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Abstract

In this paper, we propose a novel lip-to-speech generative adversarial network,
Visual Context Attentional GAN (VCA-GAN), which can jointly model local and
global lip movements during speech synthesis. Specifically, the proposed VCA-
GAN synthesizes the speech from local lip visual features by finding a mapping
function of viseme-to-phoneme, while global visual context is embedded into
the intermediate layers of the generator to clarify the ambiguity in the mapping
induced by homophene. To achieve this, a visual context attention module is
proposed where it encodes global representations from the local visual features,
and provides the desired global visual context corresponding to the given coarse
speech representation to the generator through audio-visual attention. In addition
to the explicit modelling of local and global visual representations, synchronization
learning is introduced as a form of contrastive learning that guides the generator
to synthesize a speech in sync with the given input lip movements. Extensive
experiments demonstrate that the proposed VCA-GAN outperforms existing state-
of-the-art and is able to effectively synthesize the speech from multi-speaker that
has been barely handled in the previous works.

1 Introduction

Lip to speech synthesis (Lip2Speech) is to predict an audio speech by watching a silent talking face
video. While conventional visual speech recognition tasks require human annotations (i.e., text),
Lip2Speech does not require additional annotations. Thus, it has drawn big attention as another form
of lip reading. However, due to the ambiguity of homophenes that have similar lip movements and the
voice characteristics varying from different identities, it is still considered as a challenging problem.

Basically, synthesizing a speech from a silent lip movement video can be viewed as finding a mapping
function of visemes into corresponding phonemes. However, only watching short clip-level (i.e.,
local) lip movements could be challenging to distinguish the homophenes. Thus, global-level lip
movements containing the visual context, hints for ambiguity of viseme-to-phoneme mapping, should
also be considered along with local-level lip movements. Early deep learning-based works [1, 2, 3]
predict each auditory feature (e.g., LPC, mel-spectrogram, spectrogram) within a short video clip and
extend the prediction to the entire speech by sliding a window over the whole video sequences. As
they operate with clip-level videos of fixed length, they could fail on capturing the global context of
the spoken speech. A recent work [4] brings Sequence-to-Sequence (Seq2Seq) architecture [5, 6]
that predicts the auditory feature conditioned on both the encoded visual context and the previous
prediction and shows a promising performance. However, since they do not explicitly consider
local visual features, they may produce out-of-sync speech to the input video. Moreover, due to the
sequential nature of the Seq2Seq architecture, the method demands heavy inference time. Since the
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output audio sequence length is determined when the input video is given for the Lip2Speech task,
the time costs can be reduced by adopting different architectures that could predict the speech with
one forward step, instead of using a Seq2Seq model which is originally designed to handle input
and output with different varying sequence lengths. Lastly, all the above methods focus on handling
speech synthesis of constrained speakers (i.e., 1 to 4 speakers), so they could fail to properly handle
diverse speakers with one trained model.

In this paper, we design a novel deep architecture, namely Visual Context Attentional GAN (VCA-
GAN), that jointly models the local and global visual representations to synthesize accurate speech
from silent talking face video. Concretely, the proposed VCA-GAN synthesizes the speech (i.e., mel-
spectrogram) based on the local visual features by finding a mapping function of viseme-to-phoneme,
while the global visual context assists the generator for clarifying the ambiguity of the mapping. To
this end, a visual context attention module is proposed where it extracts the global visual features
from the local visual features and provides the global visual context to the generator. It is applied to
the generator in multi-scale scheme so that the generator can refine the speech representation from
coarse- to fine-level by jointly modelling both the local and the global visual context. Moreover, to
guarantee the generated speech to be synced with the input lip movements, synchronization learning
is performed that gives feedback to the generator whether the synthesized speech is synchronized or
not with the input lip movement. The effectiveness of the proposed framework is evaluated on three
public benchmark databases, GRID [7], TCD-TIMIT[8], and LRW[9] in both constrained-speaker
setting and multi-speaker setting.

