Supplementary Materials for:

Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on
Pruned Neural Networks

We first provide an overview about techniques used in proving the landscape (Theorem [I)), linear
convergence to the ground truth (Theorem [2)) and tensor initialization (Lemma I}

1. Sample complexity scales in {r;}: To guarantee the theoretical bounds depend on {r;}/<
instead of d, we define an equivalent emplrlcal risk function as shown in (I2)) in Appendix[A] from
R "5 to R. Existing concentration theorems and landscape analysis built upon (2)) can no longer be
used here, and thus we revised or updated the corresponding lemmas, which can be found in Appendix
[Glto[l] In the initialization methods, for estimating a proper weights that match new empirical risk
function, the construction of high-momenta in Appendix [B|and corresponding proofs in Appendix
are updated accordingly as well;

2. Local convex region: In proving Theorem [I] (Appendix [C)), we first bound the Hessian of the
expectation of the new empirical risk function and then obtain the distance of the Hessian of the
new empirical risk function to its expectation by concentration theorem. By triangle inequality, the
Hessian of the new empirical risk function is characterized in terms of sample size NV;

3. Linear Convergence: In proving Theorem [2] (Appendix [D), we first characterize the gradient
descent term by Intermediate Value Theorem (IVT). However, since the empirical risk function is
non-smooth due to the ReLU activation function, IVT is applied in the expectation of the empirical
risk function instead, and we later show the gradient generated by finite number of samples is close
to its expectation. Therefore, the iterates still converge to the ground truth with enough samples.
Further, the linear convergence rate are determined by ||W 1) — W* P||/|[W®) — W* P, which
turns out to be dependent on ;

4. Initialization via Tensor Method: The major challenge for tensor initialization is to construct the
proper high dimensional momenta. As we mentioned above, if one directly applies the method in
(691, the sample complexity is in ©(d). In this paper, we select  (see (20) in Appendix , which is
the sum of the augmented @q; . In proving Lemma[% the major idea to bound the estimations of the
directions and magnitudes of w, j,, to the ground values, respectively (see in Appendlx@)

A Notations

In this section, we first introduce some important notations that will be used in the following proofs,
and the notations are summarized in Table 1.

First, for the convenience of proofs, some notations in main contexts, namely, €27, 77 and fp will be
re-defined. We emphasize here that the re-definition of these notations will not af%ect the presentation
of theoretical results in Section [3] and the explanations can be found in the following paragraphs.

Next, given a permutation matrix P, we define a group of sets {€25}/<, with Q5| = 77, and Q7
denotes the indices of non-zero entries in M ™ P, which is also the non -pruned weights of the j- th

neuron in the oracle model with respect to ground truth weights M* P, instead of M *. Please note
that the sets {€25}/<, and {7}/, here are just a permutation of these in the main context. Since

the permutatlon of {7’] 1 will not change the results in Section |3} we abuse the notations for the
convenience of proofs. éorrespondmgly, for the learner model, the indices of non- pruned weights of
the j-th neuron is denoted as €2, and |€2;| = r;. Therefore, we have

T T
W; T = W;0,%0;; (11

where zq; € R"7 is the subvector of z with respect to indices 2; for any vector z € R

Then, recall the empirical risk function defined in @, it can be re-written as
R 1 M1 K 2
fo(@) = 53" (2 X éwlo,@nn,) —un) - (12)
n=1 j=1
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Table 1: Table of Notations

Notation Description
N The number of training samples; a scalar in Z
K The number of neurons in the neural network; a scalar in R
d The dimension of input data; a scalar in R
x The input data/features; a vector in RA
Y The output label; a scalar in R
fo The empirical risk function defined in (12)); a mapping from RZ5" to R
f The population risk function defined as f = Ep fp; a mapping from RZ5 7 to R
P The permutation matrix; a binary matrix in {0, 1}%*X
w* The ground truth weights of oracle network; a matrix in R7<¥
M* The mask matrix of the oracle network; a binary matrix in {0, 1}7¥%
ri The number of non-pruned weights in the j-th neuron of oracle network
w The ground truth weights of learner network; a matrix in R7<¥
M The mask matrix of the learner network; a binary matrix in {0, 1} %
r; The number of non-pruned weights in the j-th neuron of learner network
T'min The minimal value in {r; }JK: 1
T max The maximal value in {r; }JKzl
0 The indices of non-pruned weights in teacher network; a set with size of 77
Q; The indices of non-pruned weights in learner network; a set with size of r;
w Contains the non-pruned weights of W  and equals to
[wlg, wio,, - wha, " avectorin R "
w”* Contains the non-pruned weights of the oracle model; a vector in R2=5 ™
0.5 A binary scalar, and the value is 1 if €2; and ()}, are overlapped and 0 otherwise
r The value of g7ox (Y, Zj(1+6j,k)(rj+rk)%)2
o The i-th largest singular value of W™ P, and the value equals to the i-th Targest

singular value of W*

K The value of 01 /o k
v The value of [~ 0:/0x
) A fixed positive constant in RT
q Some large constant in R
where w = [w1T,91 , sz’QQ, e ,w?QK]T € RX5 " Here, we abuse the notation of fp to represent

a mapping from R25 " instead of RX*4 in (), to R. In fact, under the constriant of W = M & W,
the degree of freedom of W is actually ; rj instead of Kd, and the definition in (@) is a easier way
for us to present the following proofs. Therefore, the optimization problem in (@) is equivalent as

min:  fp(®). (13)

~k *«T *T *T T STy «T =+ .
Let us define w™ = [wig , w5, ,Wkq,|] € R=i", where w}" is the j-th column of

W™ P. and it is clear that w" is the global optimal to (T3). Additionally, the population risk function,
which is the expectation of the empirical risk function over the data D, is defined as

~ s~ 1 N 1 K T 2
f(@) = Epfp(®) =Eps > (= D ¢(w]a,@na,) — va)
n=1 Jj=1

K

b (kS otulnzn) )’

(14)

where z € R? belongs to standard Gaussian distribution, and y = g(W* P*; x).

Moreover, for the convenience of proofs, we use o; to denote the ¢-th largest singular value of
W*P, and it is clear that o;(W*P) = o;(W™) for all i. Then, & is defined as o1 /0k, and
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v = H1K:1 0;/ok. Factor p is defined in Property 3.2 [69] and a fixed constant for the ReLU

activation function. In addition, without special descriptions, @ = [aT, al, -+, a%]T stands for
any unit vector that in R25 77 with a j € R; Therefore, we have
K of
2 T2 TY/D
A4 prg—maxHa v fDaHQ—maX(Za] w, ) (15)

Finally, since we focus on order-wise analysis, some constant number will be ignored in the majority
of the steps. In particular, we use hy(z) 2 (or <,~)ho(2) to denote there exists some positive
constant C' such that hy(z) > (or <,=)C - ha(z ) when z € R is sufficiently large.

