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Abstract

We contribute to a better understanding of the class of functions that is represented
by a neural network with ReLU activations and a given architecture. Using tech-
niques from mixed-integer optimization, polyhedral theory, and tropical geometry,
we provide a mathematical counterbalance to the universal approximation theorems
which suggest that a single hidden layer is sufficient for learning tasks. In particular,
we investigate whether the class of exactly representable functions strictly increases
by adding more layers (with no restrictions on size). This problem has potential
impact on algorithmic and statistical aspects because of the insight it provides into
the class of functions represented by neural hypothesis classes. However, to the
best of our knowledge, this question has not been investigated in the neural network
literature. We also present upper bounds on the sizes of neural networks required
to represent functions in these neural hypothesis classes.

1 Introduction

A core problem in machine learning or statistical pattern recognition is the estimation of an unknown
data distribution with access to i.i.d. samples from the distribution. It is well-known that there is
a tension between how much prior information one has about the data distribution and how many
samples one needs to solve the problem with high confidence (or equivalently, how much variance
one has in one’s estimate). This is referred to as the bias-variance trade-off or the bias-complexity
trade-off. Neural networks provide a way to turn this bias/complexity knob in a controlled manner
that has been studied for decades going back to the idea of a perceptron by Rosenblatt [1958]. This is
done by modifying the architecture of a neural network class of functions, which has two parameters:
depth and size. As one increases these parameters, the class of functions becomes more expressive.
In terms of the bias-variance trade-off, the “bias” decreases as the class of functions becomes more
expressive, but the “variance” or “complexity” increases.

So-called universal approximation theorems [Cybenko, 1989, Hornik, 1991, Anthony and Bartlett,
1999] show that even with a single hidden layer, i.e., when the depth of the architecture is the smallest
possible value, one can essentially reduce the “bias” as much as one desires, by increasing the
size of the network or the number of neurons used in the neural network. Nevertheless, it can be
advantageous both theoretically and empirically to increase the depth because a substantial reduction
in the size can be achieved; Telgarsky [2016a], Eldan and Shamir [2016], Arora et al. [2018] is a
small sample of recent work in this direction. To get a better quantitative handle on these trade-offs,
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it is important to understand what classes of functions are exactly representable by neural networks
with a certain architecture. The precise mathematical statements of universal approximation theorems
show that single layer networks can approximate arbitrarily well any continuous function (under
some additional mild hypotheses). While this suggests that single layer networks are good enough
from a learning perspective, from a mathematical perspective, one can ask the question if the class of
functions represented by a single layer is a strict subset of the class of function represented by two or
more hidden layers. On the question of size, one can ask for precise bounds on the size of the network
of a given depth to represent a certain class of functions. We believe that a better understanding of
the function classes exactly represented by different architectures will have implications not just for
mathematical foundations, but also algorithmic and statistical learning aspects of neural networks.
The task of searching for the “best” function in that class can only benefit from a better understanding
of the nature of functions in that class. A motivating question behind the results in this paper is to
understand the hierarchy of function classes exactly represented by neural networks of increasing
depth.

We now introduce more precise notation and terminology to set the stage for our investigations.

Notation. We write [n] := {1, 2, . . . , n} for the set of natural numbers up to n (without zero)
and [n]0 := [n] ∪ {0} for the same set including zero. For any n ∈ N, let σ : Rn → Rn be the
component-wise rectifier function

σ(x) = (max{0, x1},max{0, x2}, . . . ,max{0, xn}).

For any number of hidden layers k ∈ N, a (k + 1)-layer feedforward neural network with rectified
linear units (ReLU NN or simply NN) is given by k affine transformations T (`) : Rn`−1 → Rn` ,
x 7→ A(`)x+ b(`), for ` ∈ [k], and a linear transformation T (k+1) : Rnk → Rnk+1 , x 7→ A(k+1)x. It
is said to compute or represent the function f : Rn0 → Rnk+1 given by

f = T (k+1) ◦ σ ◦ T (k) ◦ σ ◦ · · · ◦ T (2) ◦ σ ◦ T (1).

The matrices A(`) ∈ Rn`×n`−1 are called the weights and the vectors b(`) ∈ Rn` are the biases of
the `-th layer. The number n` ∈ N is called the width of the `-th layer. The maximum width of all
hidden layers max`∈[k] n` is called the width of the NN. Further, we say that the NN has depth k + 1

and size
∑k
`=1 n`.

Often, NNs are represented as layered, directed, acyclic graphs where each dimension of each layer
(including input layer ` = 0 and output layer ` = k + 1) is one vertex, weights are arc labels, and
biases are node labels. Then, the vertices are called neurons.

