃ · Φ
w ), this implies that ∃ w+ 6= w such that Re(w

+

w · Φ
∗) < Re(Φ∗).

If this was true, then that contradicts the optimality of 1 in equation (71). This shows that the set of
feasible classifiers for the second optimization in equation (71) are a subset of the feasible classifiers
in the first optimization (70).

From the above discussion, it is clear that the two formulations result in the same set of feasible w ·Φ,
which are finally fed into the same entropy minimization objective. Thus the two optimizations are
equivalent. To get to the penalized objective in equation (7) from the equation (71) there are two
key steps: i) converting the invariance constraint into the gradient-based penalty, i.e., the IRMv1
penalty from (Arjovsky et al., 2019), ii) converting the differential entropy term into a constraint on
the variance. For ii), as we explained in the manuscript, minimization of variance is equivalent to
minimizing an upper bound on the entropy. Also, note that since variance has a lower bound, we can
directly work with Φ and do not need to add a noise term like earlier, which was done to ensure that
differential entropy is lower bounded. Below we break down the steps to arrive at the objective. We
first start with a weighted combination of the terms in equation (6).

∑
e

(
Re(Φ) + λ‖∇w,w=1.0R

e(w · Φ)‖2 + νhe(Φ)
)
. (72)

where ‖∇w,w=1.0R
e(w · Φ)‖2 is the norm of the gradient computed w.r.t scalar classifier w at 1.0.

Note that in general the gradient can be computed w.r.t a fixed vector as well. In our experiments, we
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found that using entropy conditioned on the environment or entropy unconditioned on the environment
works equally well. Thus, we introduce the unconditional entropy h(Φ). We assume that all the
environments occur with an equal probability.

h(Φ) = −EX∼P[log(dP(Φ(X))] (73)
where dP(Φ(X)) is the probability density of predictions (unconditional on the environment), P =

1
|Etr|

∑
e∈Etr P

e is the uniform mixture of data from all environments. Note here X denotes an input
sample and we do not know the environment it comes from unlike the sample Xe. The entropy of
predictions computed in environment e is given as

he(Φ) = −EXe∼Pe [log(dPe(Φ(Xe))], (74)
where dPe is the probability density of the predictions in environment e. The conditional entropy
over predictions conditioned on a random environment is given as

h(Φ|E) = − 1

|Etr|
∑
e∈Etr

E[log(dPe(Φ(Xe))]. (75)

Conditioning reduces entropy h(Φ) ≥ h(Φ|E) and thus we propose an upper bound on the objective
in equation (72) below

∑
e

(
Re(Φ) + λ‖∇w,w=1.0R

e(w · Φ)‖2 + νh(Φ)
)
. (76)

Finally, instead of h(Φ) we use variance in predictions Φ denoted as Var(Φ) = EX∼P[(Φ(X) −
E[Φ(X)])2] to get

∑
e

(
Re(Φ) + λ‖∇w,w=1.0R

e(w · Φ)‖2 + γVar(Φ)
)
. (77)
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A.8 Proof of Theorem 5: impact of IB on the learning speed

In this section, we present a detailed analysis of 2D case in equation (4) leading up to the proof of
Theorem 5. For convenience, we will restate the equation (4). Also, instead of assuming the binary
values are from the set {0, 1} we would shift them to {−1, 1}; we do this purely for making notation
clearer.