B Initialization via tensor method

In this section, we present the revised tensor initialization based on that in [69]. To reduce the
dependency of input dimension from d to the order of r,.,, we need to define x in instead
of directly using @ to generate the high order momentum as shown in (21 to 23). In addition, as
wj o,’s are different in dimensions, we need to define the corresponding augmented weights by
inserting 0 such that augmented w; o, are additive in a sense. The additional notations used in
presenting are summarized in Table 2, and one can skip this part if the focus is only on the local
convexity analysis (Theorem [I)) and convergence analysis (Theorem [2). The intuitive reasons for
selecting & mainly lie in two aspects: first, & is much lower dimensional vector considering r; < d;
second, T belongs to zero mean Gaussian distribution, which is rotational invariant and is correlate
with ¢(w"x). Therefore, the magnitude and direction information of {w; o}~ are separable
after tensor decomposition, and the dimension of the tensors are at most in the order of " max-

Table 2: Table of Additional Notations for Tensor method

Notation Description
%g) The argumented vector in R™=» of &g, by inserting 0; defined in (16)
]-'jj A Tinear mapping that generats a augmented vector; defined in (T7)
F ,T The pseudo inverse of F;; a linear mapping
T Thevalueof%2.~ 4
u; The argumented vector in R™x of w7 , by inserting 0; defined in (18}
u; The normalized vector of u; as u/ ||u ||2
ﬁ: The estimation of the normalized vector of u}
1, P, Y3 Some fixed constants depends on the distribution of {zq, }JKzl
M, A vector in R™=x defined in 1)
M, The estimation of My
M, A matrix in R™me<X7max defined in
M, The estimation of Mo
M A tensor in R7max*"maxXTmax defined in (23)
M The estimation of M3
\% The orthogonal matrix in RX*X that span the sub-space of the convex hull
of {u; }JK:l
Vv The estimation of V'
M(V,V, V) A tensor in REXEXK defined in (29)
M(V,V,V) The estimation of M(V,V V)
s; The value of Vu;-‘ ; a vector in R¥
s The estimation of s;
a; The value of [[uj[|2; a scalar in R

Q; The estimation of o;

17



First, we define a group of augmented vectors {%g; | based on {zg, }1 | such that Q; C €
with \QJ\ = Pax and
~(4) x;, ifie€ Qj
)= ~ ) 16
i {0 leEQJ/Qj (16)
For notation convenience, we use F; to denote the mapping from R"7 to R"=>x as
Fi(z) = [z7,00,]", (17)
where 0 is a zero vector in R™=x~"7_ Obviously, we have
i%j :.Fj(wﬂj>. (18)
Correspondingly, the augmented weights {u le are defined as
u;‘ = fj(w;’ﬂj) (19)

for j € [K]. The steps above guarantee the augmented weights u;’s are in the same dimension
so that the high order momenta are able to characterize the directions of weights simultaneously.
Additionally, we define

z ) (20)

1 K
-y
VE &0,

and corresponding high order momenta are defined in the following way instead:

M, =E {yx} € R, 21
M, —E, [y(i: ®F— Emaz:zT)} € RV maxXTmax 22)
M, =E, [y (53®3 _ %@EE:E:ET)] € RV max X Tmax X Tmax (23)
where E,, is the expectation over = and 2®3 := 2 ® z ® z defined as
do
’U®Z:Z(U®2i®zi+zi®’v®zi+zi®Zi®v)7 (24)
i=1

for any vector v € R% and Z € R >z,

Following the same calculate formulas in the Claim 5.2 [69], there exist some known constants
¥;,4 = 1,2, 3, such that

K
My =ty |ulls - @, (25)
j=1
K
My =Y - [|uflls - wjw;”, (26)
j=1
K
My =" [|lujlls - uw;®?, 27)
j=1

where @} = u}/||u}2 in @I)-23) is the normalization of w.

1> and let My, Mo, M
denote the corresponding estimates. First, we will decompose the rank-% tensor M3 and obtain

the {ﬁ; le. By applying the tensor decomposition method [31]] to M 3, the outputs, denoted

M, M, and M 3 can be estimated through the samples { (T, yn)}N

by {ﬁj }IC 1, are the estimations of {@}},. Next, we will estimate ||u||2 through solving the
following optimization problem:

K
Q = arg min : ‘Ml - Zduajﬁ; ) (28)
j=1

acRE
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Subroutine 1 Tensor Initialization Method

Input: training data D = {(x,,, yn)}N_1;

Generate augmented inputs and weights through F; as shown in (T7) and (T9);
Partition D into three disjoint subsets Dy, Ds, Ds;

Calculate M 1, M o following @ (@ using Dy, Do, respectively;
Obtain the estimate subspace V of M 2

Calculate M 3(V,V, V) through Ds;

Obtain {sj} ¢ , via tensor decomposition method [31]] on M 3(‘7, Vv, ‘7)
Obtain & by solving optimization problem (28);

Return: w(OS)) = F;(|&j|‘7§j),j =1,.,K.

—_

R A Al

From @ and @P, we know *that |aj| is the estimation of [[uj[l2. Thus, U is given as
[|a1|ﬁ17 ) |aj‘ﬂj7 M) ‘aK‘HK:I
To reduce the computational complexity of tensor decomposition, one can project M 5 to a lower-

dimensional tensor [69]. The idea is to first estimate the subspace spanned by {'w M, and let Vv

Jj=r
denote the estimated subspace.

Moreover, we have

My(V,V, V) =E, [y((f/Ti)®3 - (?Ti)éﬁw(?%)(v%ﬁ)} e REXKXK — (9)

~

Then, one can decompose the estimate M 3(‘7, Vv, ‘7) to obtain unit vectors {3;}1<, € R Since

i Then, Véj 1S an estimate of ﬁ;f. After
we obtain the estimated augmented weights %;, the estimated weights can be generated through

u” lies in the subspace V, we have VVTE;T = u;

@;Q] =F T( ) where F; T is the pseudo inverse of F;. The initialization process is summarized in
Subroutine El

C Proof of Theorem [1]

The main idea in proving Theorem[I]is to use triangle inequality as shown in (33]) by bounding the
second order derivative of the population risk function and the distance between the empirical risk
and population risk functions. Lemma [3|provides the lower and upper bound for the population risk
function, while Lemma 4] provides the error bound between the second order derivation of empirical
risk and population risk functions.

Lemma 2 (Weyl’s inequality, [7]). Suppose B = A + E be a matrix with dimension m x m. Let
Ai(B) and \;(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

|Xi(B) — Ai(A)| < [|Ell2, Vi€ [m]. (30)

Lemma 3. Ler f be the population risk function in (I4). Assume W satisfies (6), then the second-
order derivative of f over w is bounded as

(1—¢q)p 2 7
A YR <
112K21 Vif(w )_KI7

(3D
where w only contains the elements of W with respect to the indices of non-pruned weights.
Lemma 4. Let fp and f be the empirical and population risk function in (I2) and (T4), respectively,
then the second-order derivative of fp is close to its expectation f with an upper bound as:

2 2 rj + i) logq
IV2fp -V f||2~KQZZ 1+6;4) J# (32)

k=1 j=1

with probability at least 1 — g~ "™i»,
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Proof of Theorem E] Let S\max and S\min denote the largest and smallest eigenvalues of V2 fp, respec-
tively. Also, Let Ayax and Ay denote the largest and smallest eigenvalues of V2 fp, respectively.

