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Abstract

3D pose transfer is one of the most challenging 3D generation tasks. It aims to
transfer the pose of a source mesh to a target mesh and keep the identity (e.g., body
shape) of the target mesh. Some previous works require key point annotations
to build reliable correspondence between the source and target meshes, while
other methods do not consider any shape correspondence between sources and
targets, which leads to limited generation quality. In this work, we propose a
correspondence-refinement network to achieve the 3D pose transfer for both human
and animal meshes. The correspondence between source and target meshes is first
established by solving an optimal transport problem. Then, we warp the source
mesh according to the dense correspondence and obtain a coarse warped mesh.
The warped mesh will be better refined with our proposed Elastic Instance Normal-
ization, which is a conditional normalization layer and can help to generate high-
quality meshes. Extensive experimental results show that the proposed architecture
can effectively transfer the poses from source to target meshes and produce better
results with satisfied visual performance than state-of-the-art methods. Our code
and data are available at https://github.com/ChaoyueSong/3d-corenet.

1 Introduction
3D pose transfer has been drawing a lot of attention from the vision and graphics community. It has
potential applications in 3D animated movies and games by generating new poses for existing shapes
and animation sequences. 3D pose transfer is a learning-driven generation task which is similar to
style transfer on 2D images. As shown in Figure 1, pose transfer takes two inputs, one is identity
mesh that provides mesh identity (e.g., body shape), the other is pose mesh that provides the pose of
mesh. It aims at transferring the pose of a source pose mesh to a target identity mesh and keeping the
identity of the target identity mesh.

A fundamental problem for previous methods is to build reliable correspondence between source
and target meshes. It can be very challenging when the source and target meshes have significant
differences. Most of the previous methods try to solve it with the help of user effort or other additional
inputs, such as key point annotations [3, 34, 41], etc. Unfortunately, it is time-consuming to obtain
such additional inputs that will limit the usage in practice. In [37], they proposed to implement pose
transfer without correspondence learning. Their method is convenient but the performance will be
degraded since they do not consider the correspondence between meshes. In this work, we propose
a COrrespondence-REfinement Network (3D-CoreNet) to solve the pose transfer problem for both
the human and animal meshes. Like [37], our method does not need key point annotations or other
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Figure 1: Pose transfer results generated by our 3D-CoreNet. In the first two rows, the human
identity and pose meshes are from SMPL [23], in the last two rows, the animal identity and pose
meshes are from SMAL [46].

additional inputs. We learn the shape correspondence between identity and pose meshes first, then
we warp the pose mesh to a coarse warped output according to the correspondence. Finally, the
warped mesh will be refined to have a better visual performance. Our method does not require the
two meshes to have the same number or order of vertices.

For the correspondence learning module, we treat the shape correspondence learning as an optimal
transport problem to learn the correspondence between meshes. Our network takes vertex coordinates
of identity and pose meshes as inputs. We extract deep features at each vertex using point cloud
convolutions and compute a matching cost between the vertex sets with the extracted features. Our
goal is to minimize the matching cost to get an optimal matching matrix. With the optimal matching
matrix, we warp the pose mesh and obtain a coarse warped mesh. We then refine the warped
output with a set of elastic instance normalization residual blocks, the modulation parameters in the
normalization layers are learned with our proposed Elastic Instance Normalization (ElaIN). In order
to generate smoother meshes with more details, we introduce a channel-wise weight in ElaIN to
adaptively blend feature statistics of original features and the learned parameters from external data,
which help to keep the consistency and continuity of the original features.

Our contributions can be summarized as follows:
• We solve the 3D pose transfer problem with our proposed correspondence-refinement network.
To the best of our knowledge, our method is the first to learn the correspondence between different
meshes and refine the generated meshes jointly in the 3D pose transfer task.
•We learn the shape correspondence by solving an optimal transport problem without any key point
annotations and generate high-quality final meshes with our proposed elastic instance normalization
in the refinement module.
• Through extensive experiments, we demonstrate that our method outperforms state-of-the-art
methods quantitatively and qualitatively on both human and animal meshes.
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2 Related work
2.1 Deep learning methods on 3D data
The representations of 3D data are various, like point clouds, voxels and meshes. 3DShapeNets [40]
and VoxNet [25] propose to learn on volumetric grids. Their methods cannot be applied on complex
data due to the sparsity of data and computation cost of 3D convolution. PointNet [29] uses a shared
MLP on every point followed by a global max-pooling. Following PointNet, some hierarchical
architectures have been proposed to aggregate local neighborhood information with MLPs [20, 30].
[13, 35] proposed mesh variational autoencoder to learn mesh features whose methods consume a
large amount of computing resources due to their fully-connected networks. Many works use graph
convolutions with mesh down- and up-sampling layers [15], like CoMA [31], CAPE [24] based on
ChebyNet [10], and [45] based on SpiralNet [21], SpiralNet++ [16], etc. They all need a template to
implement their hierarchical structure which is not applicable to real-world problems. In this work,
we use mesh as the representation of 3D shape and shared weights convolution layers in the network.