Y e ← sgn
(
Xe

inv

)
, where Xe

inv ∈ {−1, 1} is Bernoulli
(1

2

)
,

Xe
spu ← Xe

invW
e, where W e ∈ {−1, 1} is Bernoulli

(
1− pe

)
with selection bias pe >

1

2
,

(78)

Connection between the discrete and the continuous case. Before discussing the proof of Theorem
5, we provide an explanation as to why can we use the variance penalty as a proxy for the 2D example
(eq. (78)), where the random variables are discrete (recall that variance is monotonically related to
upper bound on the differential entropy of continuous random variables). We present a variation of
equation (78), where the input feature values are continuous. For each e ∈ Etr we have

Xe
inv ← Ce + Ue,

Y e ← sgn(Xe
inv),

(79)

where Ce ∈ {−1, 1} with equal probability for −1 and 1 and Ue is a uniform random variable with
range [−δ, δ] with δ < 1

2 . Similarly, with probability 1− pe,

Xe
spu ← Ce +Me,

and with probability pe,
Xe

spu ← −Ce +Me,

where Me is a uniform random variable with range [−δ, δ].
Suppose ` is exponential loss and the predictor has two dimensions winv and wspu. For the above
problem description, we write the ERM objective (λ = 0, γ = 0 in equation (7)) and we get the
following

RERM(winv, wspu) =

1

|Etr|
∑
e∈Etr

(
pee−(winv+wspu)E[e−winvU

e

e−wspuM
e

] + (1− pe)e−(winv−wspu)E[e−winvU
e

ewspuM
e

]
)

E[e−winvU
e

e−wspuM
e

] = E[e−winvU
e

]E[e−wspuM
e

]

E[e−winvU
e

] =
(∫ δ

−δ
e−winvudu

) 1

2δ
=
ewinvδ − e−winvδ

2winvδ
≈ (1 + winvδ)− (1− winvδ)

2winvδ
= 1

(80)

If δ is small, then we can approximate the loss as if the each of the feature values were discrete and
only assumed one of the four possible values in {−1, 1} × {−1, 1}.

RERM(winv, wspu) ≈ pe−(winv+wspu) + (1− p)e−(winv−wspu) (81)

where p = 1
|Etr|p

e. On the same lines, we expand the IB-ERM objective as follows

RIB−ERM(winv, wspu) ≈ pe−(winv+wspu) + (1− p)e−(winv−wspu) + γ[winv, wspu]Σ[winv, wspu]
T (82)

where Σ =

(
1 + δ2 2p− 1
2p− 1 1 + δ2

)
. Since δ is small, we approximate Σ as

(
1 2p− 1

2p− 1 1

)
.

Theorem on impact of information bottleneck. We would compare the rate of convergence of
continuous-time gradient descent for RIB−ERM and RERM.
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Theorem 10. Suppose each e ∈ Etr follows the 2D case from equation (4). Set λ = 0, γ > 0
in equation (7) to get the IB-ERM objective with ` as exponential loss. Continuous-time gradient

descent on this IB-ERM objective achieves |wspu(t)
winv(t)

| ≤ ε in time less than
W0( 1

2γ )

2(1−p)ε (W0(·) denotes the

principal branch of the Lambert W function), while in the same time the ratio for ERM |wspu(t)
winv(t)

| ≥

ln( 1+2p
3−2p )/ln

(
1 +

W0( 1
2γ )

2(1−p)ε
)
, where p = 1

|Etr|
∑
e∈Etr p

e .

Proof of Theorem 10. We simplify the ERM and the IB-ERM objective in equation (7) for the 2D
case.

RERM(winv, wspu) = pe−(winv+wspu) + (1− p)e−(winv−wspu)

RIB−ERM(winv, wspu) = pe−(winv+wspu) + (1− p)e−(winv−wspu) + γ[winv, wspu]Σ[winv, wspu]
T

where winv, wspu ∈ R are the weights for invariant and spurious features, p = 1
|Etr|

∑
e∈Etr p

e Σ as(
1 2p− 1

2p− 1 1

)
. We first find the equilibrium point of the continuous-time gradient descent for

RIB−ERM.