The major contributions of this paper are as follows, 1) To the best of our knowledge, this is the
first work to explicitly model the local and global lip movements for synthesizing detailed and
accurate speech from silent talking face video. 2) We consider a mel-spectrogram as an image and
solve the Lip2Speech problem efficiently using video-to-image translation. 3) This paper introduces
synchronization learning which guides the generated mel-spectrogram to be in sync with the input lip
video. 4) We show the proposed VCA-GAN can synthesize speech from diverse speakers without the
prior knowledge of speaker information such as speaker embeddings.

2 Related Work

Lip to Speech Synthesis. There have been a number of researches and interests in visual-to-speech
generation. Ephrat et al.[1] utilized CNN to predict acoustic features from silent talking videos.
Then, they augmented the model to two-tower CNN-based encoder-decoder [2] where each tower
encodes raw frames and optical flows, respectively. Akbari et al.[3] employed a deep autoencoder
for reconstructing the speech features from the visual features encoded by a lip-reading network.
Vougioukas et al.[10] directly synthesized the raw waveform from the video by using 1D GAN.
Prajwal et al.[4] focused on learning lip sequence to speech mapping for a single speaker in an
unconstrained, large vocabulary setting using a stack of 3D convolution and Seq2Seq architecture.
Yadav et al.[11] used stochastic modelling approach with variational autoencoder. Michelsanti et
al.[12] predicted vocoder features of [13] and synthesized speech using the vocoder. Different from
the previous works, our approach explicitly models the local visual feature and global visual context
to synthesize accurate speech. Moreover, we try to synthesize the speech from multi-speaker which
has rarely been handled in the past.

Visual Speech Recognition (VSR). Parallel to the development of Lip2Speech, Visual Speech
Recognition (VSR) have achieved a great advancement [14, 15, 16, 17, 18, 19]. Slightly different
from the Lip2Speech, VSR identifies spoken speech into text by watching a silent talking face
video. Several works have recently showed state-of-the-art performances in word- and sentence-level
classifications. Chung et al.[9] proposed a large-scale audio-visual dataset and set a baseline model
for word-level VSR. Stafylakis et al.[20] proposed an architecture that is combined of residual
network and LSTM, which became a popular architecture for word-level lip reading. Martinez et
al.[21] replaced the RNN-based backend with Temporal Convolutional Network (TCN). Kim et
al.[19, 22] proposed to utilize audio modal knowledge through memory network without audio inputs
during inference for lip reading. Assael et al.[23] achieved end-to-end sentence-level lip reading
network by adopting the CTC loss [24]. Different from the VSR methods, the Lip2Speech task does
not require human annotations, thus is drawing big attention with its practical aspects.
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Figure 1: Overview of the VCA-GAN. Global visual context is provided through proposed visual
context attention module to the generators to refine the speech representation from low- to high-
resolution.

Attention Mechanism. The attention mechanism has affected many research fields, such as image
captioning [25, 26, 27], machine translation [28, 29], and speech recognition [30, 31, 32]. It can
effectively focus on relative information and reduce the interference from less significant one. There
have been several works that incorporate attention mechanism in GAN. Xu et al.[25] proposed a cross
modal attention model to guide the generator to focus on different words when generating different
image sub-regions. Qiao et al.[27] further developed it by proposing a global-local collaborative
attentive module to leverage both local word attention and global sentence attention and to enhance
the diversity and semantic consistency of the generated images. Li et al.[26] introduced channel-
wise attention-driven generator that can disentangle different visual attributes, considering the most
relevant channels in the visual features to be fully exploited. In this paper, we design a cross-modal
attention module working with video and audio modalities for context modelling during speech
synthesis. By bringing the global visual context through the proposed visual context attention module,
speech of high intelligibility can be synthesized.