For a given input x = x(0) ∈ Rn0 , let y(`) := T (`)(x(`−1)) ∈ Rn` be the activation vector and
x(`) := σ(y`) ∈ Rn` the output vector of the `-th layer. Further, let y := y(k+1) = f(x) be the
output of the NN. We also say that the i-th component of each of these vectors is the activation or the
output of the i-th neuron in the `-th layer.

For k ∈ N, we define

ReLUn(k) := {f : Rn → R | f can be represented by a (k + 1)-layer NN},
CPWLn := {f : Rn → R | f is continuous and piecewise linear}.

By definition, a continuous function f : Rn → R is piecewise linear in case there is a finite set of
polyhedra whose union is Rn, and f is affine linear over each such polyhedron.

In order to analyze ReLUn(k), we use another function class defined as follows. We call a
function g a p-term max function if it can be expressed as maximum of p affine terms, that is,
g(x) = max{`1(x), . . . , `p(x)} where `i : Rn → R is affinely linear for i ∈ [p]. Based on that, we
define

MAXn(p) := {f : Rn → R | f is a linear combination of p-term max functions}.

If the input dimension n is not important for the context, we sometimes drop the index and use
ReLU(k) :=

⋃
n∈N ReLUn(k) and MAX(p) :=

⋃
n∈N MAXn(p) instead.

Since we deal with polyhedra a lot in this paper, we will use the standard notations convA and
coneA for the convex and conic hulls of a set A ⊆ Rn. For an in-depth treatment of polyhedra and
(mixed-integer) optimization, we refer to Schrijver [1986].
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1.1 Our Contribution

It is not hard to see that any function expressed by a ReLU network is a continuous and piecewise
linear (CPWL) function, because one is composing continuous piecewise linear functions together.
Based on a result by Wang and Sun [2005], Arora et al. [2018] show that every CPWL function
defined on Rn can be represented by a ReLU neural network with dlog2(n+ 1)e hidden layers. We
wish to understand whether one can do better. We believe it is not possible to do better and we pose
the following conjecture to better understand the importance of depth in neural networks.
Conjecture 1.1. For any n ∈ N, let k∗ := dlog2(n+ 1)e. Then it holds that

ReLUn(0) ( ReLUn(1) ( · · · ( ReLUn(k∗ − 1) ( ReLUn(k∗) = CPWLn . (1)

Conjecture 1.1 claims that any additional layer up to k∗ hidden layers strictly increases the set of
representable functions. This would imply that the construction by Arora et al. [2018, Theorem 2.1]
is actually depth-minimal.

Observe that in order to prove Conjecture 1.1, it suffices to find a single function
f ∈ ReLUn(k∗) \ ReLUn(k∗ − 1) with n = 2k

∗−1 for all k∗ ∈ N. This also implies all remaining
strict inclusions ReLUn(i− 1) ( ReLUn(i) for i < k∗ since ReLUn(i− 1) = ReLUn(i) directly
implies that ReLUn(i− 1) = ReLUn(i′) for all i′ ≥ i− 1.

In fact, there is a canonical candidate for such a function, allowing us to reformulate the conjecture
as follows.
Conjecture 1.2. For any k ∈ N, n = 2k, the function fn(x) = max{0, x1, . . . , xn} cannot be
represented with k hidden layers.
Proposition 1.3. Conjecture 1.1 and Conjecture 1.2 are equivalent.

Proof (Sketch). We argued above that Conjecture 1.2 implies Conjecture 1.1. For the other direction,
one can argue that, if the specific (n+1)-term max function fn can be represented by k hidden layers,
then every other (n+ 1)-term max function as well. The claim then follows via a result by [Wang
and Sun, 2005] stating that any f ∈ CPWLn can be written as linear combination of (n+ 1)-term
max functions. We provide a detailed argument in Appendix A.

It is known that Conjecture 1.2 holds for k = 1 [Mukherjee and Basu, 2017]. However, the conjecture
remains open for k ≥ 2. In this paper, we present the following results as partial progress towards
resolving this conjecture.

In Section 2, we resolve Conjecture 1.2 for k = 2, under a natural assumption on the breakpoints of
the function represented by any intermediate neuron. We achieve this result by leveraging techniques
from mixed-integer programming to analyze the set of functions computable by certain NNs.

It is not hard to see that MAX(2k) ⊆ ReLU(k) for all k ∈ N [Arora et al., 2018], that is, any 2k-term
max function (and linear combinations thereof) can be expressed with k hidden layers. One might
ask whether the converse is true as well, that is, whether the classes MAX(2k) and ReLU(k) are
actually equal. This would not only provide a neat characterization of ReLU(k), but also prove
Conjecture 1.2 without any additional assumption since one can show that max{0, x1, . . . , x2k} is
not contained in MAX(2k).