∂RIB−ERM(winv, wspu)

∂winv
= −pe−(winv+wspu) − (1− p)e−(winv−wspu) + 2γ(winv + (2p− 1)wspu)

∂RIB−ERM(winv, wspu)

∂wspu
= −pe−(winv+wspu) + (1− p)e−(winv−wspu) + 2γ((2p− 1)winv + wspu)

(83)

∂RIB−ERM(winv, wspu)

∂winv
+
∂RIB−ERM(winv, wspu)

∂wspu
= −2pe−(winv+wspu) + 4γp(winv + wspu) = 0

=⇒ 1

2γ
e−(winv+wspu) = winv + wspu

=⇒ winv + wspu = W0

( 1

2γ

)
(84)

∂RIB−ERM(winv, wspu)

∂winv
− ∂RIB−ERM(winv, wspu)

∂wspu
= −2(1− p)pe−(winv−wspu) + 4γ(1− p)(winv − wspu) = 0

=⇒ 1

2γ
e−(winv−wspu) = winv − wspu

=⇒ winv − wspu = W0

( 1

2γ

)
(85)

Therefore, the equilibrium point is winv = W0

(
1

2γ

)
and wspu = 0. Having established that the

equilibrium point of the differential equation coincides with ideal predictor, we now analyze the
convergence of the trajectory. Let winv + wspu = x and winv − wspu = y.

∂x

∂t
= −

(∂RIB−ERM(winv, wspu)

∂winv
+
∂RIB−ERM(winv, wspu)

∂wspu

)
= 2p(e−x − 2γx) (86)

∂y

∂t
= 2(1− p)(e−y − 2γy) (87)

Let us call x∗ = W0

(
1

2γ

)
; x∗ is equilibrium point for both x(t) and y(t). Denote winv(t) = x(t)+y(t)

2

and wspu(t) = x(t)−sy(t)
2 . Let us assume that x(0) = 0 and y(0) = 0. We would first like to argue

that the solution to the above differential equations exist and are unique given the initial conditions
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x(0) = 0 and y(0) = 0. Since (e−x − 2γx) is Lipschitz continuous in x on R the solution to the
differential equation exists and is unique for any finite interval t ∈ [0, T ] (Simmons, 2016). With T
set to a sufficiently large value, we now show that the solution to the ODE converges to x∗.

Define an energy function V (z) = z2 and define V (x− x∗) = (x− x∗)2

∂V (x− x∗)
∂t

= 2(x− x∗)∂x
∂t

= 4p(x− x∗)(e−x − 2γx) (88)

Observe that ∂V (x−x∗)
∂t < 0 for all x 6= x∗ and ∂V (x−x∗)

∂t = 0 when x = x∗. Therefore, from
Lyapunov’s asymptotic global stability theorem (Khalil, 2009) we obtain that x(t) would converge to
x∗.

Observe that for x < x∗, ∂x
∂t > 0 and moreover 2p(e−x − 2γx) is a monotonically decreasing

function. For all x < x∗ − ε, we can bound the rate at which x increases is bounded below by
2p(e−x

∗+ε − 2γ(x∗ − ε)) ≈ 2p(e−x
∗
(1 + ε) − 2γx∗ + 2γε) = 2pε(e−x

∗
+ 2γ). Let us call

γ∗ = ε(e−x
∗

+ 2λ). The rate at which x increases is greater than 2pεγ∗ and the rate at which y
increases is greater than 2(1− p)εγ∗. Thus the time to convergence for x is atmost x∗

2pε . Similarly,

the time to convergence for y is atmost x∗

2(1−p)ε . Since p > 1
2 the time to convergence for y(t) is

more than the time taken for the convergence of x(t).

If |x(t) − x∗| ≤ ε and |y(t) − x∗| ≤ ε, then |wspu(t)| = |x(t)−y(t)
2 | = |x(t)−x∗+x∗−y(t)

2 | ≤
|x(t)−x∗|

2 + |y(t)−x∗|
2 ≤ ε.

If |x(t)−x∗| ≤ ε and |y(t)−x∗| ≤ ε, then |winv(t)−x∗| = |x(t)+y(t)
2 −x∗| = |x(t)−x∗+y(t)−x∗

2 | ≤
|x(t)−x∗|

2 + |y(t)−x∗|
2 ≤ ε.