Then, from Lemma 2} we have

5\max é )\max + ||v2fD - v2f||2 (33)
and . )

)\min Z )\min - ||v2fD - v2f||2 (34)

When the sample complexity satisfies N > &7 %p 2r*y2K* [ Zszl Zle 1 +
8.k)\/T5 T rk] ? log ¢, then from Lernma we have

24 2 €1p
— < —r .
IV=fp = Vof2 < 1127 K2 (35)
Then, from (33), (34) and (33), we have
c 8
An'lax S Ea (36)
and a )
< — &0 —€1)p
)\min = Wv (37)
which completes the proof. O

D Proof of Theorem 2

The major idea in proving Theorem 2]is to first characterize the gradient descent term by intermediate

value theorem. Let w'") be the vectorized iterate W) with respect to the non-pruned weights, then
we have

Vo, @) =fo, @) + (fo,®") ~ fo. (@)
=(V?fo, (@), %" —@") + (fo, (@) ~ fo,@")).

where @ lies in the convex hull of @' and @". The reason that intermediate value theorem is
applied on population risk function instead of empirical risk function is the non-smoothness of the
empirical risk functions. Due to the non-smoothness of ReLU activation function at zero point, the
empirical risk function is not smooth, either. However, the expectation of the empirical risk function
over the Gaussian input x is smooth. Hence, compared with smooth empirical risk function, i.e.,
neural networks equipped with sigmoid activation function, we have an additional lemma to bound

\Y fpt to its expectation V f , which is summarized in Lemma

(38)

The momentum term /3 (W(t) — W(tfl)) plays an important role in determining the convergence
rate, and the recursive rule is obtained in the following way:

~(t+1)_~* ~(t)_~*
[“’ o ] = A(B) [J‘é_n —wﬁ’*l : (39)

~(t
w —w w

where A(3) is a matrix with respect to the value of 3 and defined in (@4). Then, we know w',

which is equivalent to w®, converges to the ground-truth with a linear rate which is the largest
singular value of matrix A(f). Recall that AGD reduces to GD with 8 = 0, so our analysis applies to
GD method as well. We are able to show the convergence rate of AGD is faster than GD by proving
the largest singular value of A(f) is smaller than A(0) for some /5 > 0.
Lemma 5. Let fp and f be the empirical and population risk function in (12) and (14), respectively,
then the first-order derivative of fp is close to its expectation f with an upper bound as:
1 K& ri log g 1 & log q
ro~ ~ k ~ o~ k
IVFp(@)=Vi@)l2 S 35 > D A+ = 0= a2 >/ =7 [¢l (40)
k=1j=1 k=1

with probability at least 1 — ¢~ "™in, where w only contains the elements of W with respect to the
indices of non-pruned weights.
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Proof of Theoremg) Since |W® — W*||p = |[@® — @"||5, we can explore the converges of
{ﬂ:(t)}?:l instead. Recall that

w =w' - nvm )+ p@ - Y)
=" — v (@) + g — @) 1)
+ (V@) = Vfp, @")).
Since V2 f is a smooth function, by the intermediate value theorem, we have

~(t+1) _ w t) nWQf(ﬁJ(t))(iD(t) _ ’ZI}*> + ﬂ("fb(t) _ {I}(t—l))

~ () P (t) “2)
+0(Vi(@") - Vip (@),
where @ lies in the convex hull of @' and w"*.
Next, we have
@' — w0t _[1-gv2i@")+p1 pI| | @ @
iI)(t) A I 0 iI)(t—l) " )
~OY _ v i (@
. {Vf(w )= Vo >]
Let ©
_ 2 £(1D
A(B) = {I V@) + 8L 501} , (44)
so we have
S (E1) =k ) ~(t) P (t)
w w w w -
[ A ] ~ 431, [~<t_1) || | [FFED ST @] s
w’ —w ) w —w ||, 9
From Lemma |5} we know that
n L& T logq
~ ~ k ~ ~*
0| V@) - v o, @) S PMHIQLE @ — @l
=t (46)
Csn o~ [rilogg
+ % 2N K
k=1
for some constant C5 > 0. Then, we have
~ ok C 7K 1o ~ @
T (PTETIR 3 SRR [
k=1j=1
L Gsn Z Tk logq
1€l (47
~ 0577 Tk logq
=v(B) @ - Z -lel.
Let V2f(@w™) = SAST be the eigendecomposition of V2 £(@"). Then, we define
_[sT o S 0] [IT-nA+pBI BI
A(ﬁ) T |: 0 ST:| A(B) [0 S:| - |: T 0 (48)
T
Since [‘(S; ,(5)'] [‘S;) SOT} = [é 2] , we know A(B) and A(f3) share the same eigenvalues.

Let \; be the i-th eigenvalue of V2 f(w (t)) then the corresponding i-th eigenvalue of [@8), denoted
by 0;(0), satisfies

v —(1—nX\i+B)6i + B =0. (49)
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Then, we have

(I—nXi+B)+ /(0 —nhi+p)?—48

5 (B) = 5 (50)
and
' - % ‘(1 —nXi + B) + /(1 —n)i + B)2 — 48|, otherwise.

Note that the other root of [@9) is abandoned because the root in (30) is always larger than or at least
equal to the other root with |1 — n);| < 1. By simple calculation, we have

0i(0) > 8;(8), for VB € (0,(1—nXi)?), (52)
and specifically, §; achieves the minimum 6; = |1 — /)| when 8 = (1 — \/77/\1‘)2'
Let us first assume @'") satisfies (@), then from Lemma we know that

(1 —60) 7
0< o0 <L
< 11k2yK2 = "~ K

provided that N; 2 &5 p~ w2y K3 [ 72 >0, 3 (14 6j.4)y/Tk + rj]210g q. Lety, = 1”1(;;81”()2 and
Yo = % If we choose [ such that

B =max {(1 - i), (1 = vin2)*}, (53)
then we have 8 > (1 — v/nX;)? for any i and §; = max {|1 — \/771],|1 — \/772|} for any i.
Letn = i, then 5* equals to (1 — 2"’—1> Then, for any ¢ € (0, 2) we have

g
71 1—¢g
ABY) |2 = max§;(f) =1 — |2 =1/ ——— 0
1A(B7)]l> = max %y 154p— 127 K
(54)
1-— 3/4 - €0

V154p—1R2yK

C577 [T logq €0
E E 140k 55
* Ny 4\/154p—1n27K )

k=1 j=1

weneed N; 2 g5 2p w2V K [ 20, >0 (1 + 6j’k)\/ﬁ] log q.
Combine (34) and (53)), we have

Then, let

1—60

()<l ————. (56)
(5 \/154p~1k2yK
While let 5 = 0, we have
1-— 90}
0)>|A0)||z =1 - —————
10) = [AO)]2 =1~ 5= 57)
and 19
— 2
<l—- ——+—
v(0) = 154p=1k2vK (58)

. _ 2
if N, > g5 %p tk2yK? [ i k(L +85)y/TK + ;] logq.

