Appendix

A Capacity Analysis

In below we give a formal analysis of the higher capacity of STDCF than rank-1 decomposition.

For simplicity, we assume $C_{in} = C_{out} = 1$, and only consider the linear convolution operator (omitting the addition of bias and non-linear activation).

We derive the spatiotemporal convolution in continuous integral over space and time. The regular spatiotemporal joint convolution is denoted as $I \circledast W(u,t) := \int \int I(u+u',t+t')W(u',t')du'dt'$, with a filter W(u,t), where $u \in \mathbb{R}^2$, and $t \in \mathbb{R}$. Then, the joint convolution generally can be written as

$$J(\lambda) = \sum_{\lambda'} I(\lambda') \circledast W_{(\lambda,\lambda')}$$

where $W_{(\lambda,\lambda')}: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ is local both in space and in time. The proposed convolution by atom is equivalently to writing $W_{\lambda,\lambda'}$ as

$$W_{(\lambda,\lambda')} = \sum_{i,j} \alpha_{(\lambda,\lambda')}^{i,j} \psi_i(u) \phi_j(t), \quad \alpha_{(\lambda,\lambda')}^{i,j} \in \mathbb{R},$$
(1)

and $a_{k,l}^{(c,c')}$ are freely trainable, and then

$$J(\lambda) = \sum_{\lambda'} \sum_{i,j} \alpha^{i,j}_{(\lambda,\lambda')} I(\lambda') \circledast (\psi_i \otimes \phi_j),$$
(2)

where $\psi \otimes \phi$ denotes the tensor-ed atom, namely $\psi \otimes \phi(u,t) = \psi(u)\phi(t)$. For each fixed pair of $(\lambda, \lambda'), \{\alpha_{(\lambda, \lambda')}^{i,j}\}_{i,j}$ is a *M*-by-*N* matrix, and generally is full rank.

We compare with applying the space convolution and then the temporal convolution sequentially, i.e. the rank-1 3D filter decomposition. In this decomposition, spatial filters are $W_s = W^{(\lambda'',\lambda')}(u)$, temporal filters are $W_t = W^{(\lambda,\lambda'')}(t)$, $\lambda'' \in [C'']$. Then,

$$Z_{\lambda^{\prime\prime}} = \sum_{\lambda^{\prime}} X_{\lambda^{\prime}} *_{u} W_{s}^{(\lambda^{\prime\prime},\lambda^{\prime})}, \quad Y_{\lambda} = \sum_{\lambda^{\prime\prime}} Z_{\lambda^{\prime\prime}} *_{t} W_{t}^{(\lambda,\lambda^{\prime\prime})}, \tag{3}$$

where $*_u, *_t$ denote spatial and temporal convolution. Write $W_s^{(\lambda'',\lambda')}$ and $W_t^{(\lambda,\lambda'')}$ as combination of atoms ψ_i and ϕ_j respectively,

$$W_s^{(\lambda^{\prime\prime},\lambda^{\prime})} = \sum_i m_{(\lambda^{\prime\prime},\lambda^{\prime})}^i \psi_i, \quad W_t^{(\lambda,\lambda^{\prime\prime})} = \sum_j n_{(\lambda,\lambda^{\prime\prime})}^j \phi_j,$$

then Y_c can also be expressed as (2) where

$$\boldsymbol{\alpha}_{(\lambda,\lambda')}^{i,j} = \sum_{\lambda''=1}^{C''} m_{(\lambda'',\lambda')}^i n_{(\lambda,\lambda'')}^j, \quad i \in [K_u], \, j \in [K_t]$$

Tracking the degree of freedom reveals that $\alpha_{(\lambda,\lambda')}^{i,j}$ in the above form is more restrictive than being free parameters: To simplify notation, let C = C' = C'', then $\alpha_{(\lambda,\lambda')}^{i,j}$ has $C^2 K_u K_t$ many variables if all free. In comparison, $m_{(\lambda'',\lambda')}^i$ has $K_u C^2$ many variables, and $n_{(\lambda,\lambda'')}^j$ has $K_t C^2$ many, thus the rank-1 decomposed convolution formulation has only $(K_u + K_t)C^2$ many free variables in total. This quantifies the loss of expressiveness from (2) to (3).