In fact, this is true for k = 1, that is, a function is computable with one hidden layer if and only if it
is a linear combination of 2-term max functions. However, in Section 3, we show that for k ≥ 2, the
class ReLU(k) is a strict superset of MAX(2k). In this section, the key technical ingredient is the
theory of polyhedral complexes associated with CPWL functions. This way, we provide important
insights concerning the richness of the class ReLU(k).

So far, we have focused on understanding the smallest depth needed to express CPWL functions
using neural networks with ReLU activations. In Section 4, we complement these results by upper
bounds on the sizes of the networks needed for expressing arbitrary CPWL functions. In particular,
Theorem 4.4 shows that any continuous piecewise linear function with p linear/affine pieces on Rn
can be expressed by a network with depth at most O(log n) and width at most pO(n2). We arrive
at this result by introducing a novel application of recently established interactions between neural
networks and tropical geometry.
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1.2 Related Work

Depth versus size. Soon after the original universal approximation theorems [Cybenko, 1989,
Hornik, 1991], concrete bounds were obtained on the number of neurons needed in the hidden
layer to achieve a certain level of accuracy. The literature on this is vast and we refer to a small
representative sample here [Barron, 1993, 1994, Mhaskar, 1993, Pinkus, 1999, Mhaskar, 1996,
Mhaskar and Micchelli, 1995]. More recently, work has focused on how deeper networks can have
exponentially or super exponentially smaller size compared to shallower networks [Telgarsky, 2016a,
Eldan and Shamir, 2016, Arora et al., 2018, Vardi et al., 2021]. See also Gribonval et al. [2021] for
another perspective on the relationship between expressivity and architecture, and the references
therein. We reiterate that the list of references above is far from complete.

Mixed-integer optimization and machine learning. Over the past decade, a growing body of work
has emerged that explores the interplay between mixed-integer optimization and machine learning.
On the one hand, researchers have attempted to improve mixed-integer optimization algorithms by
exploiting novel techniques from machine learning [Bonami et al., 2018, Gasse et al., 2019, He
et al., 2014, Khalil et al., 2016, 2017, Kruber et al., 2017, Lodi and Zarpellon, 2017, Alvarez et al.,
2017]; see also Bengio et al. [2020] for a recent survey. On the flip side, mixed-integer optimization
techniques have been used to analyze function classes represented by neural networks [Serra et al.,
2018, Anderson et al., 2020, Fischetti and Jo, 2017, Serra and Ramalingam, 2020, Serra et al., 2020].
In Section 2 below, we show another new use of mixed-integer optimization tools for understanding
function classes represented by neural networks.

Design of training algorithms. We believe that a better understanding of the function classes
represented exactly by a neural architecture also has benefits in terms of understanding the complexity
of the training problem. For instance, in a paper by Arora et al. [2018], an understanding of single
layer ReLU networks enables the design of a globally optimal algorithm for solving the empirical
risk minimization (ERM) problem, that runs in polynomial time in the number of data points in fixed
dimension. See also Goel et al. [2017, 2018], Goel and Klivans [2019], Dey et al. [2020], Boob et al.
[2020], Goel et al. [2021], Froese et al. [2021] for a similar lines of work.

Neural Networks and Tropical Geometry. A recent stream of research involves the interplay
between neural networks and tropical geometry. The piecewise linear functions computed by neural
networks can be seen as (tropical quotients of) tropical polynomials. Linear regions of these functions
correspond to vertices of so-called Newton polytopes associated with these tropical polynomials.
Applications of this correspondence include bounding the number of linear regions of a neural network
[Zhang et al., 2018, Charisopoulos and Maragos, 2018, Montúfar et al., 2021] and understanding
decision boundaries [Alfarra et al., 2020]. In Section 4 we present a novel application of tropical
concepts to understand neural networks. We refer to Maragos et al. [2021] for a recent survey of
connections between machine learning and tropical geometry, as well as to the textbooks by Maclagan
and Sturmfels [2015] and Joswig [2022] for in-depth introductions to tropical geometry and tropical
combinatorics.

2 Conditional Lower Bounds on Depth via Mixed-Integer Programming

In this section, we provide a computer-aided proof that, under a natural, yet unproven assumption,
the function f(x) := max{0, x1, x2, x3, x4} cannot be represented by a 3-layer NN. It is worth to
note that, to the best of our knowledge, no CPWL function is known for which the non-existence of a
3-layer NN can be proven without additional assumption. For easier notation, we write x0 := 0.