. . 2
In conclusion, with n = i and 8 = (1 — QA%) , we have

K
S+ s _ 1—¢g ~(t) o @ ri logq
[ =@ < (1- ——=)|® USS SMTES e

V154K2yK

if " satisfies (@) and N; > e p k2 K4 [ i 2L+ 80T+ ij log g.
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Then, we can start mathematical induction of (59) over ¢.

Base case: (6) holds for @ naturally from the assumption in Theorem Since (6)) holds and the
number of samples exceeds the required bound in (39), we have (59) holds for ¢ = 0.

Induction step: Assume (59) holds for ¢, to make sure the mathematical induction of (39) holds, we
need w1 satisfies (6). That is

T logq < 1—¢g E00K
60
> @

V13262 K 44r2y K2

Hence, we need

1 2
N 2 55%{873[(6(?2\/@) log g. 61)
k

In addition, with (6) and (39) hold for all ¢ < T, the following equation

(D _ px o _ ~ (t) P (1)
w w w w \V4 -V
H““ w] ~ 1A@)], [w_l) | | [THE @]
w' —w . w —w || o

(62)

holds as well, and || A(f)||, is bounded by v(3). Hence, (39) also holds in infinity norm as

~(t ~ 1—¢9 ~ ~ rlogq

[ =@ < (1- == ) 8" = @[l +20m [ 200l (63)

V154K2vK

2
In conclusion, when N; > 5 2k%73 K6 (% Soe 2 (140 6) Tk T rj) log d, we know that (59)

holds for all 1 < ¢ < T with probability at least 1 — K2T - ¢~ "=i», By simple calculation, we can
obtain

K
_ ok 1—¢g T ) ~x C KVKQ’I“kIqu
Jo™ — ) < (1= =) @ = @ o + = 4| et el (64)
( V132627 K K~

for some constant C' > 0.
O

E Obtaining a proper learner network via magnitude pruning

In this section, we show that how one can combine Algorithm [T and magnitude pruning to find a
proper learner network such that 7; > r7 and §2; 2 ] from a fully-connected network under some

assumptions. Suppose the number of samples is at least €2 (K Sdlog qlog(1/ s)) we train directly on
the fully-connected dense network us1ng AlgorlthnlE} The number of iteration in line 2 of Algorithm

1s setas T} = ®(log(2WmaX / Wmm)) where Wi, and WmaX denote the smallest and largest
value of W™, respectively. From , after T} iterations, the returned model, denote by W(Tl),

close to the ground-truth W™, Speciﬁcally, if W7, # 0and W7, ,, = 0, then ng) > WE,T;Q for
any 7, j,4, j'. Then we sort the weights based on their absolute values and prune them sequentially

starting from the least absolute value. As long as the ratio of pruned weights is at most (1 - Zkf;j ),

all the weights are removed correctly, leading to a proper learner network. In fact, if we remove
exactly 1 — E&;j
network.

fraction of weights, the pruned network has the same architecture as the oracle

Specifically, suppose M () to denote the mask matrix by truncating the smallest (1 — ZK = ) fraction

of entries in iterate W), Let M™* denote the ground-truth mask matrix for the oracle network, the
following corollary holds from Theorem 2|
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Corollary 1. Suppose the noise |§| < W;Hn and the number of samples satisfies N =

Q(KSdlogglog(1/e)). Let {W(tl) 1 be the iterates generated from Algorithm |I| by setting
r = d. Then, for any Ty > log(W

max/ min

M) = M+, (65)

*..), we have

Proof of Corollary[l] If we train on the dense network, from (63)), we know that

1 dlogq
WD _ Wl < (1 - 7) — W +2C (66)
Hence, we have
1—¢ ! dlogq
W) — W < (1 - 70) WO — W, +2C (67)
With T} > 1og(2WI’;dX/ mm) we have
1-— T W(O) - W* o]
(1 N 780) 1||VV(0) - W*HOO S W;un ' H lenn' (68)
/154k27 K W oo
Since N = Q(K®dlog qlog(1/¢)) and |¢] < W, we have
dl
20 Og 1 |§| 7WI";1H (69)
From (68) and (69), we know that
W™ — W, < W;;m (70)

Therefore, for any entry in W( ™

W™ is zero, we have

, if the corresponding entry in augmented ground-truth weights

W] < S an
if the corresponding entry in W* is non-zero, we have
| T1)| = |W | ) rmn = 2WI>:11I1 (72)

As we know that there are only ) ;T /(Kd) fractlon of non-zero weights in the ground-truth model,
M) = M* holds. O

F Proof of Lemma/l

Instead of providing the proof for Lemma([I] we turn to prove a more general bound for the perfor-
mance of tensor initialization method as shown in Lemma|6] One can easily verify that Lemma ]
holds naturally from Lemma [§]

Recall that in Appendix E the estimation of w} q, are converted into estimate the augmented vector
uj. Further, the estimation of u} are divided into estimating three parts: (1) the estimation of the

J
magnitude of u}‘, which is denoted as &;; (2) the estimation of the subspace of u;, which is denoted

as ‘7; (3) the estimation of the representation of uj on subspace V', which is denoted as 5;. Hence,

the major idea of proving Lemma 6]is to characterize the difference of these three estimations to its
ground-truth, which are summarized in Lemmas[7] [§|and [9] respectively.

Lemma 6. Assume the noise level || < Koy and the number of samples N 2 K8 KT s log6 q
with some large constant q, the tensor initialization method in Subroutine 1 outputs W such that

. Krpaxlo
(WO =W < %[ =B (o 4 f¢]) 73)

with probability at least 1 — g~ "max,
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F.1 Proof of Lemmal6

Lemma 7. Suppose M4 is defined as in 22)) and M o is the estimation of M by samples D =
{(xn, yn) Y2 1. Then, with probability 1 — q~"m=x, we have

— T'max 10
|M — M| S /22255 (01 + ), (74)

provided that N 2 7,ax 10g4 q.