3 Proposed Method

Since an audio speech and lip movements in a single video are supposed to be aligned in time, the
speech can be synthesized to have the same duration as the input silent video. Let x ∈ RT×H×W×C

be a lip video with T frames, height of H , width of W , and channel size of C. Then, our objective is
to find a generative model that synthesizes a speech y ∈ RF×4T , where y is a target mel-spectrogram
with F mel-spectral dimension and frame length of 4T . The frame length of mel-spectrogram is
designed to be 4 times longer than that of video by adjusting the hop length during Short-Time Fourier
Transform (STFT). To generate elaborate speech representations, the proposed VCA-GAN (Fig.1)
refines the viseme-to-phoneme mapping with the global visual context obtained from a visual context
attention module, and learns to produce a synchronized speech with given lip movements. Please
note that we treat the mel-spectrogram as an image and train the model with 2D GAN [33, 34].

3.1 Visual context attentional GAN

Considering the entire context from the input lip movements, namely global visual context, can
provide additional information that alleviates the ambiguity of homophenes besides the accurate
temporal alignment of local visual representations. To achieve this, the generator synthesizes
the speech from the local visual features while the global visual context is jointly considered at
the intermediate layers of generator through the visual context attention module. Firstly, a local
visual encoder φv encodes the video x into local visual features Fv = {f1v , f2v , · · · , fTv } ∈ RT×D,
where D is the dimension of embedding. The local visual encoder φv is composed of combination
of 3D and 2D convolutions. Due to the locality of the convolution operator, each local visual
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Figure 2: Illustration of visual context modelling through the proposed visual context attention
module. (a) visual context module, and (b) audio-visual attention in detail.

feature f tv contains short-clip level (i.e., local) lip movements embedded through the 3D convolution.
From the local visual features Fv, n generators (ψ1, ψ2, . . . , ψn) gradually generate and refine the
speech representation from low to high resolution. The first generator ψ1 synthesizes coarse speech
representation F 1

a with the following equation,

F 1
a = ψ1([R(Fv); z]), (1)

where z is a noise drawn from a standard normal distribution, R : RT×D → RF
4 ×T×D is a repeat

operator that forms a 3D tensor of height F
4 , width T , and channel D by repeating the input feature

F
4 times, and [ ; ] represents concatenation.

The objective of the subsequent generators is to refine the coarse speech representation by jointly
modelling the local visual features and global visual context. To this end, a visual context attention
module, composed of a global visual encoder and audio-visual attentions, is proposed. The global
visual encoder φc derives the global visual features Cv ∈ RT×D by considering the relationships
of the entire local visual features Fv through bi-RNN. Then, the audio-visual attention finds the
complementary cues (i.e., global visual context) for the speech synthesis, considering the importance
of global visual features Cv accordingly with the speech representation F i

a ∈ RFi×Ti×Di of i-th
resolution. The audio-visual attention can be denoted as following equations,

Qi = F(F i
a)W

i
q , Ki = CvW

i
k, Vi = CvW

i
v,

F i
c = S(softmax(QiK

>
i√
d

)Vi),
(2)

where F i
c represents the global visual context obtained, W i

q ∈ RFiDi×d, W i
k ∈ RD×d, and W i

v ∈
RD×FiDiα represent query, key, and value embedding weights, respectively, F : RFi×Ti×Di →
RTi×FiDi is a flatten operator that merges the spectral dimension and channel dimension of speech
representation, S : RTi×

FiDi
α → RFi×Ti×

Di
α is a split operator that maps the 2D tensor into 3D

tensor, and α is dimensionality reduction ratio. Note that the audio-visual attention is based on the
scaled dot product attention [29] with multi-modal inputs. The visual context attention module and
the audio-visual attention are illustrated in Fig.2.

The obtained global visual context F i
c is concatenated with the coarse speech representation F i

a, and
the subsequent generators refine the speech representation iteratively with the following equation,

F i+1
a = ψi([F

i
a ;F

i
c ]), for i = 1, 2, . . . , n− 1. (3)

Therefore, the following generators can get hints for synthesizing an accurate speech from the global
visual context during finding the viseme-to-phoneme mapping using local visual features.