We first prove that we may restrict ourselves to NNs without biases. This holds true independent of
our assumption, which we introduce afterwards.
Definition 2.1. A function g : Rn → Rm is called positively homogeneous if g(λx) = λg(x) for
all λ ≥ 0.
Definition 2.2. For an NN given by affine transformations T (`)(x) = A(`)x + b(`), we define the
corresponding homogenized NN to be the NN given by T̃ (`)(x) = A(`)x with all biases set to zero.
Proposition 2.3. If an NN computes a positively homogeneous function, then the corresponding
homogenized NN computes the same function.
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Proof. Let g : Rn0 → Rnk+1 be the function computed by the original NN and g̃ the one computed
by the homogenized NN. Further, for any 0 ≤ ` ≤ k, let g(`) = T (`+1) ◦σ ◦T (`) ◦ · · ·◦T (2) ◦σ ◦T (1)

be the function computed by the sub-NN consisting of the first (` + 1)-layers and let g̃(`) be the
function computed by the corresponding homogenized sub-NN. We first show by induction on ` that
the norm of ‖g(`)(x)− g̃(`)(x)‖ is bounded by a global constant that only depends on the parameters
of the NN but not on x.

For ` = 0, we obviously have ‖g(0)(x) − g̃(0)(x)‖ = ‖b(1)‖ =: C0, settling the induction base.
For the induction step, let ` ≥ 1 and assume that ‖g(`−1)(x) − g̃(`−1)(x)‖ ≤ C`−1, where C`−1

only depends on the parameters of the NN. Since component-wise ReLU activation has Lipschitz
constant 1, this implies ‖(σ ◦ g(`−1))(x)− (σ ◦ g̃(`−1))(x)‖ ≤ C`−1. Using any matrix norm that is
compatible with the Euclidean vector norm, we obtain:

‖g(`)(x)− g̃(`)(x)‖ = ‖b(`+1) +A(`+1)((σ ◦ g(`−1))(x)− (σ ◦ g̃(`−1))(x))‖
≤ ‖b(`+1)‖+ ‖A(`+1)‖ · C`−1 =: C`

Since the right-hand side only depends on NN parameters, the induction is completed.

Finally, we show that g = g̃. For the sake of contradiction, suppose that there is an x ∈ Rn0

with ‖g(x) − g̃(x)‖ = δ > 0. Let x′ := Ck+1
δ x; then, by positive homogeneity, it follows that

‖g(x′)− g̃(x′)‖ = Ck + 1 > Ck, contradicting the property shown above. Thus, we have g = g̃.

Since f = max{0, x1, x2, x3, x4} is positively homogeneous, Proposition 2.3 implies that, if there is
a 3-layer NN computing f , then there also is one that has no biases. Therefore, in the remainder of
this section, we only consider NNs without biases and assume implicitly that all considered CPWL
functions are positively homogeneous. In particular, any piece of such a CPWL function is linear and
not only affine linear.

Observe that, for function f , the only points of non-differentiability (a.k.a. breakpoints) are at places
where at least two of the five numbers x0 = 0, x1, x2, x3, and x4 are equal. Hence, if some neuron
of an NN computing f introduces breakpoints at other places, these breakpoints must be canceled out
by other neurons. Therefore, it is a natural assumption that such breakpoints are not introduced at all
in the first place.

To make this assumption formal, let Hij = {x ∈ R4 | xi = xj}, for 0 ≤ i < j ≤ 4, be ten
hyperplanes in R4 and H =

⋃
0≤i<j≤4Hij be the corresponding hyperplane arrangement. The

regions or cells of H are defined to be the closures of the connected components of R4 \H . It is
easy to see that these regions are in one-to-one correspondence to the 5! = 120 possible orderings of
the five numbers x0 = 0, x1, x2, x3, and x4. More precisely, for a permutation π of the five indices
[4]0 = {0, 1, 2, 3, 4}, the corresponding region is the polyhedron

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}.

We say that a (positively homogeneous) CPWL function g is H-conforming, if it is linear within
any of these regions of H , that is, if it only has breakpoints where the relative ordering of the five
values x0 = 0, x1, x2, x3, x4 changes. Moreover, an NN is said to be H-conforming if the output of
each neuron contained in the NN is H-conforming. Equivalently, this is the case if and only if all
intermediate functions σ ◦ T (`) ◦ σ ◦ T (`−1) ◦ · · · ◦ σ ◦ T (1), ` ∈ [k], are H-conforming. Now our
assumption can be formally phrased as follows.
Assumption 2.4. If there exists a 3-layer NN computing f(x) = max{0, x1, x2, x3, x4}, then there
also exists one that is H-conforming.

We use mixed-integer programming to prove the following theorem.
Theorem 2.5. Under Assumption 2.4, there does not exist a 3-layer NN that computes the function
f(x) = max{0, x1, x2, x3, x4}.