Lemmas8. Let V be generated by step 4 in Subroutine 1. Suppose M 3(‘7, ‘7, ‘7) is defined as in (29)
and ]/\/23(‘7, V., V) is the estimation of M 3(V, v, V) by samples D = {(xy, yn)}\_,. Further,
we assume V€ R™¥ is an orthogonal basis of {w}}}", and satisfies [vvT — ‘7‘7T|| <1/4
Then, provided that N > K5 log® d, with probability at least 1 — g~ "™ we have

~ o~~~ ~ o~ 1
IMa(V. V. V) = My(V. V. V)| £ 4| =52 (01 + €] 75)

Lemma 9. Suppose M is defined as in 1) and ]/\21 is the estimation of M1 by samples D =
{(xn, yn) }2_,. Then, with probability 1 — q~"mx, we have

Y Tmax lo
IMy = M| S /222258 o+ ) 76)

provided that N 2, ryax log4 d.

Lemma 10 ([53]], Theorem 1.6). Consider a finite sequence {Z} of independent, random matrices
with dimensions di X ds. Assume that such random matrix satisfies

E(Zy) =0 and || Zk|| < R almost surely.

Z]E(Z;;Zk)H}.
k

Define

)

52 = max{H S E(2.2})
Then for all t > 0, we have i

Prob{ Z Zy,
k

Lemma 11 ([69], Lemma E.6). Let V € R"™*X be an orthogonal basis of w* and V be generated
by step 4 in Subroutine 1. Assume ||My — Mj||2 < o (M3)/10. Then, we have

S ]

IM — M|

~~T
VvV —VV |, <
O'K(Mg)

(77)

Lemma 12 ([69], Lemmas E.13 and E.14). Let V € R"™*¥ be an orthogonal basis of w"* and vV
be generated by step 4 in Subroutine 1. Assume M 1 can be written in the form of (23) with some

constant 1, and let M, be the estimation of My by samples D = {x,,,yn}N_,. Let & be the
optimal solutions of @28)) with ﬁ; = V's;. Then, foreach j € {1,2,--- , K}, if

T VYT -V |y <

1-— || - ||2 = K,2\/E’
T = llu* ‘7TA < 1 78
pi=[lu; —V [z < VR (78)

— 1
T3 := ||M1 — M2 < ZHMlHQ’
then we have ,

o = & < (WKH (T + o) + RPK 3T o, (79)

where o = |[uj]|2.
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Proof of Lemmal[l} By simple calculation, we have
|u; — 18|Vl
s s 12V, + s 12V5, — 13,175,

SHuj — ||U;||2V§jH2 + H||U§H2V§j - |aj|V3jH2

R R (80)
<ol 5 = V31l + [ ]2 = 1119735
—x e ST, -~ * ~
<or(lfa; — VV @l + 1V @5 = 352) + [l 2 - 1|
:201(11 -‘1-[2) + Is.
From Lemma[T1] we have
e o7, < 1Mz = Ml
L=|@-VV @ <|[VVT - VV | < 2222 (81)
L=l - VY g <) o < P2
where the last inequality comes from Lemma[7] Then, from (26), we know that
ok(M2) S min o}l = min @, 12 < o $2)
From Theorem 3 in [31], we have
~T RN ~ o~ o~
L=V ;= 3jll2 S —[Ms(V,V,V) = Ms(V,V, V)]. (83)
K

To guarantee the condition (78) in Lemma.hold according to Lemmas [7]and 8] we need N 2>
K2 K "max log g. Then, from Lemma , we have

Iy = (m4K3/2(Il + L) + 2KV M, — M1H)01. (84)

When rpax > K, according to Lemmas [7] [§]and 0] we have

~ 11 max |
3 = 1851V, 5 KGW@ ) (85)

provided that N > K3r ., log* d.
In conclusion, we have
WO —Wp = @" - & <VE - [Jw) g, - w5y ||,
_\F H}—Tu —u Hz
VK - [|Juj -], (86)
=VEK - ||uj - [a;V3,],

Krmax logq
5“6\/ T(Ul + [£])-

G Additional proof of the lemmas in Appendix [C]

G.1 Proof of Lemma[3]

The eigenvalues of V2 f at any fixed point w is bounded through the ones at the ground truth w™ by
using Lemma 2} The eigenvalues of V2 f at ground truth w* is bounded in (89) and (90).

Lemma 13. Let f be the population risk function in (14) and w satisfy (6)), then we have

V2 (@) — V2 (@), < A —Blz. 37

OK
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Proof of LemmaE] Let Apax (W) and Apin (w) denote the largest and smallest eigenvalues of V2 fp
at point w, respectively. Then, from Lemmal we have

Amax (W) < Amasx(W") + [|V2 f(w) = V2 f(w")]|2,

- -, s (88)
and )\min(w) Z Amin(w ) - ||v f(’LU) -V f(w )”2

Next, we provide the the lower bound of Hessian of population function at ground truth w™. Then,
we have

1 2
. T 2 ~ % o .
min o V- f(w )ozf—K2 \Igﬁi ) (E a; Taa,¢'(w ]Q xq, ))

llefl2=1

! min (Za xd' (w} m)>2

T K? Jal:=1, supp(ai,)= supp(aw (89)

K
1 . ~T / *T 2
R
p
>
T11K2AK?’
where & € R4 with &; € RY, and the last inequality comes from Lemma D.6 [69].

Next, the upper bound of Hessian of population function at ground truth @™ can be bounded in the
following way. For any o, we have

K

. 1 . 2
QT2 f(w Jox :ﬁEw ( Z afasgj ¢/(wj£j xo, ))
=1

K
2
SKf ]sz (a TQ, ¢ ijﬂj))
Jj=1
K
2 2 90
:ﬁZEm( [z, (W), T, )) G0
j=1
2 3
2
<7z 3 (Balafza,) Eulo'|')
j=1
2 6
TR
Then, from Lemma[13] when w satisfies (6), we have that
~ ~ % Eop
IV21(@) = V(@) 2 < 3725 o
Hence, from (88) and (91), we have that
(1 —co)p 200~ 7
O

G.2 Proof of Lemmal[d]
We first show that the second order derivative of fp is a sum of several random sub-exponential

variables as shown in (101)) and (I02)). Then, by concentration theory, i.e., Chernoff bound, we can
show that the error bound of V2 fp to its expectation.
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Definition 1 (Definition 5.7, [54]]). A random variable X is called a sub-Gaussian random variable
if it satisfies
(EIX[P)'? < ery/p 93)
for all p > 1 and some constant ¢c; > 0. In addition, we have
Ees(X—EX) < ceall X1, (94)

for all s € R and some constant c; > 0, where || X ||, is the sub-Gaussian norm of X defined as
| X1y, = sup,>1 p~V2(E|X|P)/P.

Moreover, a random vector X € R belongs to the sub-Gaussian distribution if one-dimensional

marginal o X is sub-Gaussian for any o € R%, and the sub-Gaussian norm of X is defined as
_ T

[ X |, = supjjay=1 " X l,-

Definition 2 (Definition 5.13, [54])). A random variable X is called a sub-exponential random
variable if it satisfies
(E[X[")'? < ezp 95)
for all p > 1 and some constant c3 > 0. In addition, we have
Ees(X—EX) < eall X3, s° (96)
fors < 1/||X||y, and some constant ¢4 > 0, where || X ||y, is the sub-exponential norm of X defined
as || X[y, = sup,z1 p~ (E[XP)/P.