2.2 3D pose transfer

Deformation transfer in graphics aims to apply the deformation exhibited by a source mesh onto a
different target mesh [34]. 3D pose transfer aims to generate a new mesh based on the knowledge of a
pair of source and target meshes. In [3, 34, 41, 42], the methods all require to label the corresponding
landmarks first to deal with the differences between meshes. Baran et al. [2] proposed a method
that infers a semantic correspondence between different poses of two characters with the guidance
of example mesh pairs. Chu et al. [8] proposed to use a few examples to generate results which
will make it difficult to automatically transfer pose. For this problem, Gao et al. [14] proposed to
use cycle consistency to achieve the pose transfer. However, their method cannot deal with new
identities due to the limitations of the visual similarity metric. In [37], they solved the pose transfer
via the latest technique for image style transfer. Their work does not need other guidance, but the
performance is also restrained since they do not learn any correspondence. To solve the problems,
our network learns the correspondence and refines the generated meshes jointly.

2.3 Correspondence learning

In CoCosNet [44], they introduced a correspondence network based on the correlation matrix between
images without any constraints. To learn a better matching, we proposed to use optimal transport to
learn the correspondence between meshes. Recently, optimal transport has received great attention
in various computer vision tasks. Courty et al. [9] perform the alignment of the representations in
the source and target domains by learning a transportation plan. Su et al. [33] compute the optimal
transport map to deal with the surface registration and shape space problem. Other applications
include generative model [1, 6, 11, 39], scene flow [28], semantic correspondence [22] and etc.

2.4 Conditional normalization layers

After normalizing the activation value, conditional normalization uses the modulation parameters
calculated from the external data to denormalize it. Adaptive Instance Normalization (AdaIN) [18]
aligns the mean and variance between content and style image which achieves arbitrary style transfer.
Soft-AdaIN [7] introduces a channel-wise weight to blend feature statistics of content and style
image to preserve more details for the results. Spatially-Adaptive Normalization (SPADE) [27] can
better preserve semantic information by not washing away it when applied to segmentation masks.
SPAdaIN [37] changes batch normalization [19] in SPADE to instance normalization [36] for 3D
pose transfer. However, it will break the consistency and continuity of the feature map when doing
the denormalization, which has a bad influence on the mesh smoothness and detail preservation. To
address this problem, our ElaIN introduces an adaptive weight to implement the denormalization.

3 Method

Given a source pose mesh and a target identity mesh, our goal is to transfer the pose of source mesh
to the target mesh and keep the identity of the target mesh. In this section, we will introduce our
end-to-end Correspondence-Refinement Network (3D-CoreNet) for 3D pose transfer.
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Figure 2: The architecture of 3D-CoreNet. With the extracted features, the shape correspondence
between identity and pose meshes is first established by solving an optimal transport problem. Then,
we warp the pose mesh according to the optimal matching matrix Tm and obtain a coarse warped
mesh. The warped mesh will be better refined with our proposed ElaIN in the refinement module.

A 3D mesh can be represented as M(I, P,O), where I denotes the mesh identity, P represents the
pose of the mesh, O is the vertex order of the mesh. Given two meshes Mid =M(I1, P1, O1) and
Mpose =M(I2, P2, O2), we aim to transfer the pose of Mpose to Mid and generate the output mesh
Moutput = M ′(I1, P2, O1). In our 3D-CoreNet, we take Vid ∈ RNid×3 and Vpose ∈ RNpose×3 as
inputs, which are the (x, y, z) coordinates of the mesh vertices. Nid and Npose denote the number of
vertices of identity mesh and pose mesh respectively.