In addition, to generate an image (i.e., mel-spectrogram) with fine details, multi-discriminators are
utilized following [25]. The multi-scale mel-spectrograms (ŷ1, ŷ2, . . . , ŷn) are synthesized from each
generated speech representation (F 1

a , F
2
a , . . . , F

n
a ) through 1× 1 convolutions and passed into the

multi-discriminators, as illustrated in Fig.1.
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3.2 Synchronization

Synthesizing a synchronized speech with an input lip movement video is important since human is
sensitive to the audio-visual misalignment. In order to generate a synchronized speech, we exploit
two strategies: 1) synthesizing the speech by maintaining the temporal representations of input video,
and 2) providing a guidance to the generator to focus on the synchronization.

As mentioned above, each visual representation f tv encoded from φv contains local-level lip movement
information. We design the generator to synthesize the speech conditioned on the local visual features
Fv without disturbing its temporal information, so that the output speech can be naturally synchronized
through the mapping of viseme-to-phoneme.

Furthermore, to guarantee the synchronization, we adopt a modern deep synchronization concept
[35] that learns not only synced audio-visual representations but also discriminative representations
in a self-supervised manner. To this end, a local audio encoder φa is introduced that encodes local
audio features, Fa = {f1a , f2a , . . . , fTa } ∈ RT×D, from the ground-truth mel-spectrogram y. With the
encoded local audio features Fa and the local visual features Fv , a contrastive learning is performed
to learn the synchronized representation by using the following InfoNCE loss [36, 37],

Lc(Fa, Fv) = −E

[
log(

exp(r(f ja , f
j
v )/τ)∑

n exp(r(f
j
a , fnv )/τ)

)

]
, (4)

where r represents the cosine similarity metric, τ is temperature parameter, and fa and fv share the
same temporal range. The loss function guides to assign high similarity to aligned pairs of audio-
visual representations and low similarity to misaligned pairs. We can obtain the synchronization
loss for the two encoders Le_sync =

1
2 (Lc(Fa, Fv) + Lc(Fv, Fa)), where the second term is formed

in a symmetric way of Eq.(4) with negative audio samples. In addition, the audio features F̂n
a

encoded from the last generated mel-spectrogram ŷn is also compared with the visual representations
to guide the generator to synthesize the synchronized speech. It is guided with the loss function,
Lg_sync = ||1− r(F̂n

a , Fv)||1, which maximizes the cosine similarity between the generated audio
features and the given visual features leading the generated mel-spectrogram to be synchronized with
the input video. Finally, the final loss for the synchronization is defined asLsync = Le_sync+Lg_sync.

3.3 Loss functions

To generate realistic mel-spectrogram, the objective function for the generator parts of the VCA-GAN
is defined as

L = Lg + λreconLrecon + λsyncLsync, (5)

where λrecon and λsync are the balancing weights. Lg represents GAN loss that jointly models the
conditional and unconditional distributions as follows,

Lg = −1

2
Ei[logDi(ŷi) + logDi(ŷi,M(Cv))], (6)

where Di represents the i-th discriminator. The first term is unconditional GAN loss that makes the
generated mel-spectrogram to be real, and the second term is conditional GAN loss that guides the
generated mel-spectrogram should match with the abbreviated global visual contextM(Cv), where
M(·) represents temporal average pooling.

To complete the GAN training, the discriminator loss is defined as

Ld = −1

2
Ei[logDi(yi) + log(1−Di(ŷi)) + logDi(yi,M(Cv)) + log(1−D(ŷi,M(Cv)))].

(7)

Finally, the reconstruction loss Lrecon is defined with the following L1 distance between generated
and ground truth mel-spectrograms of i-th resolution,

Lrecon = Ei[||yi − ŷi||1]. (8)
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3.4 Waveform conversion

The generated mel-spectrogram can be directly utilized for diverse applications, such as Automatic
Speech Recognition (ASR) [38, 39], audio-visual speech recognition [40], and speech enhancement
[41]. On the other hand, in order to hear the speech sound, the generated mel-spectrogram should be
converted into a waveform. It can be achieved by bringing off-the-shelves vocoders [42, 43, 44, 45]
that transform the audio spectrogram into waveform. For our experiments, we use Griffin-Lim [46]
algorithm. Since the Griffin-Lim algorithm transforms linear spectrogram to waveform, we use
additional postnet which learns to map the mel-spectrogram to linear spectrogram similar to [47, 2].
The postnet is trained using L1 reconstruction loss with the ground-truth linear spectrogram.