Proof (Outline). We first study some geometric properties of the hyperplane arrangement H . This
will show that each of the 120 cells of H is a simplicial polyhedral cone spanned by 4 extreme rays.
In total, there are 30 such rays (because rays are used multiple times to span different cones). This
implies that the set of H-conforming functions of type R4 → R is a 30-dimensional vector space and
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each function is uniquely determined by its values on the 30 rays. We then use linear algebra to show
that the space of functions generated by H-conforming two-layer NNs is a 14-dimensional subspace.
Moreover, with two hidden layers, at least 29 of the 30 dimensions can be generated and f is not
contained in this 29-dimensional subspace. So, it remains the question whether the 14 dimensions
producible with the first hidden layer can be combined in such a way that after applying a ReLU
activation in the second hidden layer, we do not end up within the 29-dimensional subspace. We
model this question as a mixed-interger program (MIP). Solving the MIP yields that we always end
up within the 29-dimensional subspace, implying that f cannot be represented by a 3-layer NN. This
provides a computational proof of Theorem 2.5. All details can be found in Appendix B.

3 Going Beyond 2k-Term Max Functions with k Layers

In this section we prove the following result:
Theorem 3.1. For any k ≥ 2, the class ReLU(k) is a strict superset of MAX(2k).

In order to prove this theorem, we provide a specific function that is in ReLU(k) \MAX(2k) for
any number of hidden layers k ≥ 2. The challenging part is to show that the function is in fact not
contained in MAX(2k).
Proposition 3.2. For any n ≥ 3, the function

f : Rn → R, f(x) = max{0, x1, x2, . . . , xn−3, max{xn−2, xn−1}+ max{0, xn}} (2)

cannot be written as a linear combination of n-term max functions.

The above proposition means that it is not possible to write f(x) in the form

f(x) =

p∑
i=1

λi max{`i1(x), . . . , `in(x)}

where p ∈ N, λ1, . . . , λp ∈ R, and `ij : Rn → R is an affine linear function for every i ∈ [p]
and j ∈ [n]. (Note that max functions with less than n terms are also allowed, as some functions `ij
may coincide.)

Before we prove Proposition 3.2, we show that it implies Theorem 3.1.

Proof of Theorem 3.1. For k ≥ 2, let n := 2k. By Proposition 3.2, function f defined in (2) is not
contained in MAX(2k). It remains to show that it can be represented using a ReLU NN with k hidden
layers. To see this, first observe that any of the n/2 = 2k−1 terms max{0, x1}, max{x2i, x2i+1} for
i ∈ [n/2 − 2], and max{xn−2, xn−1} + max{0, xn} can be expressed by a one-hidden-layer NN
since all these are (linear combinations of) 2-term max functions. Since f is the maximum of these
2k−1 terms, and since the maximum of 2k−1 numbers can be computed with k − 1 hidden layers
[Arora et al., 2018], this implies that f is in ReLU(k).

In order to prove Proposition 3.2, we need the concept of polyhedral complexes. A polyhedral
complex P is a finite set of polyhedra such that each face of a polyhedron in P is also in P , and for
two polyhedra P,Q ∈ P , their intersection P ∩Q is a common face of P and Q (possibly the empty
face). Given a polyhedral complex P in Rn and an integer m ∈ [n], we let Pm denote the collection
of all m-dimensional polyhedra in P .

For a convex CPWL function f , we define its underlying polyhedral complex as follows: it is the
unique polyhedral complex covering Rn (i.e., each point in Rn belongs to some polyhedron in P)
whose n-dimensional polyhedra coincide with the domains of the (maximal) affine pieces of f . In
particular, f is affinely linear within each P ∈ P , but not within any strict superset of a polyhedron
in Pn.

Exploiting properties of polyhedral complexes associated with CPWL functions, we prove the
following proposition in Appendix C.
Proposition 3.3. Let f0 : Rn → R be a convex CPWL function and let P0 be the underlying
polyhedral complex. If there exists a hyperplane H ⊆ Rn such that the set

T :=
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H}
6



is nonempty and contains no line, then f0 cannot be expressed as a linear combination of n-term
maxima of affine linear functions.

This allows us to prove Proposition 3.2.

Proof of Proposition 3.2. Observe that f (defined in (2)) has the alternate representation

f(x) = max{0, x1, x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}
as a maximum of n+ 2 terms. Let P be its underlying polyhedral complex. Let the hyperplane H be
defined by x1 = 0.

Observe that any facet in Pn−1 is a polyhedron defined by two of the n + 2 terms that are equal
and at least as large as each of the remaining n terms. Hence, the only facet that could possibly be
contained in H is

F := {x ∈ Rn | x1 = 0 ≥ x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}.