As a result, if |x(t)− x∗| ≤ ε and |y(t)− x∗| ≤ ε, then

|wspu(t)|
|winv(t)|

≤ ε

x∗ − ε
≈ ε

x∗
(89)

Therefore, to get the ratio |wspu(t)|
|winv(t)| ≤

ε
x∗ the time taken is at most x∗

2(1−p)ε .

In comparison in the same amount of time the ratio |wspu(t)
winv(t)

| achieved by gradient descent on RERM is

at least
ln( 1+2p

3−2p )

ln(1+ x∗
2(1−p)ε

)
. The expression for lower bound on the ratio |wspu(t)

winv(t)
| is derived by substituting

the time taken, i.e., x∗

2(1−p)ε , in the expression for the lower bound derived in Section B.3 in Nagarajan
et al. (2021)).

Remark on max-margin classifiers. In the 2D example, the max-margin classifier seems to solve
the problem. In general max-margin classifier would not work. In the more general setting, if there is
noise in the labels, which is allowed by the SEM in Assumption 8, and the data is scrambled, which
is also the case in Assumption 8, there is no guarantee that max-margin classifier would not rely on
the spurious features.
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A.9 Illustrating both invariance and information bottleneck acting in conjunction

In this section, we present a case to illustrate why the invariance principle and the information
bottleneck are needed simultaneously. The model we present follows a DAG that combines the DAGs
in Figure 2a) and Figure 2b).

Example extending the 2D case from equation (4). For all the environments e ∈ Etr

Y e ← Xe
inv ⊕Ne

X1,e
spu ← Y e ⊕W e

X2,e
spu ← Xe

inv ⊕ V e
(90)

where all the variables in the above SEM are binary {0, 1} random variables. Ne ∼ Bernoulli(q),
V e ∼ Bernoulli(a); the distribution of noise Ne and V e are the same across the environments.
W e ∼ Bernoulli(ue) where ue is an environment dependent probability. For all the environments
e ∈ Eall, we assume that the distribution of Xe

inv, Ne, and V e does not change. The labelling function
to generate Y e is also the same. The distribution of X1,e

spu can change arbitrarily. In this example,
observe that E[Y e|Xe] varies across the training environments. We show the simplification below.

E[Y e|Xe] = E
[
Xe

inv ⊕Ne
∣∣(Xe

inv, X
1,e
spu , X

2,e
spu)
]

(91)

If Xe
inv = 0, Xe

spu = 0, then E[Y e|Xe] = P(Ne = 1|Xe
inv = 0, X1,e

spu = 0). We show that
P(Ne = 1|Xe

inv = 0, X1,e
spu = 0) varies across the environments.

P(Ne = 1|Xe
inv = 0, X1,e

spu = 0) =
P(Ne = 1, Xe

inv = 0, X1,e
spu = 0)

P(Ne = 1, Xe
inv = 0, X1,e

spu = 0) + P(Ne = 0, Xe
inv = 0, X1,e

spu = 0)

=
P(Ne = 1, Xe

inv = 0)ue

P(Ne = 1, Xe
inv = 0)ue + P(Ne = 0, Xe

inv = 0)(1− ue)
(92)

Note that the above equation (92) describes the probability computed by the Bayes optimal classifier
that relies on input feature dimensions are used. Observe that the above probability in equation
(92) can only be equal across two environments if ue was the same. Therefore, if |Etr| ≥ 2 and the
probability ue varies across the environments, then the invariance constraint restrict us from using
the identity representation. However, E[Y e|Xe

inv, X
2,e
spu ] is invariant and so is E[Y e|Xe

inv]. Based on
the same arguments that we discussed in the main manuscript, we can show that one can construct
classifiers that output probability distributions that minimize cross-entropy (maximize likelihood)
and continue to depend on X2,e

spu as follows

P̂(Y e = 1|Xe
inv, X

2,e
spu) = (1− q)I

(
winvX

e
inv + wspuX

e
spu −

(winv + wspu)

2

)
+

q
(

1− I
(
winvX

e
inv + wspuX

e
spu −

(winv + wspu)

2

))
.