Lemma 14 (Lemma 5.2, [54]). Let B(0,1) € {a|||all2 = 1, € R} denote a unit ball in R”.
Then, a subset S¢ is called a &-net of B(0, 1) if every point z € B(0,1) can be approximated to within
& by some point o« € B(0,1), i.e. ||z — a||2 < & Then the minimal cardinality of a {-net S¢ satisfies

Se| < (1+2/€)%. (97)

Lemma 15 (Lemma 5.3, [54]]). Let A be an dy X dy matrix, and let S¢(d) be a §-net of B(0,1) in
R< for some ¢ € (0,1). Then

Al < (1 =671 max al Aas|. 98
H ||2_< 5) a1€Sg(d1),a2€S§(d2)| ! 2| ( )

Proof of Lemma[) Recall the definition of f and £ in (T4) and (T2), we have
0% f 0 fp

awjlaﬂ.n awi?»ﬂjz awjl@.n awh@jz

/ T / T T
=Eq [¢ (wjlvﬂjl Ty, )¢ (wjmﬂjz TQj, )mﬂjl wﬂjz 99)
1 N
T / T T
N Z ¢(wj179j1 L,y )¢ (wj2)Qj2 Ln,Q;, )w"aﬂh wn,QjJ :
n=1

For any «, we have

IV2f — V2 fpll
= max ’aT(vzf*VQfAD)a‘
llecllz=1
-3 e ol (e e
F=1 o llede=t PNOwj, q; Owj, 0,  Owj a, Owj, o, oo
1 KK o o ) )
S jlzzl ]'QZ:I fellazt Eo [¢ (W), 0, Taji )¢ (W), o, Taj,)aj, Taj &, Taj,
1, ., o : ]
N n=1 ¢ (Wi 0, ®n0i)¢ (W, 0, xn’sz)ajlxnvgjlanmn,Qj2:|.
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Then, define Z,,(j1, j2) = (b(w;rl’ﬂjl wn,gj1)¢’(w£752j2 T 0y ) O], T 0, O T, ), » and We s2y Z
belongs to sub-Exponential distribution by Definition 2] If [2;, N €, | # 0, namely, €, and Q;, are
not disjointed, we have

P) 1/p

(E\ZaJ?) " <(E\ (af,@n0s) - (af,@n0)

2p\ 1/(2p) 2p\ 1/(2p)
< (E‘ (CHESN ) - (E‘ (af,@n.qj,) ) (101)
<Cg- vV 2p - Ca v 2p
:203 - p.
While if |[©2;, N Q;,| = 0, namely, Q;, and Q,, are disjointed, we have
1/p T T P\
(#1207 < (B[ (o 2n1) - (@) )
; A 1/ @) . A L/®)
_ <IE’ (o Tnrss) ) . (xa\ (of @ as) ) (102)
ZC'i - p.
Then, we have
R, e5(Zn—EZn) < e*CHZanplS2 (103)
for some constant C' > 0 and any s € R. From Chernoff bound, we have
N —C||Zn|3, -Ns?
1 e v
Prob{‘ﬁ > (2. ~EZ,)| < t} - (104)
=1
Let us select t = || Z, ||, 1/ w and s = ﬁ - t, then we have
iy
1 & (rj, +7j,)logg
|5 D (Zaln,32) = BZu(1,2)) | < (1 Zalln | 21281 (105)
n=1
with probability at least 1 — ¢~ ("1 +752)
Hence, from Lemma[13] we have
mae ok (-2 Pl g,
llojy 12<1, |lexjy [[2<1 . awjhﬂjl awj2~,Qj2 awjlyﬂjl awj%QjQ 2
N (106)
1
<2‘ — Nz, -EZ,
<2|% ;( )

with probability at least 1 — (|S% (rj)l - 1S3 (7"]-2)|> - q~(mint7i2) | where S1(rj,) and 8y (r,) are
the covering sets defined in Lemma From Lemma we know that |S1 (rj,)| - |S1(r,)] <
5(ri1+752) - As long as ¢ is a constant that is larger than 5, (T06) holds with the probability at least

1— (%)_(rj 14732) For notation simplification, we use probability 1 — ¢~ (7311752 instead.

From (T0T)) and (T02)), we know that
203

L if Q. and €2, are joint sets
1Za (1,52 r < {C O, et
x>

107
if €25, and Q;, are disjoint sets (107
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Hence, we have
IV2f(w) — V2 fo ()|
K
=1

<> (G g A2,
=

K

> 2
1=1j2=
9 K
< D
ji=1

K

2.

ax
lxlla=1

1 awjlvﬂh awj2aﬂjz awjlvgh 8wj27Qj2

Sl Z (Zn(j1,J2) — EZn(jhjz))‘

m.

i ‘1 N o (108)
max

lle=1 TN

2=

K
1 Z 1 + 5]1 ,J2 (rjl + sz) logq
72 N

with probability at least 1 — ¢~"=», where §;, ;, equals to 0 if Q;, and 2, are disjoint and 1
otherwise. O

H Proof of Lemma

Proof of Lemma[5] The first-order derivative of the empirical risk function is written as

of R 1 &
D _ T T
B~ 2 (™ R 290,70 Jenad (0o, mn)

K

K
Define z,,(j, k) = (qb(wﬂzjacngj) — p(w] o, ®n0,))¢ (W] g, Tn.0,)Tn,0,. Then, for any o, €
R", we have
1

pt (Em’afzn|p) v

=p~! (Em (e n.0,) (G(w)6,Tn0,) — d(wjo, w",ﬂj))QS/(wg,ﬂk“’”’QkMP) : (o)
<9 (Be (0 0,) (6w, 200,) — 6wl 200, ")
If Q; and Q, are joint, then
el
<p ! (Balaf @0, ) & (E | (w3, sz Tn0;) — ¢(wffl.jm"vﬂ-f)|2p) ’ (111)
<p ! (Bolaf @0, 7) - <E$|(w;7ﬂj —wj0,) T, ‘Zp)i
2w o, — wja, 2 < 20" — wll.
If ©; and €2}, are disjoint, then
o (Em]afznv))%
Sp_l(]EmlaJTa:n,Qﬂp)% ' (Ew“b(w;,{%w”m) a ¢(w291wn’ﬂj)’p)% (112)

s 1
<p~ ! (Balo] Tn0,P) 7 - (Em|(w;,ﬂj —wjo,) Tng, |p) !