Note that F is indeed an (n− 1)-dimensional facet in Pn−1, because, for example, the full neighbor-
hood of (0,−1, . . . ,−1) ∈ Rn intersected with H is contained in F .

Finally, we need to show that F is pointed, that is, it contains no line. A well-known fact from
polyhedral theory says if there is any line in F with direction d ∈ Rn \ {0}, then d must satisfy the
defining inequalities with equality. However, only the zero vector does this. Hence, F cannot contain
a line.

Therefore, when applying Proposition 3.3 to f with underlying polyhedral complex P and hyper-
plane H , we have T = F , which is nonempty and contains no line. Hence, f cannot be written as
linear combination of n-term maxima.

4 A Width Bound for NNs with Small Depth

While the arguments in Arora et al. [2018] show that CPWLn = ReLUn(dlog2(n + 1)e), they
do not provide any bound on the width of the NN required to represent any particular continuous
piecewise linear function. The purpose of this section is to prove that for fixed dimension n, the
required width for exact, depth-minimal representation of a CPWL function can be polynomially
bounded in the number p of affine pieces; in particular pO(n2). This is closely related to works that
bound the number of linear pieces of an NN as a function of the size [Montúfar et al., 2014, Pascanu
et al., 2014, Raghu et al., 2017, Montúfar et al., 2021]. It can also be seen as a counterpart, in the
context of exact representations, to quantitative universal approximation theorems that bound the
number of neurons required to achieve a certain approximation guarantee; see, e.g., Barron [1993,
1994], Mhaskar [1993], Pinkus [1999], Mhaskar [1996], Mhaskar and Micchelli [1995].

4.1 The Convex Case

We first derive our result for the case of convex CPWL functions and then use this to also prove the
general nonconvex case. Our width bound is a consequence of the following theorem about convex
CPWL functions, for which we are going to provide a geometric proof later.
Theorem 4.1. Let f(x) = max{aTi x + bi | i ∈ [p]} be a convex CPWL function defined on Rn.
Then f can be written as

f(x) =
∑
S⊆[p],
|S|≤n+1

cS max{aTi x+ bi | i ∈ S}

with coefficients cS ∈ Z, for S ⊆ [p], |S| ≤ n+ 1.

For the convex case, this yields a stronger version of the theorem by Wang and Sun [2005] stating that
any (not necessarily convex) CPWL function can be written as a linear combination of (n+ 1)-term
maxima. Theorem 4.1 is stronger in the sense that it guarantees that all pieces of the (n+ 1)-term
maxima must be pieces of the original function, making it possible to bound the total number of these
(n+ 1)-term maxima and, therefore, the size of an NN representing f .
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Theorem 4.2. Let f : Rn → R be a convex CPWL function with p affine pieces. Then f can be
represented by a ReLU NN with depth dlog2(n+ 1)e+ 1 and width O(pn+1).

Proof. Since the number of possible subsets S ⊆ [p] with |S| ≤ n + 1 is bounded by pn+1, the
theorem follows by Theorem 4.1 and the construction from Arora et al. [2018, Theorem 2.1].

Before we present the proof of Theorem 4.1, we show how we can generalize its consequences to the
nonconvex case.

4.2 The General (Nonconvex) Case

It is a well-known fact that every CPWL function can be expressed as a difference of two convex
CPWL functions, see, e.g., Wang [2004, Theorem 1]. This allows us to derive the general case from
the convex case. What we need, however, is to bound the number of affine pieces of the two convex
CPWL functions in terms of the number of pieces of the original function. Therefore, we consider a
specific decomposition for which such bounds can easily be achieved.

Proposition 4.3. Let f : Rn → R be a CPWL function with p affine pieces. Then, f can be written
as f = g − h where both g and h are convex CPWL functions with at most p2n+1 pieces.

Proof. Suppose the p affine pieces of f are given by x 7→ aTi x + bi, i ∈ [p]. Define the function
h(x) :=

∑
1≤i<j≤p max{aTi x+ bi, a

T
j x+ bj} and let g := f + h. Then, obviously, f = g − h. It

remains to show that both g and h are convex CPWL functions with at most p2n+1 pieces.

The convexity of h is clear by definition. Consider the
(
p
2

)
= p(p−1)

2 < p2 hyperplanes given by

aTi x+ bi = aTj x+ bj , 1 ≤ i < j ≤ p. They divide Rn into at most
(
p2

n

)
+
(
p2

n−1

)
+ · · ·+

(
p2

0

)
≤ p2n

regions (compare Edelsbrunner [1987, Theorem 1.3]) in each of which h is affine. In particular, h
has at most p2n ≤ p2n+1 pieces.