(93)

If winv > |wspu|, then above classifier P̂(Y e = 1|Xe
inv, X

2,e
spu) matches the true probability distribution

conditional on the invariant feature P(Y e = 1|Xe
inv) on all the training environments and it thus forms

a valid invariant predictor with representation that focuses on Xe
inv, X

2,e
spu . Since the classifier relies

on X2,e
spu , the classifier fails as the support of spurious features can change. If we place an entropy

constraint, then the representation that focuses only on Xe
inv is strictly prefered to one that focuses on

both Xe
inv, X

2,e
spu and continues to achieve the same cross-entropy loss. Thus in this example, IRM

fails as its solution space contains classifiers that rely on spurious features but IB-IRM would succeed.
In the above example, ERM and IB-ERM (with rth set to match the loss of ERM) will rely on X1,e

spu

on top of Xe
inv as conditioning on X1,e

spu in addition to Xe
inv further reduces the conditional entropy

thus reducing the cross-entropy loss.

Let us consider a generalization of the above example.
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Assumption 11. Each environment e ∈ Eall follows

Y e ← I
(
w∗inv ·Xe

inv

)
⊕Ne (94)

Ne is binary noise, and Xe
inv are binary features. Both Ne and Xe

inv have identical distributions
across all the environments Eall

Divide the spurious features into two parts Xe
spu = (X1,e

spu , X
2,e
spu).

Assumption 12. Each environment e ∈ Etr follows

X1,e
spu ← Y e1⊕W e

X2,e
spu ← Xe

inv ⊕ V e
(95)

where 1 ∈ Ro′ is a vector of ones, W e ∈ Ro′ is a binary 0-1 vector with each component drawn
i.i.d. from Bernoulli(ue) vector, V e is also a binary 0-1 vector with each component drawn i.i.d.
from Bernoulli(a) vector. The distribution of W e changes across environments and no two training
environments have the same ue. The distribution of V e is identical across all the training environments.
Also, assume that there are at least two training environments, i.e., |Etr| ≥ 2.
Assumption 13. HΦ is a set of diagonal matrices, where each element in the matrix is 0 or 1 (HΦ

act as matrices that seletct subset of input features). Hw is set of all probability distributions on Rd.
` is the cross-entropy loss.

We use the Shannon entropy formulation of IB-IRM in this case as all the random variables involved
are discrete. Moreover, we carry out entropy minimization for the representation directly and not the
predictor. The IB-IRM optimization is given as follows.

min
Φ∈HΦ

1

|Etr|
∑
e

He(Φ)

s.t.
1

|Etr|
∑
e

Re
(
w ◦ Φ

)
≤ rth

w ∈ arg min
w̃∈Hw

Re(w̃ ◦ Φ)

(96)

Theorem 11. Suppose the data follows Assumption 11, Assumption 12. SupposeHw andHΦ follow
Assumption 13. If invariant features are strictly separable, i.e., Assumption 7 holds, then IRM fails
but IB-IRM succeeds.

Proof of Theorem 11. We carry out the analysis for different types of representations separately.

Case 1: Consider a representation that selects a subset X̃e
1 of (Xe

inv, X
2,e
spu) and a subset X̃e

2 of X1,e
spu .

P(Y e = 1|X̃e
1 = 0, X̃e

2 = 0) =
P(Y e = 1, X̃e

1 = 0, X̃e
2 = 0)

P(Y e = 1, X̃e
1 = 0, X̃e

2 = 0) + P(Y e = 0, X̃e
1 = 0, X̃e

2 = 0)

=
P(Y e = 1, X̃e

1 = 0)(ue)o
′

P(Y e = 1, X̃e
1 = 0)(ue)o′ + P(Y e = 1, X̃e

1 = 0)(1− ue)o′
(97)

Since P(Y e = 1|X̃e
1 = 0, X̃e

2 = 0) is strictly monotonic in ue, this probability cannot be same
across two environments. Hence, any X̃e

1 , X̃
e
2 cannot lead to an invariant predictor across the two

environments.