4 Experiments

4.1 Dataset

GRID corpus [7] dataset is composed of sentences following fixed grammar from 33 speakers. We
evaluate our model in three different settings. 1) constrained-speaker setting: subject of 1, 2, 4, and 29
are used for training and evaluation. We follow the dataset split of the prior works [4, 2, 10, 3, 12]. 2)
unseen-speaker setting: 15, 8, and 10 subjects are used for training, validation, and test, respectively.
The dataset split from [10, 12] is used. 3) multi-speaker setting: all 33 subjects are used both training
and evaluation. For the dataset split, we follow the well-known protocol in VSR of [23].

TCD-TIMIT dataset [8] is composed of uttering videos from 3 lip speakers and 59 volunteers.
Following [4], the data of 3 lip speakers are used for the evaluation in constrained-speaker setting.

LRW [9] is a word-level English audio-visual dataset derived from BBC news. It is composed of up
to 1,000 training videos for each of 500 words. Since the dataset was collected from the television
show, it has a large variety of speakers and poses, presenting challenges on speech synthesis.

4.2 Implementation details

For the visual encoder, one 3D convolution layer and ResNet-18 [48], a popular architecture in lip
reading [49], are utilized. Three generators are used (i.e., n=3) and 2× upsample layer is applied at
the last two generators. Each generator is composed of 6, 3, and 3 Residual blocks, respectively. The
global visual encoder is designed with 2 layer bi-GRU and one linear layer. For the audio encoder,
2 convolution layers with stride 2 and one Residual block are utilized. The postnet is composed of
three 1D Residual blocks and two 1D convolution layers. Finally, the discriminators are basically
composed of 2, 3, and 4 Residual blocks. Architectural details can be found in supplementary.

All the audio in the dataset is resampled to 16kHz, high-pass filtered with a 55Hz cutoff frequency, and
transformed into mel-spectrogram using 80 mel-filter banks (i.e., F=80). For the dataset composed
of 25 fps video (i.e., GRID and LRW), the audio is converted into mel-spectrogram by using window
size of 640 and hop size of 160. For the 30 fps video (i.e., TCD-TIMIT), the window size of 532 and
hop size of 133 are used. Thus, the resulting mel-spectrogram has four times the frame rate of the
video. The images are cropped to the center of the lips and resized to the size of 112× 112. During
training, the contiguous sequence is randomly sampled with the size of 40 and 50 for GRID and
TCD-TIMIT, respectively. During inference, the network generates speech from arbitrary video frame
length1. For the multi-scale ground-truth mel-spectrograms (i.e., y1 and y2), bilinear interpolation is
applied to the ground-truth mel-spectrogram y (i.e., y3). We use Adam optimizer [50] with 0.0001
learning rate. The α, λrecon, and λsync are empirically set to 2, 50, and 0.5, respectively. The
temperature parameter τ is set to 1. For the GAN loss, non-saturating adversarial loss [34] with R1
regularization [51] is used. Titan-RTX is utilized for the computing.

4.3 Experimental results

For the evaluation metrics, we use 4 objective metrics: STOI [52], ESTOI [53], PESQ [54], and
Word Error Rate (WER). STOI and ESTOI are metrics for measuring the intelligibility of speech
audio, and higher scores mean better intelligibility of speech audio. PESQ is a metric for measuring

1There begins a performance degradation from above about 10 times the length of those used during training.
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Table 1: Ablation study in multi-speaker setting on GRID

Proposed Method

Baseline Visual context
attention

Synchro-
nization

Multi
discriminators STOI ESTOI PESQ WER

3 7 7 7 0.726 0.584 1.917 5.43%
3 3 7 7 0.732 0.596 1.931 5.02%
3 3 3 7 0.733 0.601 1.935 4.91%
3 3 3 3 0.736 0.604 1.961 4.80%