As shown in Figure 2, the vertices of the meshes are first fed into the network to extract multi-scale
deep features. We calculate the optimal matching matrix with the vertex feature maps by solving
an optimal transport problem, then we warp the pose mesh according to the matrix and obtain the
warped mesh. Finally, the warped mesh is refined to the final output mesh with our proposed elastic
instance normalization (ElaIN). The output mesh combines the pose from the source mesh and the
identity from the target. And it inherits the vertex order from the identity mesh.

3.1 Correspondence learning

Given an identity mesh and a pose mesh, our correspondence learning module calculates an optimal
matching matrix, each element of the matching matrix represents the similarities between two vertices
in the two meshes. The first step in our shape correspondence learning is to compute a correlation
matrix with the extracted features, which is based on cosine similarity and denotes the matching
similarities between any two positions from different meshes. However, the matching scores in the
correlation matrix are calculated without any additional constraints. To learn a better matching, we
solve this problem from a global perspective by modeling it as an optimal transport problem.

Correlation matrix We first introduce our feature extractor which aims to extract features for the
unordered input vertices. Close to [37], our feature extractor consists of 3 stacked 1× 1 convolution
and Instance Normalization layers, the activation functions applied are all LeakyReLU. Given the
extracted vertex feature maps fid ∈ RD×Nid , fpose ∈ RD×Npose of identity and pose meshes (D is
the channel-wise dimension), a popular method to compute correlation matrix is using the cosine
similarity [43, 44]. Concretely, we compute the correlation matrix C ∈ RNid×Npose as:

C(i, j) =
fid(i)

>fpose(j)

‖fid(i)‖ ‖fpose(j)‖
(1)

where C(i, j) denotes the individual matching score between fid(i) and fpose(j) ∈ RD, fid(i) and
fpose(j) represent the channel-wise feature of fid at position i and fpose at j.
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Optimal transport problem To learn a better matching with additional constraints in this work,
we model our shape correspondence learning as an optimal transport problem. We first define a
matching matrix T ∈ RNid×Npose

+ between identity and pose meshes. Then we can get the total
correlation as

∑
ij C(i, j)T(i, j). The aim will be maximizing the total correlation score to get an

optimal matching matrix Tm.

We treat the correspondence learning between identity and pose meshes as the transport of mass. A
mass which is equal to N−1id will be assigned to each vertex in the identity mesh, and each vertex in
pose mesh will receive the mass N−1pose from identity mesh through the built correspondence between
vertices. Then if we define Z = 1−C as the cost matrix, our goal can be formulated as a standard
optimal transport problem by minimizing the total matching cost,

Tm = argmin
T∈RNid×Npose

+

∑
ij

Z(i, j)T(i, j) s.t. T1Npose
= 1Nid

N−1id , T>1Nid
= 1Npose

N−1pose.

(2)

where 1Nid
∈ RNid and 1Npose

∈ RNpose are vectors whose elements are all 1. The first constraint
in Eq. 2 means that the mass of each vertex in Mid will be entirely transported to some of the vertices
in Mpose. And each vertex in Mpose will receive a mass N−1pose from some of the vertices in Mid

with the second constraint. This problem can be solved by the Sinkhorn-Knopp algorithm [32]. The
details of the solved process will be given in the supplementary material.

With the matching matrix, we can warp the pose mesh and obtain the vertex coordinates Vwarp ∈
RNid×3 of the warped mesh,

Vwarp(i) =
∑
j

Tm(i, j)Vpose(j) (3)

the warped mesh Mwarp inherits the number and order of vertex from identity mesh and can be
reconstructed with the face information of identity mesh as shown in Figure 2.

3.2 Mesh refinement

In this section, we introduce our mesh refinement module which refines the warped mesh to the
desired output progressively.

Elastic instance normalization Previous conditional normalization layers [18, 27, 37] used in
different tasks always calculated their denormalization parameters only with the external data. We
argue that it may break the consistency and continuity of the original features. Inspired by [7], we
propose Elastic Instance Normalization (ElaIN) which blends the statistics of original features and
the learned parameters from external data adaptively and elastically.