Case 2: Consider a representation that selects a subset X̃e of X1,e
spu .

P(Y e = 1|X̃e = 0) =
P(Y e = 1, X̃1,e = 0)

P(Y e = 1, X̃1,e = 0) + P(Y e = 0, X̃1,e = 0)

=
P(Y e = 1)(ue)o

′

P(Y e = 1)(ue)o′ + P(Y e = 0)(1− ue)o′

(98)
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For the above class of representations also, we can use the same argument as the one discussed in
Case 1 and show that the above probability cannot be the same across two environments.

Case 3: At this point, our only option is to consider representations that select subsets of (Xe
inv, X

2,e
spu).

Each subset of (Xe
inv, X

2,e
spu) satisfies invariance. Among this set all the subsets that lead to lowest

cross-entropy are selected by IRM. Among those sets IRM does not exclude the inclusion of spurious
covariates X2,e

spu . However, when we impose entropy minimization objective, then X2,e
spu will never

be selected as entropy can be strictly reduced by not including these covariates in the set without
sacrificing invariance or cross-entropy. To explicitly show a construction of the failure of IRM in this
case, we can use the same construction as equation (93) but replacing the hyperplane in the indicator
function with hyperplane constructed in Lemma 4.
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A.10 Related works

A.10.1 Invariance principles in causality

The foundations of invariance principles are rooted in the theory of causality (Pearl, 1995). There
are several different forms in which the invariance principles or principles similar to it appear in the
literature on causality. Modularity condition states that a variable Y is caused by a set of variables
XPa(Y )if and only if under all interventions other than those on Y the conditional probability
P(Y |XPa(Y )) remains invariant. Related and similar notions are stability (Pearl, 2009), autonomy
(Schölkopf et al., 2012), invariant causal prediction principle (Peters et al., 2016; Heinze-Deml et al.,
2018). These principles lead to a powerful insight – if we model all the environments (train and
test) using interventions, then as long as these interventions do not affect the causal mechanism that
generates the target variable Y , a classifier trained only on the transformation that extracts causal
variables (Φ(X) = XPa(y)) to predict Y is invariant under interventions.

A.10.2 Invariance principles in OOD generalization

In recent years, there has been a surge in the works inspired from causality, examples of some notable
works are (Peters et al., 2016; Arjovsky et al., 2019), which seek to address OOD generalization
failures. The invariance principle is at the heart of many of these works. For a better understanding,
we divide these works into two categories – theory and methods, though some works belong to both.

Theory. In Rojas-Carulla et al. (2018) it was shown that the predictors trained on the causes are
min-max optimal under a large class of distribution shifts modeled by the interventions. These
findings were generalized in Koyama and Yamaguchi (2020). Given that we know that predictors that
focus on the causes are min-max optimal under many distribution shifts, the central question then
is – can we learn these predictors from a finite set of training distributions/environments? Arjovsky
et al. (2019) showed how to achieve such causal predictors that generalize OOD from a finite set of
training environments for linear regression tasks under very general assumptions. Rosenfeld et al.
(2021b) considered linear classification tasks where invariant features were partially informative w.r.t
the label and showed that under assumptions of support overlap for invariant and spurious features, it
is possible to learn predictors that generalize OOD. In this work, we analyze classification tasks but
different from Rosenfeld et al. (2021b) we consider both fully and partially informative features. We
showed that support overlap of invariant features is necessarily needed for OOD generalization in
classification tasks else OOD generalization, in general, is impossible. On the other hand, we showed
that support overlap for spurious features is not necessary but in its absence standard methods such as
ERM and IRM can fail.