<lwja, = wja,ll2 < [@" - wl,.
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Following similar steps in (I04)), by Chernoff bound, we have

_ r;logq .
, SNzl Rl == - lwja, —wsa; (113)

(zn - Emzn) N

B
with probability at least 1 — ¢~ "7, where

2w — w2, if Q4 and Q; are joint,

12k = { I

~ . . 114
|lw—w"||2, if Qy and Q; are disjoint (114

That is ||z, (4, k)|, = (1 + ;) ||w — w"||2. Also, we know that wn,gkqﬁ'(w;‘ggkwn,gk) belongs
to sub-Gaussian distribution as well. Then, by Chernoff bound, we have

N N
1 1
HN anmn,msﬁl(wzﬂkmn,m) ‘2 NE HN Z mn,Qk(b/(wz,kan,Qk) ‘2
n=1 n=1 (115)

ri logq
SRRV

with probability at least ¢="*.
In conclusion, we have
K .
2 dfp
¥io il gzufffu

8wk 8’(1.11C

K
K g HNn ‘ Zn jak) _szn(j7k))H2

(116)
K
Z ?H N anxn 2,0 (Wi o, Tn ;) ‘
=1
K K K
1 14+6;6)%rrlogq, v~ rklogq
S 3[R g S el
k=1j=1 k:
O
I Proof of Lemma
Proof of Lemmal[I3] Recall the definition of population risk function, we have
an(’LU*) / *T T
o, awjmj E 20’ (Wil 20 (W) o, )T h;, (117)
and
0 f(w)
E 20 (W], o, ;)¢ (W], o aj,)Taj Th;, (118)

8'“]]'1,911 8wj2»Qj

31



Then, we have

Prw)  Pf(w)
8wj179j1 8wj279j2 8wj1:Qj1 8wj27ﬂj2
1 T T T T T
:ﬁ]Eac |:¢/(’w;k'1,ﬂj1 Ly, )(b/(w;fg,sz :Bsz) - ¢/(wj1 5, LQj, )¢/(wj2,ﬂj2 xﬂ]é) LQj1 L0,
1
:ﬁ]Ew [gb/(w;Z:Qh TQj, ) (¢/(w;§Qj2 msz) - d)/(wg; 2, LQj, ))

+ (W], 0, @ap) (¢ (Wil @) — ¢ (W] o way,) |was,el,

T T

Eod' (w}l o, zaj) (¢ (W) o, zaj.) — &' (W], o, Taj,))Ta) h;,

1
=
+ qubl(wg;,ﬂh mQ]é) (¢/(w;3:ﬂ“ wﬂjl) - ¢/(w?1,ﬂj1 LQj, )):I:le m£j2:|

1
::ﬁ(Il + IQ)

(119)
For any o, € R™1 and a, € R"2, we have
T
ma; i Iy
lleesy llzs e llo=1 7" :
_ / *T . / *T Y T .
- Ha ”Irll‘ix H _1Em¢ (wjl,le wﬂ]l)(¢ (wjz,ﬂj2 wQ]Q) ¢ (wj2,9j2 mQJ2))
J1ll2: 11Xz 112= (120)

(o, mq;,) - (af,xq;,)

max Bod'(w, @) (¢ (w], @) — ¢/ (w),)) - (a" @)%,

where a € R?. Let I = ¢/ (w;Tx)(¢'(wilx) — ¢'(wl x)) - (aTx)?. tis easy to verify there exists

a basis such that B = {a,b,c,az, - ,a;} with {a, b, c} spans a subspace that contains a, w,
. T
and w7, . Then, for any , we have a unique z = [21 22 -+ Zz4]" such that

T = z1a+z2b+z3c+-~-—|—zdadl.
Also, since  ~ N(0, I;), we have z ~ N(0, I ;). Then, we have
I :E21722723|¢/<w;‘gw) - ¢l(w;k2Tw)| : \aTw|2

:/ |¢'(w;‘-rz:c) — ¢’(w;gw)| aTx|? - fz(21, 20, 23)dz1dzad2s,

where = z1a+29b+z23cand fz (21, 22, 23) is probability density function of (21, 22, 23). Next, we
consider spherical coordinates with z; = Rcosgi, 20 = Rsing1sings, zs = 29 = Rsingicosps.
Hence,

I= / ¢/ (w},2) — ¢ (w}] )| |[rcosdr|* - - fz(R, b1, ¢2) R® sin p1dRdgrdgpo.  (121)

It is easy to verify that ¢’ (wJT2 :c) only depends on the direction of & and

1 of+ed+al 1 =2
(A 2 = e 2

(2m)’} (2)

fZ(R7¢17¢2) =

Nlw
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only depends on R. Then, we have
I(ia, ja)

/|¢ wl (z/R)) — ¢'(w;] (x/R))|- |Rcos ¢1|* - fz(R)R?sin ¢1dRdgydepo

27
- / P £ (R)AR / / |cos én 2 - sin ¢y - | (w? (x/R)) — & (wT (x/R))|dé1ders

27
\f/ R%*f.(R dR// sin gy - ¢/ (w], (z/R)) — ¢ (w}] (x/R))|dprdes
2B 6 D) — 0 (i)
—\ S5l () o (T

(122)

Define a set A, = {z|(wi]z )(w ,x) <0} Ifa: € Ay, then wi,
which means the value of ¢/ (w7, ) and ¢’ (w] x) are different. This is equlvalent to say that

T2 and w , have different signs,

(0T (¥ T _ 1, ifx e A
|9 (wj,®) — &' (w], @) = { 0, if e A (123)

Moreover, if € A;, then we have
w2 <|wj @ —wj, x| < |lwj, —w,|| - |- (124)

Define a set A5 such that

Agi{m w3 x| <ij2—wj2||}:{0mw

[, Ml = [l |

e waly

| cos O, w?,

Hence, we have that

Eq|¢/ (w],2) — ¢/ (w}l @)|* =Eq ¢ (w],2) — ¢ (w]] )|
=Prob(z € A;) (126)
<Prob(x € As).

Since  ~ N (0, I), 9w,w;2 belongs to the uniform distribution on [—, 7], we have

w, —w,, |
T — arccos W 1 ||w;ﬂ2 _ wjz ||
Prob(x € Ag) = 2 <— tan(m — arccos ————)
T ™ ||wj2H
*
— cot(arccos I3, - J2||)
[[3,

w3, —wj, || (127)

2
s
2 ||w;2,Qj2 — Wj5,Q,, ”
'/T
2
s

Hence, (122)) and (127) suggest that

(128)



The same bound that shown in (I28) holds for I as well.