Next, we show that g = f + h is convex. Intuitively, this holds because each possible breaking
hyperplane of f is made convex by adding h. To make this formal, note that by the definition of
convexity, it suffices to show that g is convex along each affine line. For this purpose, consider an
arbitrary line x(t) = ta+b, t ∈ R, given by a ∈ Rn and b ∈ R. Let f̃(t) := f(x(t)), g̃(t) := g(x(t)),
and h̃(t) := h(x(t)). We need to show that g̃ : R→ R is a convex function. Observe that f̃ , g̃, and
h̃ are clearly one-dimensional CPWL functions with the property g̃ = f̃ + h̃. Hence, it suffices to
show that g̃ is convex locally around each of its breakpoints. Let t ∈ R be an arbitrary breakpoint of
g̃. If f̃ is already convex locally around t, then the same holds for g̃ as well since h̃ inherits convexity
from h. Now suppose that t is a nonconvex breakpoint of f̃ . Then there exist two distinct pieces
of f , indexed by i, j ∈ [p] with i 6= j, such that f̃(t′) = min{aTi x(t′) + bi, a

T
j x(t′) + bj} for all t′

sufficiently close to t. By construction, h̃(t′) contains the summand max{aTi x(t′)+bi, a
T
j x(t′)+bj}.

Thus, adding this summand to f̃ linearizes the nonconvex breakpoint of f̃ , while adding all the other
summands preserves convexity. In total, g̃ is convex locally around t, which finishes the proof that g
is a convex function.

Finally, observe that pieces of g = f + h are always intersections of pieces of f and h, for which we
have only p · p2n = p2n+1 possibilities.

Having this, we may conclude the following.

Theorem 4.4. Let f : Rn → R be a CPWL function with p affine pieces. Then f can be represented
by a ReLU NN with depth dlog2(n+ 1)e+ 1 and width O(p2n2+3n+1).

Proof. Consider the decomposition f = g − h from Proposition 4.3. Using Theorem 4.2, we obtain
that both g and h can be represented with the required depth dlog2(n + 1)e + 1 and with width
O((p2n+1)n+1) = O(p2n2+3n+1). Thus, the same holds for f .
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4.3 Extended Newton Polyhedra of Convex CPWL Functions

For our proof of Theorem 4.1, we use a correspondence of convex CPWL functions with certain
polyhedra, which are known as (extended) Newton polyhedra in tropical geometry [Maclagan and
Sturmfels, 2015]. These relations between tropical geometry and neural networks have previously
been applied to investigate expressivity of NNs; compare our references in the introduction.

In order to formalize this correspondence, let CCPWLn ⊆ CPWLn be the set of convex CPWL
functions of type Rn → R. For f(x) = max{aTi x + bi | i ∈ [p]} in CCPWLn, we define its
so-called extended Newton polyhedron to be

N (f) := conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}) ⊆ Rn+1.

We denote the set of all possible extended Newton polyhedra in Rn+1 as Newtn. That is, Newtn is
the set of (unbounded) polyhedra in Rn+1 that emerge from a polytope by adding the negative of
the (n+ 1)-st unit vector −en+1 as an extreme ray. Hence, a set P ⊆ Rn+1 is an element of Newtn
if and only if P can be written as P = conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}).
Conversely, for a polyhedron P ∈ Newtn of this form, let F(P ) ∈ CCPWLn be the function
defined by F(P )(x) = max{aTi x+ bi | i ∈ [p]}.
There is an intuitive way of thinking about the extended Newton polyhedron P of a convex CPWL
function f : it consists of all hyperplane coefficients (a, b) ∈ Rn × R such that aTx+ b ≤ f(x) for
all x ∈ Rn. This also explains why we add the extreme ray −en+1: decreasing b obviously maintains
the property of aTx+ b being a lower bound on the function f .

We need the notion of the Minkowski sum of two polyhedra P and Q: it is given as the set P +Q =
{p+ q | p ∈ P, q ∈ Q}.
In fact, there is a one-to-one correspondence between elements of CCPWLn and Newtn, which
is nicely compatible with some (functional and polyhedral) operations. This correspondence has
been studied before in tropical geometry [Maclagan and Sturmfels, 2015, Joswig, 2022], convex
geometry1 [Hiriart-Urruty and Lemaréchal, 1993], as well as neural network literature [Zhang et al.,
2018, Charisopoulos and Maragos, 2018, Alfarra et al., 2020, Montúfar et al., 2021]. We summarize
the key findings of this correspondence relevant to our work in the following proposition:
Proposition 4.5. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-defined,
that is, their output is independent from the representation of the input by pieces or vertices,
respectively,

(ii) N and F are bijections and inverse to each other,

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),

(iv) N (f1 + f2) = N (f1) +N (f2), where the + on the right-hand side is Minkowski addition.