Table 2: Performance comparison in constrained-speaker setting on GRID

Method STOI ESTOI PESQ WER
Vid2Speech[1] 0.491 0.335 1.734 44.92%
Ephrat et al.[2] 0.659 0.376 1.825 27.83%

Lip2AudSpec[3] 0.513 0.352 1.673 32.51%
1D GAN-based [10] 0.564 0.361 1.684 26.64%

Lip2Wav [4] 0.731 0.535 1.772 14.08%
VAE-based [11] 0.724 0.540 1.932 -

Vocoder-based [12] 0.648 0.455 1.900 23.33%
VCA-GAN 0.724 0.609 2.008 12.25%

perceptual quality of speech audio and a higher score implies the better perceptual quality of speech
audio. WER measures how correct the predicted text from the generated speech is. A low error rate
means better-generated audio containing accurate spoken content. ASR models (modified from [55])
that take the mel-spectrogram as input and are trained on each experimental setting are utilized to
measure the WER.

4.3.1 Ablation study

We conduct an ablation study in order to confirm the effect of each module in the VCA-GAN. By
adopting multi-speaker setting of GRID dataset, we build four variants of the proposed model by
gradually adding each proposed module, shown in Table 1. For the WER measurement, a pre-trained
ASR model on the same setting of GRID dataset is utilized. The Baseline is the model that is trained
with Lrecon and GAN loss only without the guidance in multi-resolution. It achieves 0.726 STOI,
0.584 ESTOI, and 1.917 PESQ. When the proposed visual context attention module is added, the
performances are improved in all the metrics, achieving 0.732, 0.596, 1.931, and 5.02% in STOI,
ESTOI, PESQ, and WER, respectively. Please note the performance improvements are the largest
when the proposed visual context attention is introduced. This results reflect that jointly modelling
the local visual features and the global visual context during the speech synthesis is important for fine
speech generation. Further, when the synchronization learning is performed, the intelligibility score,
ESTOI, and WER are improved. Finally, by guiding the generation results in multi-resolution with
multi-discriminators, we can synthesize the speech sound clearer with the improvement of PESQ.

4.3.2 Results in constrained-speaker setting

To compare the proposed VCA-GAN with state-of-the-art methods, we train and evaluate the VCA-
GAN in constrained-speaker setting on both GRID and TCD-TIMIT dataset. Table 2 indicates the
comparison results on GRID. The proposed VCA-GAN achieves the best performance in all metrics
with large margins except STOI, but it shows comparable performance with that of Lip2Wav [4].
In this experiment, WER is measured using Google ASR API for fair comparison, following [4].
The WER measured from the Google API is 12.25% which surpasses the previous state-of-the-art,
Lip2Wav, by 1.83%. With the pre-trained ASR, the measured WER of VCA-GAN is 5.83% showing
that the generated mel-spectrogram clearly contains the speech content of input lip movements. The
comparison results on TCD-TIMIT dataset is shown in Table 3. Similar to the results on GRID
dataset, the VCA-GAN shows the state-of-the-art performances in all three metrics. These results
confirm that the VCA-GAN consistently synthesizes the speech from the lip movements with high
intelligibility and clear sound regardless of the dataset.
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Table 3: Performance comparison in constrained-speaker setting on TCD-TIMIT

Method STOI ESTOI PESQ
Vid2Speech[1] 0.451 0.298 1.136
Ephrat et al.[2] 0.487 0.310 1.231

Lip2AudSpec[3] 0.450 0.316 1.254
1D GAN-based [10] 0.511 0.321 1.218

Lip2Wav [4] 0.558 0.365 1.350
VCA-GAN 0.584 0.401 1.425

Table 4: MOS score comparison with 95% confidence interval computed from the t-distribution

Method Intelligibility Naturalness Synchronization
1D GAN-based [10] 2.74 ± 0.61 2.28 ± 0.55 3.69 ± 0.50

Lip2Wav [4] 3.23 ± 0.48 2.87 ± 0.54 3.86 ± 0.38
Vocoder-based [12] 3.68 ± 0.67 3.00 ± 0.68 4.16 ± 0.43