Therefore, we have
V2 f(w) — V2 f(w")l2
K K 2 ~ 2 fd
< Z Z O f(w") _ 9*f(w)

6wj1_,9j1 a’wj?,sz (9’wj1,le 6'[1]]'2,9],2

j1=1j2=1 2 (129)
<M+ Iafle < (a2 + [[I2]l2
12 " — @,
m OK
O
J Additional proofs of lemmas in Appendix [F|
J.1 Error bound for the second-order moment
Proof of Lemmal(7] For M 9 — M5, we have
M, — M,
1N
¥ > Un(@n © T, — EZ,3,,) — By y(T © T — BT )
n=1
1 1 &
=% 3 (E 3 ¢(U§T~%n,ﬁj &) (&, © &, — EZ )
n=1 j=1
1 X
xT ~ ~~T
—E, % Z;¢(uj $§])(m @z —Exx)
J:
1 N K e o o
TN Z Z (qb(uj T, 5 Y&y @ Ty — BEp@. ) — By (b(u (BQ J(x @z —Exz ))
n=1j=1
N
Z 671 mn ® mn - EmnNT)
n=1
(130)
Following the notations in Lemma E.2 of [40], we denote
Bs(z,,) -—gz (" ®, 5 )@ © Ty — BBy, ). (131)

Following the similar calculations of (I) - (III) in Lemma E.2 [40], we know that

§
||B2(£L’)||2 5 O01Tmax IOg q,
|Ex B2 ()2 < o1, (132)
1
”Eng(w)”Z S EU%rmax
hold with probability at least 1 — g~ "max,

Define Z ,, = ﬁ (Bg(mn) —E,.B> (:c)) for ,, with n € [N], and it is obvious Z ,, is zero mean.
Also, we have

Ry = || Z2n]2 < *(||Bz(l‘n)||2 + [|Eq Bo(z Loy log? g, (133)

HMN
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and

N 1 2
<X 5 (BB - EBa(2a)’) |

n=1

1
<~ (IEB3 @)z + |IEBa () 3)

-1 2
SN 01Tmax-

2
2

N
52 = H S EZE,
n=1

(134)

Next, let t = @(01\/%). To make sure 63 > Ryt/3, we need N = 7.y log* ¢. Then, by
Lemmal[I0] we have

—t2/2 —t2
Prob H Zo || >l <2 <7><2 (—)
ro{ zn: 2n, > }_ resp (s 7s) < 2o (4 (135)
That is
al T'max 10g q
Zo || < oy mex 084 136
an_; 2|, S 01 N (136)

with probability at least 1 — ¢~ "==x, Because x,, belongs to the sub-Gaussian distribution, we know

that
1 & Tmax 10g ¢
| % Y@ @80 - BB || 5 () el (137)
n=1

with probability at least 1 — g~ "max,

K
AT 1 Tmaxl()gq
||M27M2||§];§ (o1 + 60y = (138)

1

In conclusion, we have

with probability at least 1 — ¢~ === provided that N 2 rp.x log4 q. [

J.2  Error bound for the third-order moment

Proof of Lemma(8] For ]\/23(‘77 V,V) = M3(V,V,V), we have

M;(V,V, V)~ M3(V,V,V)
T

N
=% Sy [(V 2,)% = (V #,)0(EV 2,)(V @,)")]
B y[(V 8)% — (V' 2T)@E(V &)V &,)7]
N K
=% 3 (% S 0w E, )+ &) (V505 = (V @8)@EV 3)(V 5)7)]
n=1 7j=1
K
- E, % > olu;" @) (V&) — (V &)e®&V &)V 2)7)] (139)
1 N]_K T T T T
e X [oiE, ) (V180 - (7 B)0E(0 (0 5,7
n=1j=1
Epo(u! 35 ) (V' )% — (V )oBV &)V #)7)]



Following the notations in Lemma E.8 of [40], we define
~T

K
T(x) ;:%Z(ﬁ(u;%mj). (V' 2,)% = (V 2,)@(E(V z,)(V z,)T)].  (140)

Then, B;3(x) € RE*K * is defined as flattening the tensor T'(x) along the first dimension. Hence,
we have

* ST T
1Bs(@) 2 Smax ujdg |- (V" aall} + 3KV @)

(141)
<o K 2 log? ¢
with probability at least 1 — ¢~ .
Following the similar calculations of (II) and (IIT) in Lemma E.8 of [40], we know that
|EeBs ()2 < o1,
(142)

max{||Em[Bs(w>TBg<x>1||2, HEm[Bg(w)TBa(me} < K22,

Define Z3,, = %(Bg(mn) - EmBg(CC)) for (z,,,y,) € D, and it is obvious Z3 ,, is zero mean.
Also, we have

1
Ry = (1Z3.n]l2 SN(HBS(%)Hz + |[Ez Bs(z)||2)

(143)
E 5
§N*101K% log? g,
and
N N 1
0 =1 Y EZsn2l,| || > B2 2] }< EB2(2,)|l2 + |EBs(z,)13
P= {2 | Bz 2 < (EB @l B,
<SNTIK?62,
Similar to (I33)), by applying Lemma|[I0] we have
o log ¢
1> Zoa|, s oy (145)
= 2 N

with probability at least 1 — ¢~ provided that N > K° log6 q.

~T _
Similar to (I41), we define B by flattening the tensor 25:1 (V @)®3 —

T ST ST o . .
(V 2)0(E(V @)(V x)")| along the first dimension. Then, we know that

< K~ *logq %+3K K~*logq 3
~ N N

< log g §+ logqg\? (146)
~\ N N

< /log q
~ N b

N
~T
Bl < | 2V, 2
n—

' sk S 97
2+ an::l Tn

provided that N > K°logq.

In conclusion, we have

~ o~~~ ~ o~ 1
|Ma(V.V.V) = My(V. V. V)| S (01 +[€])y) (147)

with probability at least 1 — ¢~ ¥ provided that N > K3 log® q.
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J.3 Error bound for the first-order moment

Proof of Lemma(9] For M 1 — M, we have

N
— 1 ~ ~
My~ My =3 ynin —Eq y2

5
—

N K K
ZNZ EZ nds,) T €n)Tn — Eg Z%b(uf%j)?c (148)
= K ; ;_1 1 N
N ; z:: (6%, 5,0 — Bo 0w} 35)) + - ;gn F.
Define B, (x) := %ZKZ (u;Ta?nﬁj)in,then we have
K
[B1(z)]2 < 2017% log? g;
|E<B) ( fn <o (14
{I|B1B1(@)B1(@)7]| . | BalB1; (@) Bi@)]|,} < o

Next, define Z1 ,, = % (B1,j(xn) — ExBa(x)) for (z,,,y,) € D, by calculation, we can obtain

Ri=|Z1nllz S N 017rmax log? g, (150)

and

6% = max{” ZIEZln

By applying Lemma[I0] we have

} <N 'o?rpa. (151)

N Tmax 10
N Zi,| oy e 0Bd (152)
n=1 2 N

with probability at least 1 — g~ "=x provided that N 2 rpax log4 q. Since x € R" belongs to the
Gaussian distribution, we have
1 & Tmax 10g ¢
fall Tyl <o)X od 153
H v 2 E, S Ty (153)
n=1
with probability at least 1 — g~ "ax,
— Tmax LO
|1 = M| S (o1 + ey 2 (154)

with probability at least 1 — g~ "=, provided that N 2 ryax log” q. O

In conclusion, we have
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