B Details about Translate-Rotate MNIST Reconstruction

Here we provide the details of the translate-rotate mnist reconstruction experiments.

layer	Rank-1 3D	STDCF
conv1	$1 \times 3^2, 4, s(1, 2, 2)$	$3 \times 3^2, 4, s(2, 2, 2)$
COIIVI	$3 \times 1^2, 4, s(2, 1, 1)$	(M=5, N=3)
conv2	$1 \times 3^2, 8, s(1, 2, 2)$	$3 \times 3^2, 8, s(2, 2, 2)$
COIIV2	$3 \times 1^2, 8, s(2, 1, 1)$	(M=5, N=3)
daaamu 1	$1 \times 3^2, 4, s(1, 2, 2)$	$3 \times 3^2, 4, s(2, 2, 2)$
ucconv i	$3 \times 1^2, 4, s(2, 1, 1)$	(M=5, N=3)
da a a mu 2	$1 \times 3^2, 4, s(1, 2, 2)$	$3 \times 3^2, 4, s(2, 2, 2)$
ucconv2	$3 \times 1^2, 4, s(2, 1, 1)$	(M=5, N=3)
conv3	$1 \times 3^2, 4, s(1, 1, 1)$	$3 \times 3^2, 1, s(1, 1, 1)$
conv5	$3 \times 1^2, 1, s(1, 1, 1)$	(M=5, N=3)

Table A: Architectures for Translate-Rotate MNIST reconstruction experiments. s(2, 2, 2) indicates the stride for 3D convolution.

Dataset. For training set, we randomly select 20,000 digits from original MNIST training set, and create 10,000 8-frame clips with 2 digits in each. For each clip, two digits start translation in random speeds from random positions, where the a digit will bounce backwards when it hit the border of the frame. The frame size is set to be 28, and the digit is formatted as the original MNIST 28×28 image. While the digit is translating, it is also rotating in a angular speed of 45 degree/frame to form complex spatiotemporal correlations. In additional, two digits can also overlap to make the reconstruction task more difficult. We construct 5,000 8-frame test clips in the same way of building the training set.

AutoEncoder Architecture and Training Details. We adopt a 2-layer 3D CNN for the encoder and 3-layer 3D CNN for the decoder. The autoencoder is instantiated by inserting the rank-1 decomposition or STDCF, as shown in Table A. For Training, we adopt the L2 loss, and use Adam optimizer with lr = 1e - 3, batchsize 64. We train the model for total 50 epochs.

Additional Qualitative Results. We provide additional visualization results to show STDCF captures more spatiotemporal correlations than rank-1 decomposition. As shown in Figure A, STDCF consistently outperforms rank-1 decomposed 3D filters in reconstruction qualities.

C Details about the KTH experiments

We provide the architecture we used for KTH in both Section 2.1.2 and Section 3.1 in Table B. The 64-dimension representations shown in Figure 3 are obtained after conv3. the baseline method is the representation with $\tau_{test} = \tau_{train} = 1$. the tempo-awared methods is to use dilation=(2,1,1) in all three convolutional layers. We provide more representation samples in Figure B.

			r r		
layer	Reg. 3D	Rank-1 3D	STDCF		
conv1	$5 \times 3^2, 16$	$1 \times 3^2, 16$	$5 \times 3^2, 16$		
		$5 \times 1^{2}, 16$	(M=5, N=3)		
	max-pool 1, 2, 2				
conv2	$5 \times 3^2, 32$	$1 \times 3^2, 32$	$5 \times 3^2, 32$		
		$5 \times 1^2, 32$	(M=5, N=3)		
	max-pool 2, 2, 2				
conv3	$3 \times 3^2, 64$	$1 \times 3^2, 64$	$3 \times 3^2, 64$		
		$3 \times 1^2, 64$	(M=5, N=2)		
	max-pool 2, 2, 2				
	global average pool, fc				

Table B: Architectures for KTH experiment

D Details about the Kinetics and Something-Somethingv1 experiments

D.1 Architecture

We provide the architecture of STDCF-R50 in Table C.