VCA-GAN 4.06 ± 0.53 3.35 ± 0.50 4.30 ± 0.37
Actual Voice 4.94 ± 0.04 4.94 ± 0.09 4.87 ± 0.12

Besides the speech quality metrics, we conduct Mean Opinion Score (MOS) tests. The subjects
are asked to rate the 1) intelligibility , 2) naturalness, and 3) synchronization of the synthesized
speech on a scale of 1 to 5. We ask 12 participants to evaluate samples from 4 different methods and
ground-truth ones. The methods are all proceeded with the contrained-setting of GRID dataset and
20 samples per method are rated. As shown in Table 4, the proposed method achieves the best scores
on all the three categories, consistent to the results on the above quality metrics. Specifically, the
highest synchronization score verifies that the proposed VCA-GAN can generate well-aligned speech
with the input lip movements through the proposed synchronization.

4.3.3 Results in unseen-speaker setting

Furthermore, we investigate the performance of the VCA-GAN on GRID dataset in unseen-speaker
setting following [10, 12], shown in Table 5. We measure the WER using the pre-trained ASR
model, trained in unseen-speaker setting of GRID dataset. Compared to the previous works [10, 12],
the VCA-GAN outperforms in STOI, ESTOI, and PESQ. Since the model cannot access the voice
characteristics of unseen speaker during training, the overall performance is lower than that of the
constrained-speaker (i.e., seen-speaker) setting. Even in the challenging setting, the VCA-GAN
achieves the best WER score with a large margin compared to the previous methods. The result
indicates that the synthesized speech by using VCA-GAN contains the correct content, which is
important in unseen-speaker speech synthesis.

4.3.4 Results in multi-speaker setting

For verifying the ability of the proposed VCA-GAN on multi-speaker speech synthesis, we train
the model by using full data of GRID dataset. Since the voice characteristics varying from different
identities, multi-speaker speech synthesis is considered as a challenging problem. Compared to the
results of constrained-speaker setting on GRID in Table 2, three metric scores (i.e., STOI, ESTOI, and
PESQ) shown in Table 6 do not show significant differences, meaning that the proposed VCA-GAN
can synthesize multi-speaker speech without loss of the intelligibility and quality of the speech.
Moreover, in Table 6, we compare the Character Error Rate (CER) and WER with a VSR method
which predict a text from a given silent talking face video. Even though the VCA-GAN is not trained

Table 5: Performance comparison in unseen-speaker setting on GRID

Method STOI ESTOI PESQ WER
GAN-based [10] 0.445 0.188 1.240 38.51%

Vocoder-based [12] 0.537 0.227 1.230 37.97%
VCA-GAN 0.569 0.336 1.372 23.45%
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Figure 3: Qualitative results of generated mel-spectrogram and waveform.

Table 6: Performance in multi-speaker setting on GRID

Method STOI ESTOI PESQ CER WER
LipNet [23] - - - 2.0% 5.6%
VCA-GAN 0.736 0.604 1.961 1.8% 4.8%

with text supervision, the generated speech is intelligible enough to recognize the spoken speech,
showing comparable results to the LipNet [23] which is a well-known VSR method.

Finally, we further extend our experiment using LRW dataset, shown in Table 7. While the previous
Lip2Wav [4] method utilizes prior knowledge of speakers through speaker embedding [56] for training
and inferring on the LRW dataset, the proposed VCA-GAN does not require any prior knowledge of
the speakers. Without using additional speaker information, the VCA-GAN outperforms the previous
method [4] in three speech quality metrics, STOI, ESTOI, and PESQ. For the WER, Lip2Wav is
measured by using Google API while VCA-GAN is measured using the ASR model pre-trained on
LRW dataset, so they cannot be directly comparable. However, it clearly shows that the synthesized
speech correctly contains the right words even in the challenging environments by outperforming a
VSR model [9].