As shown in Figure 2, the warped mesh is flatter than we desired and is kind of out of shape, but it
inherits the pose from the source mesh successfully. Therefore, we refine the warped mesh with the
identity feature maps to get a better final output. Here, we let hi ∈ RSi×Di×Ni

as the activation value
before the i-th normalization layer, where Si is the batch size, Di is the dimension of feature channel
and N i is the number of vertex. At first, we normalize the feature maps of the warped mesh with
instance normalization and the mean and standard deviation are calculated across spatial dimension
(n ∈ N i) for each sample s ∈ Si and each channel d ∈ Di,

µi =
1

N i

∑
n

hiwarp (4)

σi =

√
1

N i

∑
n

(hiwarp − µi)2 + ε (5)

then the feature maps of the identity mesh are fed into a 1× 1 convolution layer to get hiid, which
shares the same size with hiwarp. We calculate the mean of hiwarp, hiid to make them Si ×Di × 1

tensors. The tensors are then concatenated in channel dimension to get a Si × (2Di) × 1 tensor.
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A fully-connected layer is employed to compute an adaptive weight w(hiwarp, h
i
id) ∈ RSi×Di×1

with the concatenated tensor. With w(hiwarp, h
i
id), we can define the modulation parameters of our

normalization layer.

γ′(hiwarp, h
i
id) = w(hiwarp, h

i
id)γ

i + (1− w(hiwarp, h
i
id))σ

i,

β′(hiwarp, h
i
id) = w(hiwarp, h

i
id)β

i + (1− w(hiwarp, h
i
id))µ

i.
(6)

where γi and βi are learned from the identity feature hiid with two convolution layers. Finally, we
can scale the normalized hiwarp with γ′ and shift it with β′,

ElaIN(hiwarp, h
i
id) = γ′(hiwarp, h

i
id)(

hiwarp − µi

σi
) + β′(hiwarp, h

i
id) (7)

Mesh refinement module Our mesh refinement module is designed to refine the warped mesh
progressively. Following [27, 37, 44], We design the ElaIN residual block with our ElaIN in the form
of ResNet blocks [17]. As shown in Figure 2, our architecture contains l ElaIN residual blocks. Each
of them consists of our proposed ElaIN followed by a simple convolution layer and LeakyReLU.
With the ElaIN residual blocks, the warped mesh is refined to our desired high-quality output. Please
refer to the supplementary material for the detailed architecture of ElaIN.

3.3 Loss function

We jointly train the correspondence learning module along with mesh refinement module by minimiz-
ing the following loss functions,

Reconstruction loss Following [37], we train our network with the supervision of the ground truth
mesh Mgt =M(I1, P2, O1). We first process the ground truth mesh to have the same vertex order as
the identity mesh. Then we define the reconstruction loss by calculating the point-wise L2 distance
between the vertices of Moutput and Mgt,

Lrec = ‖Voutput − Vgt‖22 (8)

where Voutput and Vgt ∈ RNid×3 are the vertices of Moutput and Mgt respectively. Notice that they
all share the same size and order with the vertices of the identity mesh. With the reconstruction loss,
the mesh predicted by our model will be closer to the ground truth.

Edge loss In this work, we also introduce edge loss which is often used in 3D mesh generation
tasks [26, 37, 38]. Since the reconstruction loss does not consider the connectivity of mesh vertices,
the generated mesh may suffer from flying vertices and overlong edges. Edge loss can help penalize
flying vertices and generate smoother surfaces. For every v ∈ Voutput, let N (v) be the neighbor of v,
the edge loss can be defined as,

Ledg =
∑
v

∑
p∈N (v)

‖v − p‖22 (9)

then we can train our network with the combined loss function L,

L = λrecLrec + Ledg (10)

where λrec denotes the weight of reconstruction loss.

4 Experiment

Datasets. For the human mesh dataset, we use the same dataset generated by SMPL [23] as [37].
This dataset consists of 30 identities with 800 poses. Each mesh has 6890 vertices. For the training
data, we randomly choose 4000 pairs (identity and pose meshes) from 16 identities with 400 poses
and shuffle them every epoch. The ground truth meshes will be determined according to the identity
and pose parameters from the pairs. Before feeding into our network, every mesh will be shuffled
randomly to be close to the real-world problem. Notice that the ground truth mesh will share the
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Table 1: Quantitative comparison with other methods. We compare our method with DT (needs
key point annotations) and NPT using PMD, CD, EMD as our evaluation metrics on both human and
animal data. For them, the lower is better. The PMD and CD are in units of 10−3 and the EMD is in
units of 10−2.