An algebraic way of phrasing this proposition is as follows: N and F are isomorphisms between the
semirings (CCPWLn,max,+) and (Newtn, conv,+).

4.4 Outline of the Proof of Theorem 4.1

We prove Theorem 4.1 in full detail in Appendix D. The rough idea is as follows.

Suppose we have a p-term max function f with p ≥ n + 2. By Proposition 4.5, f corresponds to
a polyhedron P ∈ Newtn with at least n + 2 vertices. Applying a classical result from discrete
geometry known as Radon’s theorem allows us to carefully decompose P into a “signed”2 Minkowski
sum of polyhedra in Newtn whose vertices are subsets of at most p− 1 out of the p vertices of P .
Translating this back into the world of CPWL functions by Proposition 4.5 yields that f can be
written as linear combination of p′-term maxima with p′ < p, where each of them involves a subset of

1N (f) is the negative of the epigraph of the convex conjugate of f .
2Some polyhedra may occur with “negative” coefficents in that sum, meaning that they are actually added to

P instead of the other polyhedra. The corresponding CPWL functions will then have negative coefficients in the
linear combination representing f .
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the p affine terms of f . We can then obtain Theorem 4.1 by iterating until every occurring maximum
expression involves at most n+ 1 terms.

4.5 Potential Approaches to Show Lower Bounds on the Width

In light of the upper width bounds shown in this section, a natural question to ask is whether also
meaningful lower bounds can be achieved. This would mean constructing a family of CPWL functions
with p pieces defined on Rn (with different values of p and n), for which we can prove that a large
width is required to represent these functions with NNs of depth dlog2(n+ 1)e+ 1.

A trivial and not very satisfying answer follows, e.g., from Raghu et al. [2017] or Serra et al. [2018]:
for fixed input dimension n, they show that a function computed by an NN with k hidden layers and
width w has at most O(wkn) pieces. For our setting, this means that an NN with logarithmic depth
needs a width of at least O(p1/(n logn)) to represent a function with p pieces. This is, of course, very
far away from our upper bounds.

Similar upper bounds on the number of pieces have been proven by many other authors and are often
used to show depth-width tradeoffs [Montúfar et al., 2014, 2021, Pascanu et al., 2014, Telgarsky,
2016b, Arora et al., 2018]. However, there is a good reason why all these results only give rise to very
trivial lower bounds for our setting: the focus is always on functions with very many pieces, which
then, consequently, need many neurons to be represented (with small depth). However, since the
lower bounds we strive for depend on the number of pieces, we would need to construct a family of
functions with comparably few pieces that still need very many neurons to be represented. In general,
it seems to be a tough task to argue why such functions should exist.

A different approach could leverage methods from complexity theory, in particular from circuit
complexity. Neural networks are basically arithmetic circuits with very special operations allowed.
In fact, they can be seen as a tropical variant of arithmetic circuits. Showing circuit lower bounds is a
notoriously difficult task in complexity theory, but maybe some conditional result (based on common
conjectures similar to P 6= NP) could be established.

We think that the question whether our bounds are tight, or whether at least some non-trivial lower
bounds on the width for NNs with logarithmic depth can be shown, is an exciting question for further
research.

5 Discussion of Future Research Directions

The most obvious and, at the same time, most exciting open research question is to prove or disprove
Conjecture 1.1, or equivalently Conjecture 1.2. The first step could be to prove Assumption 2.4. The
assumption is intuitive because every breakpoint introduced at other places needs to be canceled out
later. Therefore, it is natural to assume that these breakpoints do not have to be introduced in the
first place. However, this intuition does not seem to be enough for a formal proof because it could
occur that additional breakpoints in intermediate steps, which are canceled out later, also influence
the behavior of the function at other places where we allow breakpoints in the end.

Another step towards resolving our conjecture may be to find an alternative proof of Theorem 2.5 not
using Assumption 2.4. This might also be beneficial for generalizing our techniques to more hidden
layers, since, while theoretically possible, a direct generalization is infeasible due to computational
limitations.

In light of our results from Section 3, it would be desirable to provide a complete characterization of
the functions contained in ReLU(k). Another potential research goal is improving our upper bounds
on the width from Section 4 and/or proving matching lower bounds as discussed in Section 4.5.

Some more interesting research directions are the following: 1. Establishing or strengthening our
results for special classes of NNs like recurrent neural networks (RNNs) or convolutional neural
networks (CNNs), 2. Using exact representation results to show more drastic depth-width tradeoffs
compared to existing results in the literature, 3. Understanding how the class ReLU(k) changes when
a polynomial upper bound is imposed on the width of the NN; see related work by Vardi et al. [2021].
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