Recent works (Rosenfeld et al., 2021b,a; Kamath et al., 2021; Gulrajani and Lopez-Paz, 2021) have
also pointed to several limitations of invariance based approaches for addressing OOD generalization
failures. In Rosenfeld et al. (2021b), the authors showed that if we use the IRMv1 objective, then
for non-linear tasks the solutions from IRMv1 are no better than ERM in generalizing OOD. In Lu
et al. (2021), the authors present a two-phased approach to addressing the difficulties faced by IRM
in the non-linear regime. In the first phase, an identifiable variational autoencoder (Khemakhem
et al., 2020) is used to extract the latent representations from the raw input data. In the second phase,
causal discovery-based approaches are used to identify the causal parents of the label and then learn
predictors based on the causal parents only. The entire analysis in Lu et al. (2021) is for the setting
when the invariant features are partially informative about the label. Also, the analysis assumes
that we have access to side information (possibly in the form of environment index) that can help
disentangle all the latent features, i.e., all the latent features are independent conditioned on this side
information. Having access to such information, in general, is a strong assumption. In Kamath et al.
(2021), the authors show that if the label and feature space is finite and if the distribution shifts are
captured by analytic functions, then the set of invariant predictors found from two environments
exactly capture all the invariant predictors described by the analytic function. While this is a very
interesting and important result, we would like to point out that the distribution shifts captured using
analytic functions represent a small family of interventions that are otherwise allowed when learning
predictors that focus on causes.

In this work, we focused on linear SEMs unlike the non-linear SEMs described above. The setting
that we considered in this work has three salient features – a) classification when invariant features
are fully informative, b) spurious features are correlated with invariant features, and c) arbitrary shifts
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are allowed on the spurious feature distribution. This setting is important as many of the existing
failures correspond to this setting. We are the first to give provable OOD generalization guarantees
for this setting. Considering non-linear models is a natural next step. On this note, we would like to
mention that we believe several of our results can be generalized to the setting when the mapping
from the latents to the raw data is piecewise linear.

Methods. Following the original works ICP (Peters et al., 2016) and IRM (Arjovsky et al., 2019),
there have been several interesting works — (Teney et al., 2020; Krueger et al., 2020; Ahuja et al.,
2020; Jin et al., 2020; Chang et al., 2020; Ahuja et al., 2021a; Mahajan et al., 2020; Koyama
and Yamaguchi, 2020; Müller et al., 2020; Parascandolo et al., 2021; Ahmed et al., 2021; Robey
et al., 2021; Zhang et al., 2021) is an incomplete representative list — that build new methods
inspired from IRM to address the OOD generalization problem. We would not go into the details of
these different works. However, we believe it is important to talk about works that use conditional
independence-based criterion to achieve invariance (Koyama and Yamaguchi, 2020; Huszár, 2019)
as those objectives also involve mutual information. Invariance can be enforced using conditional
independence as follows. Suppose the environment is given as a random variable E. In this case, if
we can learn a representation Φ(X) such that Y ⊥ E|Φ(X), then the predictors learned on Φ are
invariant predictors. This conditional independence constraint is formulated in the form of mutual
information-based criterion in (Koyama and Yamaguchi, 2020; Huszár, 2019). In this work, we argue
that often in classification tasks, there are many representations Φ that satisfy Y ⊥ E|Φ(X) and we
have to learn the one that has the least entropy or otherwise OOD generalization is not possible.

A.10.3 Theory of domain adaptation and domain generalization

In the previous section, we discussed works that were directly based on causality/invariance or
inspired from it. We now briefly review other relevant works on domain adaptation and domain
generalization that are not based on invariance principle from causality. Starting with the seminal
works (Ben-David et al., 2007, 2010), there have been many other interesting works in the area of
domain adaptation and domain generalization. (Muandet et al., 2013; Zhao et al., 2019; Albuquerque
et al., 2019; Piratla et al., 2020; Matsuura and Harada, 2020; Deng et al., 2020; Pagnoni et al., 2018;
Greenfeld and Shalit, 2020; Garg et al., 2021) is an incomplete representative list of works that build
the theory of domain adaptation and generalization and construct new methods based on it. We
recommend the reader to Redko et al. (2019) for further references.