Annotation Dataset PMD CD EMD

DT [34] Key points 0.15 0.35 2.21
NPT [37] - SMPL [23] 0.66 1.42 4.22

Ours - 0.08 0.22 1.89
DT [34] Key points 13.37 35.77 15.90

NPT [37] - SMAL [46] 6.75 14.52 11.65
Ours - 2.26 4.05 7.28

same vertex order with identity mesh for the convenience of supervised training and evaluation. For
all input meshes, we shift them to the center according to their bounding boxes. When doing the test,
we evaluate our model with 14 new identities with 200 unseen poses. We randomly choose 400 pairs
for testing. They will be pre-processed in the same manner as the training data. To further evaluate
the generalization of our model, we also test our model with FAUST [5] and MG-dataset [4] in the
experiment.

For the animal mesh dataset, we generate animal training and test data using SMAL model [46]. This
dataset has 41 identities with 600 poses. The 41 identities are 21 felidae animals (1 cat, 5 cheetahs,
8 lions, 7 tigers), 5 canidae animals (2 dogs, 1 fox, 1 wolf, 1 hyena), 8 equidae animals (1 deer, 1
horse, 6 zebras), 4 bovidae animals (4 cows), 3 hippopotamidae animals (3 hippos). Every mesh
has 3889 vertices. For the training data, we randomly choose 11600 pairs from 29 identities (16
felidae animals, 3 canidae animals, 6 equidae animals, 2 bovidae animals, 2 hippopotamidae animals)
with 400 poses. For the test data, we randomly choose 400 pairs from other 12 identities (5 felidae
animals, 2 canidae animals, 2 equidae animals, 2 bovidae animals, 1 hippopotamidae animal) with
200 poses. All the inputs are pre-processed in the same manner as we do in the human mesh.

Evaluation metrics. Following [37], we use Point-wise Mesh Euclidean Distance (PMD) as one
of our evaluation metrics. PMD is the L2 distance between the vertices of the output mesh and the
ground truth mesh. We also evaluate our model with Chamfer Distance (CD) and Earth Mover’s
Distance (EMD) proposed in [12]. For PMD, CD and EMD, the lower is better.

Implementation details. λrec in the loss function is set as 2000. We implement our model with
Pytorch and use Adam optimizer. Please refer to the supplementary material for the details of the
network. Our model is trained for 200 epochs on one RTX 3090 GPU, the learning rate is fixed at
1e-4 in the first 100 epochs and decays 1e-6 each epoch after 100 epochs. The batch size is 8.

4.1 Comparison with the state-of-the-arts

In this section, we compare our method with Deformation Transfer (DT) [34] and Neural Pose
Transfer (NPT) [37]. DT needs to rely on the corresponding points labeled by user and a reference
mesh, as the additional inputs. Therefore, we test DT with the reference mesh and 11, 19 labeling
points on animal data and human data respectively. For [37], their method does not consider any
correspondence. We train their model using the implementations provided by the authors. The
qualitative results tested on SMPL [23] and SMAL [46] are shown in Figure 3 and Figure 4. As we
can see, when tested on human data, DT and our method can produce better results that are close to
the ground truth. However, it is very time-consuming for DT when dealing with a new identity and
pose mesh pair. The results generated by NPT always do not learn the right pose and are not very
smooth on the arms or legs since they do not consider any correspondence. When tested on animal
data, DT fails to transfer the pose even if we add more labeling points. Their method does not work
when the identity of the mesh pairs are very different. NPT can produce very flat legs and wrong
direction faces. In comparison, our method still produces satisfactory results efficiently.

We adopt Point-wise Mesh Euclidean Distance (PMD), Chamfer Distance (CD) and Earth Mover’s
Distance (EMD) to evaluate the generated results of different methods. All metrics are calculated

7



Identity Pose DT NPT Ours Ground Truth

Figure 3: Qualitative comparison of different methods on human data. The identity and pose
meshes are from SMPL [23]. Our method and DT (needs key point annotations) can generate better
results than NPT when doing pose transfer on human meshes. The results generated by NPT are
always not smooth on the arms or legs. Since DT needs user to label the key point annotations, our
method is more efficient and practical than DT.