4.3.5 Evaluation of audio-visual synchronization

In order to verify how well the generated speech achieves audio-visual synchronization, we adopt
two metrics, LSE-D and LSE-C, proposed by [57]. They measure the degree of the synchronization
between audio and video using pre-trained SyncNet [35]. The LSE-D measures the feature distance of
two modalities, so less value means better synchronization. The LSE-C measures the confidence score,
hence the higher score refers to the better audio-video correlation. Table 8 shows the comparison
results in two synchronization metrics in constrained-speaker setting on GRID dataset. The proposed
VCA-GAN achieves the best score on both LSE-D and LSE-C by surpassing the previous state-of-
the-art method [12]. This result shows that the proposed synchronization is effective for synthesizing
the in-sync speech with the input lip movement video.

4.3.6 Qualitative results

We visualize the generated mel-spectrogram and the waveform of Vocoder-based method[12], the
proposed VCA-GAN, and the ground-truth in Fig.3. The results are from the constrained-setting
of GRID. We find that the generated mel-spectrograms of VCA-GAN are visually well matched

Table 7: Performance comparison on LRW. † Reported by using Google API.

Method STOI ESTOI PESQ WER
Chung et al.[9] - - - 38.90%
Lip2Wav [4] 0.543 0.344 1.197 †34.20%
VCA-GAN 0.565 0.364 1.337 29.95%
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Table 8: LSE-D and LSE-C comparisons for measuring synchronization

Method LSE-D ↓ LSE-C ↑
1D GAN-based [10] 8.107 4.797
Vocoder-based [12] 6.717 6.178

VCA-GAN 6.698 6.373

Table 9: Comparison of inference speed with a Seq2Seq-based method.

Method Inference time
Lip2Wav [4] 141.73 ms
VCA-GAN 25.89 ms

with the ground-truth. Moreover, by seeing the red dotted-line on mel-spectrogram that indicates
the start of utterance of ground-truth, we can confirm that the results from the VCA-GAN are well
synchronized while the results of [12] are slightly shifted to the right, compared to the ground-truth
mel-spectrogram.

4.3.7 Computational cost

As the proposed VCA-GAN can synthesize the entire speech with one forward step, we can save the
inference time than using a Seq2Seq-based method [4]. In order to examine the improved performance
in terms of inference speed, we measure the inference time of a Seq2Seq-based method, Lip2Wav,
and VCA-GAN including postnet when generating 3-sec speech. For the computing, Titan RTX is
utilized. Table 9 shows the measured inference time of each method. The mean inference time of
VCA-GAN for generating 3-sec speech takes 25.89ms and the Lip2Wav needs about 5 times more
time than VCA-GAN.

5 Limitations and Societal Impacts

This work offers a powerful lip to speech synthesis method. However, as shown in Section 4.3.3, the
speech synthesis performances on unseen speakers are still limited compare to the seen speakers. This
is because of the unpredictable voice characteristics of unseen speaker that the model cannot properly
synthesize. A possible direction for alleviating this limitation is to remove the identity factors of
training samples and re-painting them on the generated speech.

With this work, several positive societal benefits can be derived such as assisting human conversations
in crowd or silent environments and making it possible to communicate with the speech impaired.
In contrast to the advantages, there are also some potential downsides. The lip reading can read
the speech by only capturing the lip movement of a certain person, and the visual information can
be more easily obtained than the high-quality audio information in a crowded environment or in a
long-distance. Thus, the technology is possible of being misused in a surveillance system which can
erode individual freedom and damages one’s privacy.

6 Conclusion

We have proposed a novel Lip2Speech framework, VCA-GAN, which generates the mel-spectrogram
using 2D GAN by jointly modelling both local and global visual representations. Specifically, the
visual context attention module provides the global visual context to the intermediate layers of the
generator, so that the mapping of viseme-to-phoneme can be refined with the context information.
Moreover, to guarantee the generated speech to be synchronized with the input lip video, synchro-
nization learning is introduced. Extensive experimental results on three benchmark databases, GRID,
TCD-TIMIT, and LRW, show that the proposed VCA-GAN outperforms existing state-of-the-art and
effectively synthesizes the speech from multi-speaker.
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