In the case of domain adaptation, many of these works develop bounds on the loss over the target
domain using train data and unlabeled target data. In the case of domain generalization, these works
develop bounds on the loss over the target domains using training data from multiple domains.
Other works (Ben-David and Urner, 2012; David et al., 2010) analyze the minimal conditions under
which domain adaptation is possible. In David et al. (2010), the authors showed that the two most
common assumptions, a) covariate shifts, and b) the presence of a classifier that achieves close
to ideal performance simultaneously in train and test domains, are not sufficient for guaranteed
domain adaptation. In this work, we established the necessary and sufficient conditions for domain
generalization in linear classification tasks. We showed that under a) covariate shift assumption (SEM
in Assumption 2 satisfies the covariate shift), and b) the presence of a common labelling function
across all the domains (a much stronger condition than assuming the existence of a classifier that
achieves low error across the train and test domains), domain generalization in linear classification is
impossible. We showed that adding the requirement that the invariant features satisfy support overlap
is both necessary and sufficient (our approach IB-IRM succeeds while IRM and ERM fail) in many
cases to guarantee domain generalization.

There has been a long line of research focused on learning domain invariant feature representations
(Ganin et al., 2016; Li et al., 2018; Zhao et al., 2020). In these works, the common assumption is
that the there exist highly predictive representations whose distributions P(Φ(Xe))(or distributions
conditional on the labels P(Φ(Xe)|Y e)) do not change across environments. Note that this is a much
stronger assumption than the one typically made in works based on invariance principle (Arjovsky
et al., 2019), where the labelling function (P(Y e|Φ(Xe)) does not change. For a detailed analysis of
why the assumptions made in these works are too strong and can often fail refer to Arjovsky et al.
(2019); Zhao et al. (2019).
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A.10.4 Other works on OOD generalization

In Nagarajan et al. (2021) the authors explained why ERM based models trained with gradient descent
based approaches fail to generalize OOD in terms of two failure modes – a) gradient descent during
training early on relies on shortcut features, b) overparametrized models exhibit geometric biases that
cause the models to rely on spurious features. We now describe the line of work based on domain
adaptation. For failure mode described in a), we showed in Theorem 5 how information bottleneck
penalty can help. Sagawa et al. (2019) studied how overparametrized models can exacerbate the
impact of selection biases, Xie et al. (2021) studied the role of auxilliary information and how it can
help OOD generalization.

A.10.5 Information bottleneck penalties and impact on generalization

Information bottleneck principle (Tishby et al., 2000) has been used to explain the success of deep
learning models; the principle has also been used to build regularizers that can help build models
that achieve better in-distribution generalization. We refer the reader to Kirsch et al. (2020), which
presents an excellent summary of the existing works on information bottleneck in deep learning.
Kirsch et al. (2020) also present a unified framework to view many of the information bottleneck
objectives in the literature such as the deterministic information bottleneck (Strouse and Schwab,
2017) and the standard information bottleneck. Other works (Alemi et al., 2016; Arpit et al., 2019)
have argued for how information bottleneck can help achieve robustness to adversarial examples,
and also to OOD generalization failures. In Arpit et al. (2019), the authors argued that information
bottleneck constraints help filter out features that are less correlated with the label. However, the
principle of invariance argues for selecting the invariant features even if they have small but invariant
correlation with the label over features that maybe strongly correlated but have a varying correlation.
As we showed, considering both the principles of invariance and information bottleneck in conjunction
is important to achieve OOD generalization (eq. (1)) in a wide range of settings – when the invariant
features are fully informative about the label and also when they are partially informative about the
label.
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