Identity Pose DT NPT Ours Ground Truth

Figure 4: Qualitative comparison of different methods on animal data. The identity and pose
meshes are from SMAL [46]. Our method produces more successful results when doing pose transfer
on different animal meshes. Although DT has key point annotations, it still fails to transfer the
pose when the identity of the mesh pairs are very different. NPT produces very flat legs and wrong
direction faces.

between the ground truth and the predicted results. The quantitative results are shown in Table 1. Our
3D-CoreNet outperforms other methods in all metrics over two datasets. When doing pose transfer
on animal data that contains more different identities, our method has more advantages.

Table 2: Ablation study. We use all 3 measurements here. For them, the lower is better. The PMD
and CD are in units of 10−3 and the EMD is in units of 10−2. w/o means without this component. In
the third and fourth column, we only use our correspondence learning module without refinement.
Corr (C) uses the correlation matrix and Corr (Tm) uses the optimal matching matrix to learn the
correspondence. In w/o ElaIN, we replace our ElaIN with SPAdaIN in [37] to compare them.

Dataset Corr (C) Corr (Tm) w/o ElaIN w/o Ledg Full model

PMD 0.46 0.44 0.15 0.14 0.08
SMPL [23] CD 1.39 1.28 0.37 0.34 0.22

EMD 3.49 3.42 2.57 2.28 1.89
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Corr (C) Corr (𝐓𝑚) w/o ElaIN w/o Edge Loss Full Model Ground Truth

Figure 5: Ablation study results. We test 5 variants on SMPL [23]. The first two are tested without
refinement, Corr (C) uses the correlation matrix and Corr (Tm) uses the optimal matching matrix to
learn the correspondence. The model does not perform well without refinement. Using the optimal
matching matrix has a better performance than using correlation matrix. In the third column, the
surface of the mesh has clear artifacts and is not smooth when we replace ElaIN with SPAdaIN.

Identity Pose Output Identity Pose Output

Figure 6: Pose transfer results on human data from different datasets. We test our model on
FAUST [5] and MG-dataset [4] which contain different human meshes with SMPL [23]. Our method
still has a good performance. Please refer to the supplementary material for more generated results.

4.2 Ablation study

In this section, we study the effectiveness of several components in our 3D-CoreNet on human data.
At first, we test our model without the refinement module. We only use our correspondence module
with the correlation matrix C or the optimal matching matrix Tm respectively. Here, the warped
mesh will be viewed as the final output and the reconstruction loss will be calculated between the
warped mesh and the ground truth. Then we will compare our ElaIN with SPAdaIN in [37] to verify
the effectiveness of ElaIN. And we also test the importance of edge loss Ledg .

The results are shown in Table 2 and Figure 5. We evaluate the variants with PMD, CD and EMD.
As we can see, when we do not add our refinement module, the model does not perform well both
qualitatively and quantitatively. And using the optimal matching matrix has a better performance
than using correlation matrix. When we replace our ElaIN with SPAdaIN, the surface of the mesh
has clear artifacts and is not smooth. The metrics are also worse than the full model. We can know
that ElaIN is very helpful in generating high quality results. We also evaluate the importance of Ledg .
The connection between vertices will be better and smoother with the edge loss.

4.3 Generalization capability

To evaluate the generalization capability of our method, we evaluate it on FAUST [5] and MG-dataset
[4] in this section. Human meshes in FAUST have the same number of vertices as SMPL [23] and
have more unseen identities. In MG-dataset, the human meshes are all dressed which have 27554
vertices each and have more realistic details. As shown in Figure 6, our method can also have a good
performance on FAUST and MG-dataset. In the first group, we transfer the pose from FAUST to the
identity in SMPL. In the second group, we transfer the pose from SMPL to the identity in MG-dataset.
Both of them transfer the pose and keep the identity successfully.
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5 Conclusion

In this paper, we propose a correspondence-refinement network (3D-CoreNet) to transfer the pose of
source mesh to the target mesh while retaining the identity of the target mesh. 3D-CoreNet learns
the correspondence between different meshes and refine the generated meshes jointly. Our method
generates high-quality meshes with the proposed ElaIN for refinement. Compared to other methods,
our model learns the correspondence without key point labeling and achieves better performance
when working on both human and animal meshes. In the future, we will try to achieve the 3D pose
transfer in an unsupervised manner.
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