Table C. Alcintecture of STDC1-K50.					
Stage	Layer	Output Size			
raw	-	$L \times 224 \times 224$			
$conv_1$	$5 \times 7 \times 7, 64$, stride 1, 2, 2	$L \times 112 \times 112$			
$pool_1$	$1 \times 3 \times 3$, max, stride 1, 2, 2	$L \times 56 \times 56$			
res ₂	$\begin{bmatrix} 1 \times 1 \times 1, 64 \\ \text{STDCF } 3 \times 3 \times 3, 64 \\ 1 \times 1 \times 1, 256 \end{bmatrix} \times 3$	$L \times 56 \times 56$			
res ₃	$\begin{bmatrix} 1 \times 1 \times 1, 128\\ \text{STDCF } 3 \times 3 \times 3, 128\\ 1 \times 1 \times 1, 512 \end{bmatrix} \times 4$	$L \times 28 \times 28$			
res ₄	$\begin{bmatrix} 1 \times 1 \times 1, 256\\ \text{STDCF } 3 \times 3 \times 3, 256\\ 1 \times 1 \times 1, 1024 \end{bmatrix} \times 6$	$L \times 14 \times 14$			
res ₅	$\begin{bmatrix} 1 \times 1 \times 1, 512\\ \text{STDCF } 3 \times 3 \times 3, 512\\ 1 \times 1 \times 1, 2048 \end{bmatrix} \times 3$	$L \times 7 \times 7$			
	global average pool,fc	$1 \times 1 \times 1$			

Table C: Architecture of STDCF-R50.

D.2 Accuracies of all ITSL iterations on Kinetics

We provided accuracies of all models learned in *stage-t* and *stage-s* of all three iterations on Kinetics-400 in Table D.

Table D: Accurac	cies of stage-t	and stage-s mo	odels of all thre	e iterations.
	Method	Top-1 Acc.	Top-5 Acc.	

Method	Top-1 Acc.	Top-5 Acc.
STDCF-R50-t-1	68.2	88.4
STDCF-R50-s-1	70.8	89.1
STDCF-R50-t-2	72.0	89.7
STDCF-R50-s-2	73.1	90.2
STDCF-R50-t-3	73.6	90.3
STDCF-R50-s-3	74.0	90.6
STDCF-R50	74.5	91.2

D.3 Accuracies of all ITSL iterations on Something-Somethingv1

We provided accuracies of all models learned in *stage-t* and *stage-s* of all three iterations on Something-Somethingv1 in Table E.

Method	Top-1 Acc.	Top-5 Acc.
STDCF-R50-t-1	42.3	71.8
STDCF-R50-s-1	44.1	73.6
STDCF-R50-t-2	44.8	74.3
STDCF-R50-s-2	45.1	74.7
STDCF-R50	45.9	75.2

Table E: Accuracies of *stage-t* and *stage-s* models of two iterations.

			Input Sequence								
8 ²	৵৾	ø	8 >	Ð	ଡ ୍ଦ	8 2	م 2				
			Rank-1 Rec	constructed	_						
82	م ^{کر}	03 ^{C1}	Star.	6	ి	82	م م				
			STDCF Rec	constructed							
82	ര്	BN	&>	â	%	82	~ ~				
			(8	1)							
			Input Sequ	uence							
3 4	_ى ،	4 ³	<mark>، ک</mark>	۶ ۲	UN N	43	۶				
			Rank-1 Rec	onstructed							
34	¥د ر	4 3	35 13	٤,	'n	ав.	\$j				
			STDCF Rec	onstructed							
34	^ъ ч	4 3	<mark>۶۳</mark>	٤ 4	ς. Υγ	42	<u>ب</u> ح				
			(ł))							
			Input Seq	uence							
8 9	9 9	9	6 P	ь д	°	9 8	9 °				
			Rank-1 Rec	onstructed							
8 4	5. đ		£. Þ	6 g	<i>`</i> ? &	900	80				
_	_		STDCF Rec	onstructed	_	_					
8 9	D 6	90	6 P	ь в	<i>₽ °</i>	9.08	9 3				
			(0	c)							
Input Sequence											
16	16	19	19	19	5	19	51				
Rank-1 Reconstructed											
16	14	-"Ve	1.9	17	27	19	\$				
STDCF Reconstructed											
16	16	19	15	19	5	19	51				
			(0	1)							

Figure A: More visualizations for TR-MNIST reconstruction.

Figure B: More visualizations of representation comparisons.